Can this be generalized?

- NP-hard for Potts model [K/BVZ 01]
- Two main approaches
 1. Exact solution [Ishikawa 03]
 - Large graph, convex V (arbitrary D)
 - Not the considered the right prior for vision
 2. Approximate solutions [BVZ 01]
 - Solve a binary labeling problem, repeatedly
 - Expansion move algorithm
Exact construction for L1 distance

- Graph for 2 pixels, 7 labels:
 - 6 non-terminal vertices per pixel \((6 = 7 - 1)\)
 - Certain edges (vertical green in the figure) correspond to different labels for a pixel
 - If we cut these edges, the right number of horizontal edges will also be cut

- Can be generalized for convex \(V\) (arbitrary \(D\))
Convex over-smoothing

- Convex priors are widely viewed in vision as inappropriate ("non-robust")
 - These priors prefer globally smooth images
 • Which is almost never suitable
- This is not just a theoretical argument
 - It’s observed in practice, even at global min
Appropriate prior?

- We need to avoid over-penalizing large jumps in the solution
- This is related to outliers, and the whole area of robust statistics
- We tend to get structured outliers in images, which are particularly challenging!
Getting the boundaries right

Right answers

Graph cuts
Expansion move algorithm

- Make green expansion move that most decreases E
 - Then make the best blue expansion move, etc
 - Done when no α-expansion move decreases the energy, for any label α
 - See [BVZ 01] for details
Local improvement vs. Graph cuts

- Continuous vs. discrete
 - No floating point with graph cuts

- Local min in line search vs. global min

- Minimize over a line vs. hypersurface
 - Containing $O(2^n)$ candidates

- Local minimum: weak vs. strong
 - Within 1% of global min on benchmarks!
 - Theoretical guarantees concerning distance from global minimum
 - 2-approximation for a common choice of E
2-approximation for Potts model

optimal solution f^*

local minimum \hat{f}

Summing up over all labels:

$$E(\hat{f}) \leq E(f^*) + E_\partial(f^*) \leq 2E(f^*)$$
Binary sub-problem

Input labeling
Expansion move
Binary image
Expansion move energy

Goal: find the binary image with lowest energy

Binary image energy $E(b)$ is restricted version of original E
Depends on f, α
Regularity

- The binary energy function

\[\sum_{p} B_p(x_p) + \sum_{p,q} B_{p,q}(x_p, x_q) \]

is regular [KZ 04] if

\[B_{p,q}(0, 0) + B_{p,q}(1, 1) \leq B_{p,q}(0, 1) + B_{p,q}(1, 0) \]

- This is a special case of submodularity