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Next few weeks

- Shading Models
— Chapter 7

« Textures

 Graphics Pipeline
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To compute images...

» Light Emission
— What are the light sources?

- Light Propagation
— Fog/Clear?

- Light Reflection
— Interaction with media
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Types of Lights

- Directional lights \\
— E.g., sunlight k

— Light vector fixed direction

* Point lights

~E.g. bulbs  §0)

— Light position fixed
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Types of Lights

 Spot lights: Like point light, but also
— Cut-off angle
— Attenuation

1 GLUT spotlight swine
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Types of Lights

* Area Lights: generate soft shadows
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Types of Light

« Environment Maps
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To compute images...

« Light Emission
— What are the light sources?

+ Light Propagation
— Fog/Clear?

« Light Reflection
— Interaction with media
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Bidirectional Reflectance
Distribution Function (BRDF)

specular

directional /\
diffuse

uniform diffuse/
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Surface reflective characteristics

« Spectral distribution
— Responsible for surface color
— Tabulate in independent wavelength bands, or RGB

 Spatial distribution
— Material properties vary with surface position
— Texture maps

+ Directional distribution
— BRDF
— Tabulation is impractical because of dimensionality
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Radiometry

- Radiometry: measurement of light energy

« Defines relation between
— Power
— Energy
— Radiance
— Radiosity
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Radiometric Terms

- Power: energy per unit time

- Irradiance: Incident power per unit surface
area

— From all directions \\ | //
— Watt/m?2 76 _ ><

- Radiosity: Exitant power per unit surface area
— Same units
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Radiance

- Radiance is radiant energy at x in
direction 0: 5D function

— Power
= per unit projected surface area
* per unit solid angle

dAL
— units: Watt / m2.sr X
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Why is radiance important?

« Response of a sensor (camera, human
eye) is proportional to radiance

eye

- Pixel values in image proportional to
radiance received from that direction
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Materials - Three Forms

Y\ Ideal diffuse
M (Lambertian)

N Ideal

specular

Directional
diffuse
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(Labrt) specular diffuse

N7
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|deal Diffuse Reflection

- Characteristic of multiple scattering
materials

« An idealization but reasonable for matte
surfaces

- Basis of most radiosity methods
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|deal Diffuse

« Lambert’s Law

[(// f fuse —
dif fuse —
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|deal Specular Reflection

 Calculated from Fresnel’s equations
« Exact for polished surfaces
- Basis of early ray-tracing methods
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Directional Diffuse Reflection

 Characteristic of most rough surfaces
+ Described by the BRDF
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Classes of Models for the BRDF

 Plausible simple functions
— Phong 1975;

+ Physics-based models
— Cook/Torrance, 1981; He et al. 1992;

- Empirically-based models
— Ward 1992
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Phong Shading Model

» Classic Phong
— Ambient
— Diffuse
— Specular (Phong highlight)
— Also fog and transparency possible

 For each light evaluate above
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Specular

- Specular

— Simulates surface smoothness
— (max {N o H, 0})shininess

, |/
_
1L+ V]

H Half-Vector

L Specular
/
\/
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Phong Reflection Model

. s | Mirror
Diffuse Specular p.qa.tion

L R Vector
\ 1 > v

Specular = k(R.V)"
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The Blinn-Phong Model

H Half-Vector

L Specular
/
\'}

Dif fuse = ky(N.L

Specular = ky(N.H)"
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Phong Shading Model

- | = ambient + diffuse + specular
[ =k, + kyl;(N.L)+k,JI(N.H)"

- We want all the I’s and &’s to be functions
of (R,G,B)
— I’'s are function of light
— k’s are function of material

- Sum over all lights
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Terms in Phong

« Ambient
— “Fake” global illumination

— Fixed from all directions
= Makes it not black
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The Phong Model

- Computationally simple
* Visually pleasing
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Phong: Reality Check

Real photographs
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Phong: Reality Check

Phong model Physics-based model

- Doesn’t represent physical reality
— Energy not conserved
— Not reciprocal
— Maximum always in specular direction
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Reciprocity

* Interchange L and V
— Photon doesn’t know its direction
— Same behavior

- Blinn-Phong vs. Phong
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Classes of Models for the BRDF

 Plausible simple functions
— Phong 1975;

+ Physics-based models
— Cook/Torrance, 1981; He et al. 1992;

