Next few weeks

- Shading Models
 - Chapter 7
- Textures
- Graphics Pipeline
To compute images...

• Light Emission
 – What are the light sources?

• Light Propagation
 – Fog/Clear?

• Light Reflection
 – Interaction with media

Types of Lights

• Directional lights
 – E.g., sunlight
 – Light vector fixed direction

• Point lights
 – E.g., bulbs
 – Light position fixed
Types of Lights

• Spot lights: Like point light, but also
 – Cut-off angle
 – Attenuation

Types of Lights

• Area Lights: generate soft shadows
Types of Light

• Environment Maps

To compute images…

• Light Emission
 – What are the light sources?

• Light Propagation
 – Fog/Clear?

• Light Reflection
 – Interaction with media
Surface reflective characteristics

- **Spectral distribution**
 - Responsible for surface color
 - Tabulate in independent wavelength bands, or RGB

- **Spatial distribution**
 - Material properties vary with surface position
 - Texture maps

- **Directional distribution**
 - BRDF
 - Tabulation is impractical because of dimensionality
Radiometry

• Radiometry: measurement of light energy

• Defines relation between
 – Power
 – Energy
 – Radiance
 – Radiosity

Radiometric Terms

• Power: energy per unit time

• Irradiance: Incident power per unit surface area
 – From all directions
 – Watt/m²

• Radiosity: Exitant power per unit surface area
 – Same units
Radiance

- Radiance is radiant energy at x in direction θ: 5D function
 - Power
 - per unit projected surface area
 - per unit solid angle
 - units: Watt / m2.sr

Why is radiance important?

- Response of a sensor (camera, human eye) is proportional to radiance
- Pixel values in image proportional to radiance received from that direction
Materials - Three Forms

Ideal diffuse (Lambertian)

Ideal specular

Directional diffuse

Reflectance - Three Forms

Ideal diffuse
(Lambertian)

Directional
diffuse

Ideal specular
Ideal Diffuse Reflection

- Characteristic of multiple scattering materials
- An idealization but reasonable for matte surfaces
- Basis of most radiosity methods

Ideal Diffuse

- Lambert’s Law

\[I_{diffuse} = I_{light} k_d \cos(\theta) \]
\[I_{diffuse} = I_{light} k_d N \cdot L \]
Ideal Specular Reflection

• Calculated from Fresnel’s equations
• Exact for polished surfaces
• Basis of early ray-tracing methods

Directional Diffuse Reflection

• Characteristic of most rough surfaces
• Described by the BRDF
Classes of Models for the BRDF

- Plausible simple functions
 - Phong 1975;

- Physics-based models
 - Cook/Torrance, 1981; He et al. 1992;

- Empirically-based models
 - Ward 1992

Phong Shading Model

- Classic Phong
 - Ambient
 - Diffuse
 - Specular (Phong highlight)
 - Also fog and transparency possible

- For each light evaluate above
Specular

- Specular
 - Simulates surface smoothness
 - $\max \{N \cdot H, 0\}^{\text{shininess}}$
 - $H = \frac{L + V}{||L + V||}$

Phong Reflection Model

$\text{Diffuse} = k_d(N \cdot L)$
$\text{Specular} = k_s(R \cdot V)^n$
The Blinn-Phong Model

Half-Vector

L

H

V

Specular

Diffuse = \(k_d(N \cdot L) \)

Specular = \(k_s(N \cdot H)^n \)

Phong Shading Model

- \(I = \) ambient + diffuse + specular

\[I = k_a I_a + k_d I_d(N \cdot L) + k_s I_s(N \cdot H)^n \]

- We want all the \(I \)'s and \(k \)'s to be functions of \((R,G,B) \)
 - \(I \)'s are function of light
 - \(k \)'s are function of material

- Sum over all lights
Terms in Phong

- Ambient
 - “Fake” global illumination
 - Fixed from all directions
 - Makes it not black
The Phong Model

- Computationally simple
- Visually pleasing

Phong: Reality Check

Real photographs

Phong model
Phong: Reality Check

- Doesn’t represent physical reality
 - Energy not conserved
 - Not reciprocal
 - Maximum always in specular direction

Reciprocity

- Interchange L and V
 - Photon doesn’t know its direction
 - Same behavior

- Blinn-Phong vs. Phong
Classes of Models for the BRDF

- Plausible simple functions
 - Phong 1975;

- Physics-based models
 - Cook/Torrance, 1981; He et al. 1992;

- Empirically-based models
 - Ward 1992, Lafortune model

Motivation for Cook-Torrance

- Plastic has substrate that is white with embedded pigment particles
 - Colored diffuse component
 - White specular component

- Metal
 - Specular component depends on metal
 - Negligible diffuse component
Cook-Torrance BRDF Model

- Phong: too smooth
- A *microfacet* model
 - Surface modeled as random collection of planar facets
 - Incoming ray hits exactly one facet, at random
Facet Reflection

- Input: probability distribution of facet angle
- H vector used to define facets that contribute

Cook-Torrance BRDF Model

- “Specular” term (really directional diffuse)

$$f_s = \rho_s \frac{F_{DG}}{\pi N.L N.V}$$
Facet Distribution

- D function describes distribution of H
- Formula due to Beckmann
 - Statistical model
 - Alpha is angle between N and H
 - Intuitively, deviation of microgeometry from macro normal
 - m is RMS slope of microfacets: large m means more spread out reflections

$$D = \frac{1}{4m^2 \cos^4 \alpha} e^{-\left[\tan \frac{\alpha}{m}\right]^2}$$
Cook-Torrance BRDF Model

