CS 5432:
Secret Sharing

Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University
Ithaca, New York 14853
U.S.A.

Cornell CIS _
Computer Science

State Machine Replication

|I:II:I|:||

S : i
R | The basic recipe ...
I_ el e Servers:
— deterministic state machines
request response — assumed to fail independently
_ e Clients:
Client — make requests

— synthesize service response from
individual server responses

State Machine Replication

|I:II:I|:||

Servers I
I | d
request response
Client

Supports:
~ Confidentiality
— Integrity
— Availability
of whatever service is
provided by a single replica.

State Machine Replication: Internals

request

Client

e Agreement protocol so all
correct servers process

requests in same order.

State Machine Replication: Internals

|I:II:I|:||
|

I — —l o Agreement protocol so all
correct servers process
requests in same order.

_ e Authentication protocol so
Client client can distinguish and
synthesize responses from
different servers.

— Servers need (different) secrets.

reSponses

v

Big Picture: State Involving Secrets

————
|I:I 1]
| |
+ — Alternative Implementations:

e Secret stored at every replica; client
counts votes.

e Pieces of secret stored at every
replica; client combines pieces.

e Every replica performs computation
using secret pieces; client combines
results of those computations.

v
Client

(n,t) Secret Sharing

(n,t): n shares, where t suffice to reconstruct.

Variations:
- (n,n) secret splitting
- (n,t) using (n,n) secret splitting
- (n,t) using polynomials
— verifiable secret sharing

— function sharing
= ... authentication of replica responses

— proactive secret sharing

(n,n) Secret splitting

Goal: Given a secret s:
— compute shares sy, s, ..., Sy,
— Knowledge of all shares allows s to be recomputed
— Knowledge of fewer shares reveals nothing about s.
Assume: s,sq, sy, ..., S, come from a finite field.

Naive non-solution for (2,2) split
— Knowledge of b;b, potentially quite revealing. &

(2,2) Secret Splitting Solution

Given a secret bit string s = by b, ... b,
— Choose a random bit string s; = 7, .7,
— Compute s, = x;x, ... X,
= where x; = (b; @ r;) foralli.
Recovery of secret bit s[i] from s,[i] and s,[i]:
- s11i] © s,li]
- =1 x
- =1 & b;On)
- =1 " D b;)
- =(n®n) b
- =06 b;
- = b,

(2,2) Secret Splitting: Correctness

e Secret can be reconstructed from shares
— Proof: Calculation on previous slide.

(2,2) Secret Splitting: Correctness

e Secret can be reconstructed from shares
— Proof: Calculation on previous slide.

e Neither s; or s, reveals anything about the secret
— Proof:
= 5, =17, ..%, conveys no information. It's random.

= 5, = X{X, ... X, conveys no information. For any s,, any value
of s is possible.

10

(n,n) Secret Splitting Solution

Given a secret s = byb, ... b,,
— Choose n — 1 random shares s; , s, , ... Sp,_1
— Construct s,

S, = SDs;DPs, D ... s,,_4

Construction also works for integers s = z;2, ... z,,
— Choose n — 1 random shares s; , S, , ... Sp,_1
— Construct s,
Sp, =S — (s;+s,+ ...+ s,_1)mod q

11

(n,t) Sharing: Using Splitting

e (n,t)-shares built using shares from (L, L)-splitting.

e Each (n,t)-share is a set of (L, L)-shares.
— Union of t (n, t)-shares contains all of the (L, L)-shares
= So t (n,t)-shares suffices to recover secret.

— Union of t — 1 or fewer (n, t)-shares omits at least one (L, L)-
share.

= So t — 1 or fewer (n, t)-shares reveals nothing about the secret.

12

Building (n, t)-shares

e Construct (L,L)-split s =s;,s;,...s, whereL= ("))
e Construct subsets P, ,P, ...P, of {1,2,..n}with |P;| =t — 1.
— Elements of each P; identify a set {hs}, hs}, ...} of (n,t)-shares

— Should not be possible to reconstruct s using only (n, t)-shares
identified in P; or in a subset of P;,. [Defn of (n,t) secret sharing]

e Define each hsji is a set of (L, L)-shares

— Should not be able to reconstruct s using (L, L)-shares contained in
(n, t)-shares {hs}, hs}, ...} forany P; .
— Associate the share s; from (L, L)-split with P;:
hs; € P; if and only if s; ¢ hs/

13

Building (n, t)-shares: Example

(4,2) sharing of s :

!
o L= (tfl) = (Lllj)= 1!(:_1)! =4

O Create (L, L) Sp“t S = §15) S3 Sy

hsy { 52,583,854}
hs, { 51,53, 54}
hs; { 51,52, 54}
hs, { 51,52, 53}

(n, 2)-sharing Direct Implementation

4
S
S S1 2
>
0O 1 2

e Infinite number of lines intersect (0, s).

e Aline y = f(x) is a sharing of s if that line
intersects (0, s)
— Any point (x, f(x)) is a share.
= Infinite number of lines pass through a share (x;, f(x;)) .

