Information

• Instructor: Kavita Bala (kb@cs.cornell.edu)

• TAs:
 – Ivo Boyadzhiev, John DeCorato, Sean Ryan

• AA: Randy Hess
• CS 5625 Tu/Thu:
 – 10:10-11:25 (Hollister 110)
• Office hours: Tuesday (11:30-12:30)
Why this course?

- **Topics**
 - Graphics pipeline
 - Though not an architecture course
 - Core algorithms and techniques
 - Those that drive interactive graphics
 - So no off-line ray tracing
 - But could be
 - Hopefully, some GPGPU

What drives this explosion?

- **CPUs/GPUs**
 - Graphics processing Units

- **Moore’s Law and Beyond**
 - Parallelism
Moore’s Law

- 1965
 - number of transistors that can be integrated on a die would double every 18 to 24 months (i.e., grow exponentially with time).

- Amazingly visionary
 - 2300 transistors, 1 MHz clock (Intel 4004) - 1971
 - 16 Million transistors (Ultra Sparc III) - 2001
 - 42 Million transistors, 2 GHz clock (Intel Xeon) – 2001
 - 55 Million transistors, 3 GHz, 130nm technology, 250mm² die (Intel Pentium 4) – 2004
 - 290+ Million transistors, 3 GHz (Intel Core 2 Duo) – 2007

GPUs: Faster than Moore’s Law

Slope ~2.4x/year (Moore’s Law – 1.7x/year)

Graph courtesy of Professor John Poulton (from Eric Haines)
Why?

- Parallelism
- Pipelining
The dark ages (early-mid 1990’s), when there were only frame buffers for normal PC’s.

Some accelerators were no more than a simple chip that sped up linear interpolation along a single span, so increasing fill rate.

This is where pipelines start for PC commodity graphics, prior to Fall of 1999.

This part of the pipeline reaches the consumer level with the introduction of the NVIDIA GeForce256.

Hardware today is moving traditional application processing (surface generation, occlusion culling) into the graphics accelerator.
What is Graphics

- Generating images
- Modern Graphics Pipeline
- Create them
 - Modeling
 - Animating
 - Rendering
- Manipulate them
 - Image Processing
- Focus on Interactive Graphics

Pre-requisites

- Introductory graphics course
- Or instructor permission
Information

- www.cs.cornell.edu/courses/cs5625/2013sp/
 - Tentative schedule (very tentative)
 - Homworks, lecture notes, will be on CMS
 - Check for updates and announcements

CS 5620

- 5 HW/PA (some parts alone, some in pairs)
- 2 prelims (definitely alone)
- Final project (in pairs)
 - Project proposal
 - Mid project evaluation
 - Final project demos, presentations, writeup
Academic Integrity

• Don’t copy from Web

• Collaboration only when projects/homeworks are with groups

• Lots of detailed discussion is not ok
 – Need to come up with answers separately
 • When individual

Programming assignments

• Some combination of these concepts:
 1. Shading
 2. Texturing
 3. Shadows and Ambient Occlusion
 4. Subdivision Surfaces
 5. GPGPU
Recommended book

- Real-time Rendering
 - Akenine-Moller, Haines, Hoffman
 - Updates will be posted
 - Not required

- Online resources
 - Lot of them!

Other Policies

- Late policy
 - 3 free late days over the semester
 - Applies to all
 - Otherwise, 10% penalty per day for 5 days
 - Then 0 on an assignment

- AI (take this very seriously)
Final Project

Administrivia

- http://www.cs.cornell.edu/courses/cs5625/2013sp
 - Updates
 - Schedule
 - Lecture notes