
CS 5432:
Control Flow Defenses

Fred B. Schneider
Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University

Ithaca, New York  14853
U.S.A.



Attacks:  High Level View

● Abuse existing functionality.
– Code follows intended control flow.

● Inject code and execute that.
– Code follows different control flow.

1



Memory Organization

Stack grows in direction of 
smaller addr in Intel, SPARC, 
MIPS, …

2

0

N GB

Text
Data
Heap

Stack



Runtime Stack:  Frames

SP points to top 
data word in stack

FP points to start of 
frame.

3

low addr

high addr

Frame 1
Frame 2
Frame 3

Frame 4 SP

FP



Runtime Stack:  Frame Layout
call f(x,y,z)

push x
push y
push z
call f

push IP
jmp f

f:  push FP
FP := SP
SP := SP – len(locals)
…
SP := SP – len(locals)
pop FP
jmp (*SP)

4

low addr

high addr

Arg n
…
Arg 2
Arg 1

SP

FP

Return ip
Old FP

var m
…
var 2
var 1



Buffer Overflow Attack

var 2 :=  long string 

5

low addr

high addr

Arg n
…
Arg 2
Arg 1

SP

FP

Return ip
Old FP

var m
…
var 2
var 1 A: var 2: code

code …
code
addr A

=



Buffer Overflow Attack

var 2 :=  long string 

6

low addr

high addr

Arg n
…
Arg 2
Arg 1

SP

FP

A
code, code 

var m
…
A: code, code

code, code, A: var 2: code
code …
code
addr A

=



Defenses (?)

Protect return IP on stack
– Does not protect against:

§ Changes to other variables
§ Changes to function pointers

● Stackshield
● Stackguard
● Pointerguard
● Non executable stack (DEP or W+X)

7



Stackshield

Maintain shadow copy of stack in heap.
– Push return IP in function prolog
– Check return IP in function epilog

… assumes all library and applics are (re)compiled with this 
defense in place.  Unreasonable assumption for apps.

8



Stackguard [Cowan ‘98]

Compiler includes “canary” in the stackframe in 
order to protect return IP.

– Canary pushed onto stack by procedure prolog.
– Canary checked in procedure epilog

… Writing “up” from a variable will overwrite the 
canary, leading to detection at procedure exit.

9



Stackguard [Cowan ‘98]

10

low addr

high addr

Arg n
…
Arg 2
Arg 1

SP

FP

Return ip
Old FP

var m
…
var 2
var 1

low addr

high addr

Arg n
…
Arg 2
Arg 1

SP

FP

Return ip
Canary

var m
…
var 2
var 1
Old FP



Circumventing the Canary

Idea:  Overwrite canary with a value that 
will be accepted by checking code in epilog.

– Easier if canary is public constant
– Harder if canary is not known to attacker.

§ … presumably canary value stored in system.

… this informs the design of canary.

11



Canary Implementations

● Terminator canary.  Contains NULL (0x00), CR 
(0x0d), LF (0x0a), EOF (0xff).
– Either:  Attacker’s copying will stop early, so overwrite will not 

reach and replace return IP address on stack.
– Or: Copy operation will change contents of canary and, 

therefore, replace return IP address.  But canary now has value 
that will fail test at epilog.
§ If multiple stack overruns possible:  Attacker can then 

overwrite bogus canary (using multiple copy operations of 
different lengths) restoring a “terminator canary.”

12



Canary Implementations

● Random Canary.  Include value in DATA or TEXT:
– Array RCan[0 .. 255] of random values

– Stored in read/only page

– Guarded by no-read pages

● Use as canary:

RCan[ (fn start addr) mod 255]

13



Canary Implementations

● Random Function of IP.  Use as canary:
return IP ⊕ random val

At procedure epilog:
– Check if Canary corresponds to planned return IP
(Attacker could have copied pointer into return IP).

14



Defense:  Prevent Data Execution

Defense:  Prevent execution from writable memory.
– DEP (Data Execution Prevention)   -also called-
– W^X aka W⊕X (writable or executable)
Implementations:

§ [older x86] Have separate segment for executable pages
§ [x86 64bit MMU] Use NX (AMD) or XD (Intel) bit in each page 

table entry.

15



Return-into-libc attacks

If  execution of data is not possible…
Attack: Use code already present and executable.

– Return-into-libc attacks
§ Put onto stack as return IP:  addr inside some libC function:

• E.g., “call system( … ).

§ May benefit from putting args on the stack, too.
§ May have IP point to a “call system” instruction inside of libc

routine.

Note.  Attack is restricted to invoking a single routine or 
a sequence  of libc routines or their tails.

16



Defense:  Return-into-libc attacks

● Make address of libc routines unpredictable.
– Address Space Layout Randomization (ASLR)

§ Can be penetrated by brute force or certain invocations.

● Use ASCII armoring for address of libc routines.
– Address of routine contains leading NULL byte (0x00), 

which prevents copying address onto stack.

Going beyond Return-into-libc attacks…
… use code but not functions.

17



Return-Oriented Programming

Gadget:  Sequence of 
instructions that ends with 
return instruction (opcode: 
0xc3).

Thesis:  If instruction set is 
sufficiently dense then sys 
code includes Turing-
complete set of gadgets.