- f(x): mx + b can be recovered from (only!) 2 shares
= y intercept s can be recovered: It's b

15

(n, t)-sharing: Polynomials [Shamir 79]

Facts about (t-1)-degree polynomials:

F): ap_xt Y 4+ a;_,xt72 + ... + q

e (0,a,) satisfies f(x).
e An infinite number of polynomials are satisfied by (0, a,).

e Unique polynomial f(x) can be recovered from t points.
— Construct LaGrange Interpolating polynomial.

e t — 1 or fewer points defines an infinite number of
polynomials.

16

(n, t)-sharing: Direct Implementation

(n, t)-sharing of s:
— Choose a random t — 1 degree polynomial where
f(0) =s.
— Calculate shares ...
" 511 (LfQD), sz (2f (D) s sp (n,f(n)),

17

Verifiable Secret Sharing (VSS)

Given (n,n) secret splitting
S = S1 52 S3 ... Sp

Is § one of those shares or a bogus share?

Soln: Add information to each share s;:
(s;,i,a,a®,a1,..,a")
where a is generator for a large finite field, so
- (i,a,a%,a®, ..., a°") reveals nothing about s, s,, ... s,,.

18

VSS Checks

How to check (s;,i,a,a®,a®t, ..., a’n)?
e Is it a share from a splitting of s?
— Compute and check: a° = a’1-...-a’n ?
— ... simplifies to: a$ = q1+s2F - +5n) 2
— If true then a, a®,a’1, ..., a’» from a sharing of s.

e Is s; the it" share?
— Compute a°i using s; and (public) a.
— Compare a®i with asi value found in check vector.

19

Back to Replication...

;T:lT:T m|
|

I

Authentication protocol so client can
- distinguish and synthesize responses from
Client different servers.

e Signing key for each server?
e Signature verification key for service?

20

(n, t)-Function Sharing: Definition

Let s-F(x) be a function that depends on secret s and on
argument x.

(n, t)-Function Sharing for s-F(x)
— Can compute s-F(x) for any x by using t or more shares s; from
a sharing of s.

— No information about s-F(x) can be deduced by using fewer
than t shares s; from a sharing of s.

21

(n, t)-Function Sharing: Implement

(n, t)-Function Sharing for s-F(x)
- S > 54,5 ,.. ,5,
— Compute partial; = g(s;,x)
— Compute result := Comb(partial,, ...partial;)

e g(-,r)and Comp(..) depend on s-F(x).

e Not all functions can be shared.
— RSA digital signatures and decryption can be shared.

22

(n, t)-Function Sharing: Example

Define s-sign(m): mS

s= (sq+sy) modp

g(s;,m): ms Comp(psy,pS2): PS1 X PSz
Comp(ps{,pSa) ...
= Comp(g(si ’m)hg(si 'm))

= Comp(m>1, ms2)
= m>1 X m>2
— m51+52

= m°S

23

Proactive Secret Sharing (PSS)

Mobile adversary accumulates shares of secret.

Even if at most one server is compromised at
any time, a majority of shares still eventually
compromised.

Defense: Periodically re-share key.

= Create new, independent sharing of key.
= Replace old shares with new shares.

24

PSS Requirements

Given: sharing s, , s, ..., s,, Of secret s.

Goal: Compute a new sharing u, , u,, ..., u,, of secret s
where:

Fewer than t old shares s, , s, ..., s,, cannot be combined with
fewer than t new shares u, ,u,, ..., u, to learn anything about
secret s.

Obvious solution: Compute s from shares; calculate a
new sharing for s.

Obvious problem: Materializing s risks compromise.

25

PSS for Splitting via Splitting

S=5,+5S +5
b= s old share: S;

S Sy S3
old sharing

26

PSS for Splitting via Splitting

S=5,+5S +5
b= s old share: S;

4 }

split:
T =Si1+si2+si3
-+ ©o ® ®
+ + T
T+ O ® ®
4 4 split

old sharing

27

PSS for Splitting via Splitting

new sharing

P

S=51+SZ+S3

reconstruct
N

+ [+ |+
+ |+ |+

:T:T"

S, S3
old sharing

old share: S;

!

split:
=Si1+si2+si3 .

Vo

reconstruct:
S1i+Syi+S;3; ...

!

=new share: S;’

28

PSS for Polynomial Secret Sharing

(n, t)-sharing of s using a (t — 1)-degree polynomial:

F): ap_xt Y 4+ a;_,xt72 + ... + q
where

fO)=s, f(D)=s1, f2)=s [fB)=s3,..

Goal: Find a new (t — 1)-degree polynomial g(x):
90)=s, g(1) =uy, g2)=uy, gB8) =usz, ..

29

Adding a Random Function to f(x)

To re-share secret f(0) = s, each share s; holder invents a
random (t — 1) - degree polynomial that is a sharing for O:

fitx): ap1x"™ + ap x4+ o+ agx +0

Polynomial g(x) is a re-sharing of f(0) = s:

gx): f)+)+ x)+ ..+ f (x)

30

Dissemination of the f;(x)

gx): f)+)+ f200)+ .+ fr (%)

Suffices to distribute (using secure channels)
1->j: Enc(f;(1))
2 2 j: Enc(f,(2))

31

(n,t) Secret Sharing: Summary

(n,t): n pieces, where t suffice to reconstruct.

- (n,n) secret splitting

- (n,t) using (n,n) secret splitting
- (n,t) using polynomials

— verifiable secret sharing

— function sharing
= ... authentication of replica responses

— proactive secret sharing

32