- Empirically-based models
— Ward 1992, Lafortune model
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Motivation for Cook-Torrance

» Plastic has substrate that is white with
embedded pigment particles

— Colored diffuse component
— White specular component

« Metal
— Specular component depends on metal
— Negligible diffuse component
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Cook-Torrance BRDF Model

« Phong: too smooth

« A microfacet model

— Surface modeled as random collection of
planar facets

— Incoming ray hits exactly one facet, at random
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Facet Reflection

* Input: probability distribution of facet angle

« Hvector used to define facets that
contribute
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Cook-Torrance BRDF Model

« “Specular” term (really directional diffuse)

© Kavita Bala, Computer Science, Cornell University



Cook-Torrance BRDF Model

Facet distribution
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Facet Distribution

e D function describes distribution of H

 Formula due to Beckmann
— Statistical model

— Alpha is angle between N and H

= Intuitively, deviation of microgeometry from macro
normal

—m is RMS slope of microfacets: large m
means more spread out reflections

tan o

-~ 2
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Cook-Torrance BRDF Model

Masking/shadowing
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Masking and Shadowing

= min/[1,

& =
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Fresnel Reflection Properties

- Gives coefficients when light moves
between different media

« Polarization

« Captures behavior of metals and
dielectrics

- Explains why reflection increases (and
surfaces appear more “mirror’-like) at
grazing angles
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Metal vs. Nonmetal

Fresnel reflectance

Metals

Nonmetals (k=0)

0 0 90
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Highly Non-Linear

0 10 20 30 40 50 60 70 80 90
angle of incidence 0;

== copper == aluminum = iron diamond = glass =—— water




Fresnel Equations
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Fresnel Reflectance

for unpolarized light

- Equations apply for metals and nonmetals
— for metals, use complex index : n + ik
— for nonmetals/dieletrics, k =0
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Schlick’s approximation of Fresnel

* For dielectric
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Re(0)

Insulator: Water 0.02, 0.02, 0.02
Insulator: Plastic 0.03, 0.03, 0.03
Insulator: Glass 0.08, 0.08, 0.08
Insulator: Diamond |0.17, 0.17, 0.17

Metal: Gold 1.00, 0.71, 0.29
Metal: Silver 0.95, 0.93, 0.88
Metal: Copper 0.95, 0.64, 0.54
Metal: Iron 0.56, 0.57, 0.58

Metal: Aluminum 0.91, 0.92, 0.92
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Rob Cook’s vases
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Classes of Models for the BRDF

 Plausible simple functions
— Phong 1975;

+ Physics-based models
— Cook/Torrance, 1981; He et al. 1992;

- Empirically-based models
— Ward 1992, Lafortune model
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Measured BRDFs

"""""
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Ward Model

 Physically valid
— Energy conserving
— Satisfies reciprocity
— Easy to integrate

- Based on empirical data
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Ward Model

» Isotropic and anisotropic materials
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Ward Model: Isotropic

| l l B /un%f)l
]Ls = Ps € m#

4rm?\/N.LN.V

* where,
—m (usually o) is surface roughness
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Ward Model: Anisotropic

2 2

. 1 _lu“A_)H/I((H.\ 5}/,+.\[Il i /’

fs = ps
dmm,m,,
CH.\2,  Hay2
) 1 _ ( {I]I..,-J _l-T!!;
fs = ps — 4T IENH
dmm,m,,

- where,

—m,, m, are surface roughness in x, y
— X, J are mutually perpendicular to the normal
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Examples
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Teapot

(0.15, 0.5) (0.5, 0.15)

(0.3, 0.3)



Normals for lllumination

* In polygonal models, each facet has
normal

- But, faceted look (N constant)
— Directional light (constant diffuse illumination)
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Shading Normals

- Normal matches the object (not the

polygons)
— Assume polygons are piecewise smooth
approximation

— Ideally provided by underlying object
— Otherwise, average normals of nearby facets
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Shading Models

- Fast, easy: Phong

 Physically-based model: Cook-
Torrance

- Empirically-based model: Ward

* Next time: textures

© Kavita Bala, Computer Science, Cornell University

Books
- Email about RTR (3rd ed.)

\ Graphics
SO

e
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OpenGL 4.0 shading

Language Cookbook = ' GPU PR02
;! N

"
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