18

low addr

high addr

Arg n
…
Arg 2
Arg 1

SP

FP

Return ip
Old FP

var m
ip for gadget 1
…
ip for gadget n-1
ip for gadget n



Gadget Construction

● Start sequence at any instruction.
– Do not include transfers of control.

● End sequence with a return (ret).
– Fact:  SP serves as the PC for sequencing

Fact:  Every suffix of a gadget is a gadget.

19



x86 Instruction “Geometry”

f7 c7 07 00 00 00   test $0x00000007, %edi
0f 95 45 c3         setnzb -61(%edb)

Shifted one byte…

c7 07 00 00 00 0f   movl $0x0f000000, (%edi)
95                  xchg %ebp, %eax
45                  inc %ebp
c3                  ret         

20



Gadgets Galore!

89  50  04  a3  ff d0  05  08  83  c4  04  5b  5d  c3

21
movl %edx, 0x4(%eax)

addb $0xa3, %a1 call %eax

movl %eax, 0x0805d0ff
addl %0x4, %esp

popl %ebx
popl %ebp

ret

addb $0xa3, %a1 popl %ebp



In Search of Gadgets?

Existence of gadgets is helped by…
● Dense instruction set.

– Increased chance a bit pattern is an instruction.
● Variable length instructions.

– Each instruction admits many parses.
● Ambiguity in where instructions start.

– Adding no-op padding can mitigate.

22



Example ROP Constructs

reg := constant;
gadget 2

implemented by
pop %reg;
ret

23

constant
ip for gadget 1

ip for gadget 2

high



Defending Against ROP

● Have separate stacks for variables vs return IP, so 
overflow of writes cannot change return IP. 
– StackShield [Cowan et al 1998], StackGhost [M. Frantsen and M. 

Shuey 2001], ROPdefender [Davii et al 2010]

● Pointer protection, so pointers cannot be forged.
– Pointer protection codes, PointGuard.

● ASLR:  Make gadget address unpredictable.

● G-Free:  Generate code that does not include gadgets(!).

● CFI:  Enforce control flow of original program.  

24



PointGuard

Protects all pointers in programs.
Idea:  Pointers stored in memory are encrypted.

Encryption: XOR with constant in global var
§ Pointer must be in register for use.
§ Do Decryption when pointer is loaded into register

25



Reference Monitors

Requirements
– Get control on relevant events.
– Able to perform remediation (eg kill process)
– Tamperproof.

Implementation
– External to monitored program (eg OS)
– Inlined into monitored program. (eg IRM, SFI)

26



Reference Monitors: Policies

Kinds of Polices:  Must be safety properties.
– Allowed actions independent of program.
– Allowed data access for this program (SFI)
– Allowed control flow for this program (CFI)

27



Control Flow Integrity (CFI)

● Compute control flow graph before execution.
● Added run-time checks ensure all control 

transfers follow the graph.
– Check precedes the control transfer (call/jmp/ret/….).

Adversary:  Assumed to have full control over data 
memory of executing program.

CFI Implementation:  Binary code rewriting.  
(IRM).

28



CFI Instrumentation

● Static analysis to obtain CFG
● Computed control transfers require run-time 

instrumentation.
● Posit instructions:

– label ID.
– call ID,DST xfers to addr DST only if that 

location contains instruction: label ID.
– ret ID

… could be implemented in sw or hw.

29



Control Flow Graph

● Sources  (store: call/jmp/ret)
● Destinations (store: label)

– Equivalent destinations have the same set of 
in-bound edges.

● Edges (distinguish call from return)

30



Example CFG

31

bool LT(int x,y)
{return x<y;}

bool GT(int x,y)
{return x>y;}

sort2(int a[],b[],len)
{sort(a, len, LT);
sort(b, len, GT);}

…
call sort

label 55
…
call sort

label 55
…
call sort

…
call 17

label 23
…
ret 55

label 17
…
ret 23

label 17
…
ret 23

sort2()

sort()
LT()

GT()



Example CFG

32

bool LT(int x,y)
{return x<y;}

bool GT(int x,y)
{return x>y;}

sort2(int a[],b[],len)
{sort(a, len, LT);
sort(b, len, GT);}

…
call sort

label 55
…
call sort

label 55
…
call sort

…
call 17

label 23
…
ret 55

label 17
…
ret 23

label 17
…
ret 23

sort2()

sort()
LT()

GT()



CFI Instrumentation:  Assumptions

Unique IDs.  Patterns chosen are not present anywhere 
in code memory (except in IDs and ID checks).  
Probabilistic approximation possible.

Non-writable Code.  Code cannot be modified at 
runtime).

Non-executable Data.  Otherwise attacker could cause 
execution of an arbitrary ID.

33



CFI Instrumentation:  jmp ecx

34

cmp [ecx],1234567h    id is at dest
jne error_lab id check
lea ecx,[ecx+4]       first inst is past id
jmp ecx branch



Destination Equivalence

Control Flow Graph cannot distinguish between 
equivalent sources/destinations, so some illegal 
execution is not stopped.

– Use multiple ID’s at a given destination.
– Duplicate code blocks. 
– Employ a shadow stack.

35



Summary

Code insertion à Code abuse 
– return-into-libc
– return oriented programming (ROP)

Corrupt the stack or some function pointer.
– Protect stack from corruption

§ Canary
§ Shadow stack

– Protect pointers from corruption
Reference monitor for CFI (“ideal program”)

36


