
CS 5432:
Proactive Obfuscation

and Moving Target Defenses
Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University

Ithaca, New York  14853
U.S.A.



1

Fault-tolerance by Replication

Implements:
● Integrity
● Availability

The basic recipe …

● Servers are deterministic state 
machines. Clients make requests.

● Server replicas run on distinct hosts.
● Servers fail independently.
● 2t+1 servers tolerate t Byzantine 

Client

Servers

voter

Client



2

Attack-tolerance by Replication?

Assume ! = 2$ + 1 server replicas:
● Server failures are independent.

Prob[$ + 1 servers fail] = '()*
()* Prob[one server fails]t+1

● Server vulnerabilities present at all replicas.
– A single attack can be used to subvert all replicas.
– Diversity increases independence wrt attacks.



3

Replica Independence

Eschewing Shared Design / Code

Solution:  Diversity!
§ Expensive or impossible to 

obtain:
• Development costs
• Interoperability risks

● Leverage what diversity 
exists.

● Mechanically create “artificial 
diversity”.

… Employ a program obfuscator.

Obfuscator

Random key:
0110101100…

Server Code

server replica



4

Replica Independence
Proactive Recovery

A mobile adversary can erode independence.

Idea: Proactively re-obfuscating server code 
defends against this:

§ tolerates t compromises over lifetime
- versus -

§ tolerates t compromises in window of vulnerability

X X X X X X X X

X:    server compromise



5

Replica Independence
Implementing Proactive Obfuscation

Challenges:
– State recovery
– Protect Obfuscator
– Protect Egg-timer
– Tolerate server outage

Obfuscator

Random key:
0110101100…

Server Code

server replica

Egg timer



6

Replica Independence
Obfuscation: Goals and Options

Semantics-preserving random program rewriting…
Goals:  Attacker does not know:

– address of specific instruction subsequences.
– address or representation scheme for variables.
– name or service entry point for any system service.

Options:
– Obfuscate source (arglist, stack layout, …).
– Obfuscate object or binary (syscall meanings, basic block 

and variable positions, relative offsets, …).
– All of the above.



7

Replica Independence
Independence By Obfuscation?

Given program S, obfuscator computes morphs:
T(S, K1), T(S, K2), … T(S, Kn)

● Attacker knows:
§ Obfuscator T
§ Input program S

● Attacker does not know:
§ Random keys K1, K2, … Kn

… Knowledge of the Ki would enable attackers to automate attacks!

Will an attack succeed against a majority of morphs?
– Seg fault likely if attack doesn’t succeed.

integrity compromise à availability compromise.



8

Replica Independence
Successful Attacks on Morphs

All morphs implement the same interface.
– Interface attacks. Obfuscation cannot blunt attacks 

that exploit the semantics of that (flawed) interface.
– Implementation attacks. Obfuscation can blunt 

attacks that exploit implementation details.

Def. implementation attack:  An input for which 
all morphs (in some given set) don’t all produce 
the same output.



9

Replica Independence
Effectiveness of Obfuscation 

Ultimate Goal:  Determine the probability that a 
majority of morphs generate the same output 
for a set of attacks?

Modest goal:  Understand how effective 
obfuscation is as compared with other defenses?
– Obvious candidate:  Type checking



10

Replica Independence
Type Checking as a Defense

Type checking:  Process to establish that all 
executions satisfy certain properties.
– Static: Checks made prior to exec.

• Requires a decision procedure

– Dynamic: Checks made as exec proceeds.
• Requires adding checks.  Exec aborted if violated.

Probabilistic dynamic type checking:  Some 
checks are skipped on a random basis.



11

Theory à Practice
Putting it Together:  CoPrOF

Cornell Proactive Obfuscation Firewall

Specification:
– Unlikely that attacker can gain control of the service.
– A steady stream of attacks might block service.  (But service is 

restored once that stream is terminated.)

Server:
– Receives messages from “outside”.
– Manages state (encodes history of messages seen).
– Forward subset of messages to “inside”.



12

Theory à Practice
CoPrOF: Prototype

Server 0 Server 1 Server 6

Controller

Server Code

Outside Traffic

power
code,
keys

server
coordInside Traffic

N = 7 = 3(t+1) + 1 servers



13

Theory à Practice
CoPrOF:  In the Flesh

controller

7 server replicas

Tom Roeder

Processors:
3 GHz Pentium 4

OpenBSD 4.0



14

Theory à Practice
CoPrOF Replica Operation

Controller:
– toggle power to reboot each server.
– Rebuilds image with obfuscation:  re-numbers kernel calls (5 min!).
– transmits PXE boot and private keys to a rebooting server.
– broadcasts new public key certificate to all servers.

When server replica is powered on:
– Issues PXE boot request via network card.
– Awaits receipt of new image and priv keys.
– New image executes:

§ requests current state
§ votes on states it receives

• PFsync basis to send and receive state.
§ starts processing packets  (UCB Packet Filter PF)



15

Theory à Practice
Server Replica Agreement

Every sequence number has a master.
– Master selects an unprocessed message.
– Runs Byz PAXOS to ensure all replicas agree.
– All non-faulty replicas process that msg.