Images by Rob Cook, Program of Computer Graphics, Cornell University

© Kavita Bala, Computer Science, Cornell University
Fresnel Reflection Properties

- Gives coefficients when light moves between different media
- Polarization
- Captures behavior of metals and dielectrics
- Explains why reflection increases (and surfaces appear more “mirror”-like) at grazing angles

\[G = \min\left[1, \frac{2N_H N_V}{V_H}, \frac{2N_H N_L}{V_H}\right] \]
Metal vs. Nonmetal

Fresnel reflectance

Metals

Nonmetals (k=0)

Highly Non-Linear

angle of incidence θ_i

R_F

copper aluminum iron diamond glass water
Fresnel Equations

\[\eta_1 \sin(\theta_1) = \eta_2 \sin(\theta_2) \]

\[F_p = \frac{\eta_2 \cos(\theta_1) - \eta_1 \cos(\theta_2)}{\eta_2 \cos(\theta_1) + \eta_1 \cos(\theta_2)} \]

\[F_s = \frac{\eta_1 \cos(\theta_1) - \eta_2 \cos(\theta_2)}{\eta_1 \cos(\theta_1) + \eta_2 \cos(\theta_2)} \]

Fresnel Reflectance

\[F = \frac{F_s + F_p}{2} \]

for unpolarized light

- Equations apply for metals and nonmetals
 - for metals, use complex index : \(n + ik \)
 - for nonmetals/dielectrics, \(k = 0 \)
Schlick’s approximation of Fresnel

\[R_F(\theta) = R_F(0) + (1 - R_F(0))(1 - \cos(\theta))^5 \]

• For dielectric

\[R_F(0) = \left(\frac{\eta - 1}{\eta + 1} \right)^2 \]
$R_F(0)$

<table>
<thead>
<tr>
<th>Insulator: Water</th>
<th>0.02, 0.02, 0.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulator: Plastic</td>
<td>0.03, 0.03, 0.03</td>
</tr>
<tr>
<td>Insulator: Glass</td>
<td>0.08, 0.08, 0.08</td>
</tr>
<tr>
<td>Insulator: Diamond</td>
<td>0.17, 0.17, 0.17</td>
</tr>
<tr>
<td>Metal: Gold</td>
<td>1.00, 0.71, 0.29</td>
</tr>
<tr>
<td>Metal: Silver</td>
<td>0.95, 0.93, 0.88</td>
</tr>
<tr>
<td>Metal: Copper</td>
<td>0.95, 0.64, 0.54</td>
</tr>
<tr>
<td>Metal: Iron</td>
<td>0.56, 0.57, 0.58</td>
</tr>
<tr>
<td>Metal: Aluminum</td>
<td>0.91, 0.92, 0.92</td>
</tr>
</tbody>
</table>

Rob Cook’s vases

- Carbon
- Red Rubber
- Obsidian
- Lunar Dust
- Olive Drab
- Rust
- Bronze
- Tungsten
- Copper
- Tin
- Nickel
- Stainless Steel

Source: Cook, Torrance 1981
Classes of Models for the BRDF

• Plausible simple functions
 – Phong 1975;

• Physics-based models
 – Cook/Torrance, 1981; He et al. 1992;

• Empirically-based models
 – Ward 1992, Lafortune model

Measured BRDFs

- White paint
- Blue paint
- Commercial aluminum
- Blue plastic
Ward Model

• Physically valid
 – Energy conserving
 – Satisfies reciprocity
 – Easy to integrate

• Based on empirical data

Ward Model

• Isotropic and anisotropic materials
Ward Model: Isotropic

\[f_s = \rho_s \frac{1}{4\pi m^2} \frac{1}{\sqrt{N.LN.V}} e^{-\frac{\tan^2 \theta h}{m^2}} \]

- where,
 - \(m \) (usually \(\alpha \)) is surface roughness

Ward Model: Anisotropic

\[f_s = \rho_s \frac{1}{4\pi m_x m_y \sqrt{N.LN.V}} e^{-\tan^2 \theta h \left(\frac{\cos^2 \phi h}{m_x^2} + \frac{\sin^2 \phi h}{m_y^2} \right)} \]

\[f_s = \rho_s \frac{1}{4\pi m_x m_y \sqrt{N.LN.V}} e^{-\frac{(\frac{H_x}{m_x})^2 + (\frac{H_y}{m_y})^2}{1 + N.H}} \]

- where,
 - \(m_x, m_y \) are surface roughness in \(\hat{x}, \hat{y} \)
 - \(\hat{x}, \hat{y} \) are mutually perpendicular to the normal
Examples

Teapot
Normals for Illumination

- In polygonal models, each facet has a normal.
- But, faceted look (N constant)
 - Directional light (constant diffuse illumination)

Shading Normals

- Normal matches the object (not the polygons)
 - Assume polygons are piecewise smooth approximation
 - Ideally provided by underlying object
 - Otherwise, average normals of nearby facets
Shading Models

• Fast, easy: Phong
• Physically-based model: Cook-Torrance
• Empirically-based model: Ward

• Next time: textures

Books

• Email about RTR (3rd ed.)