Master for seqno s:
§ Def:  M(s) = s mod 7
§ Master for s:  smallest non-faulty successor of M(s).

non-faulty p:  p did not fail a timeout test for seqno s.



16

Theory à Practice
Server Output Protocol

● Each CoPrOF host outputs msg with partial sigs.
● Client assembles t+1 partial sigs to obtain signed 

output of PF.

Alternative (so no client modification required):
● Replicas broadcast partial sigs to each other.
● Replicas assemble partial signatures and send to client.

– Client can check if signature is correct.
– Client does receive duplicate messages.

§ Replica snooping can suppress duplicate transmission.



17

Theory à Practice
CoPrOF: 2nd Generation Prototype

Server 0 Server 1 Server 6

Controller

Outside Traffic

power
keys

server
coordInside Traffic

N = 7 = 3(t+1) + 1 servers

CD-ROM CD-ROM CD-ROM



18

Theory à Practice
CoPrOF: Ultimate Prototype

Server 0 Server 1 Server 6

Outside Traffic

power

server
coordInside Traffic

N = 7 = 3(t+1) + 1 servers

CD-ROM CD-ROM CD-ROM

Egg timer



From 30,000 feet…

(What we really did)

19



Diversity as a Defense

Create independence from diversity.
– Independence increases the cost to attackers, since attacks 

against one component do not compromise another.

Forms of diversity:
– Static diversity (“in space”).
– Dynamic diversity (“in time”).

§ Also known as:  “moving target defense”
§ Adds uncertainty for attackers, due to changes in system.
§ Can refresh [amplify] static diversity (e.g., proactive obfuscation).

20



Diversity Challenges

● Differences in interface:
– Requires clients to adapt.

● Differences in internals but not interface:
– Does not defend against exploits that leverage 

problematic interface semantics.
§ … Therefore: only defends against internal logic errors or 

under-specification.
– Could require state migration or translation.

21



Why Attacks Work

● Some attacks are facilitated by information.
– Brute force analysis (off-line / on-line).
– Discovered by recon.

… Period of preparation.  Then able to attack.
Moving target defense invalidates preparation.

● Some attacks exploit idiosyncratic technical details.
– Specific behaviors when “underspecified operation” attempted 

are not available to attacker if those details change.
– Changing the interpretation of “underspecified” blocks attacks 

that depend on that semantics.

22



Design of Moving Target Defenses

● What to move?
– Must change some aspect of system that is used by attacker.

● How to move?
– May require distinguishing “self” from “other.”  

● When to move
– Reactive:  Based on system event, possibly attacker-caused.
– Proactive:  At fixed or random intervals.

23



Diversification techniques  1

Processor Storage
– Address space layout randomization (ASLR)
– Heap layout randomization
– Stack layout

§ Variable reordering on run-time stack
• Can’t re-order fields within a variable.

§ Change direction of stack growth  (e.g. support upward growth).
§ Stack frame padding.

– Register name randomization
§ Only some registers can be renamed

– Data representation (e.g., XOR with some key) 
§ Values
§ Addresses (e.g., return pointers)

24



Diversification techniques  2

Processor Instructions
– Interface:

§ Instruction set randomization (ISR)
§ System call number randomization.
§ Library location/name randomization.

– Internals
§ Optimize code (or not)

25



Diversification techniques  3

System Level
– Network IP address, port, protocol

§ Port hopping (like spread spectrum comm)
– Virtual Machine
– Software stack / components

26



ISR Details

ISR defends against code-injection attacks, but does not 
work against attacks in data (e.g., attacks delivered as 
scripts).
● All binaries are pre-randomized when stored on disk.

– Creates a randomly-mutating exec env whose language is not known to 
attackers

– Attempts to guess code locations are hindered by mutating the env.
● Do randomization when binary is loaded and stored on disk.
● To de-randomize, need to know about context switches and calls, 

so correct key can be found for target of xfer.
● HW-based ISR:  Hardware does xor on instruction fetch.
● SW-based ISR:  Use binary translation.

27



How Attackers Bypass ISR

● Guess the key
● Get key using known plaintext attack…  

– Feasible for 16 bit XOR encrypt but not for AES encrypt
– Best not to allow an attacker to export a binary in library or file sys

● Attacker finds another interpreter (e.g., uses another 
shell) that does not employ ISR.
– Hard for sys owner to have found and fixed all interpreters.

28



Overcoming Diversity Defense

● Attacker: Use the full system rather than adding to it.
– Use existing instructions to circumvent ISR.
– Use existing storage to circumvent ASLR.
– Recruit a “confused deputy” to perform operations.

● Attacker:  Design attacks that work in many system 
variants (transcending diversity).
– Use of a NOP sled to overcome uncertainty in memory layout 

when doing buffer overflow attack.

29


