CS 5432: Secret Sharing

Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University
Ithaca, New York 14853
U.S.A.

Cornell CIS
Computer Science

State Machine Replication

The basic recipe ...

- Servers:
- deterministic state machines
- assumed to fail independently
- Clients:
- make requests
- synthesize service response from individual server responses

State Machine Replication

Client

Supports:

- Confferentiality
- Integrity
- Availability
of whatever service is provided by a single replica.

State Machine Replication: Internals

- Agreement protocol so all correct servers process requests in same order.

Client

State Machine Replication: Internals

Client

- Agreement protocol so all correct servers process requests in same order.
- Authentication protocol so client can distinguish and synthesize responses from different servers.
- Servers need (different) secrets.

Big Picture: State Involving Secrets

Client

Alternative Implementations:

- Secret stored at every replica; client counts votes.
- Pieces of secret stored at every replica; client combines pieces.
- Every replica performs computation using secret pieces; client combines results of those computations.

(n, t) Secret Sharing

$(n, t): n$ shares, where t suffice to reconstruct.
Variations:

- (n, n) secret splitting
- (n, t) using (n, n) secret splitting
- (n, t) using polynomials
- verifiable secret sharing
- function sharing
- ... authentication of replica responses
- proactive secret sharing

(n, n) Secret splitting

Goal: Given a secret s :

- compute shares $s_{1}, s_{2}, \ldots, s_{n}$
- Knowledge of all shares allows s to be recomputed
- Knowledge of fewer shares reveals nothing about s.

Assume: $s, s_{1}, s_{2}, \ldots, s_{n}$ come from a finite field.

Naïve non-solution for $(2,2)$ split
$-b_{1} b_{2} b_{3} b_{4} \quad \Rightarrow b_{1} b_{2}$ and $b_{3} b_{4}$

- Knowledge of $b_{1} b_{2}$ potentially quite revealing.

$(2,2)$ Secret Splitting Solution

Given a secret bit string $s=b_{1} b_{2} \ldots b_{m}$

- Choose a random bit string $s_{1}=r_{1} r_{2} \ldots r_{m}$
- Compute $s_{2}=x_{1} x_{2} \ldots x_{m}$
- where $x_{i}=\left(b_{i} \oplus r_{i}\right)$ for all i.

Recovery of secret bit $s[i]$ from $s_{1}[i]$ and $s_{2}[i]$:
$-\quad s_{1}[i] \oplus s_{2}[i]$
$-=r_{i} \oplus x_{i}$
$-=r_{i} \oplus\left(b_{i} \oplus r_{i}\right)$

- $=r_{i} \oplus\left(r_{i} \oplus b_{i}\right)$
- $=\left(r_{i} \oplus r_{i}\right) \oplus b_{i}$
- $=0 \oplus b_{i}$
- $=b_{i}$

$(2,2)$ Secret Splitting: Correctness

- Secret can be reconstructed from shares
- Proof: Calculation on previous slide.

$(2,2)$ Secret Splitting: Correctness

- Secret can be reconstructed from shares
- Proof: Calculation on previous slide.
- Neither s_{1} or s_{2} reveals anything about the secret
- Proof:
- $s_{1}=r_{1} r_{2} \ldots r_{m}$ conveys no information. It's random.
- $s_{2}=x_{1} x_{2} \ldots x_{m}$ conveys no information. For any s_{2}, any value of s is possible.

(n, n) Secret Splitting Solution

Given a secret $s=b_{1} b_{2} \ldots b_{m}$

- Choose $n-1$ random shares $s_{1}, s_{2}, \ldots s_{n-1}$
- Construct s_{n}

$$
s_{n}=s \oplus s_{1} \oplus s_{2} \oplus \ldots \oplus s_{n-1}
$$

Construction also works for integers $s=z_{1} z_{2} \ldots z_{m}$

- Choose $n-1$ random shares $s_{1}, s_{2}, \ldots s_{n-1}$
- Construct s_{n}

$$
s_{n}=s-\left(s_{1}+s_{2}+\ldots+s_{n-1}\right) \bmod q
$$

(n, t) Sharing: Using Splitting

- (n, t)-shares built using shares from (L, L)-splitting.
- Each (n, t)-share is a set of (L, L)-shares.
- Union of $t(n, t)$-shares contains all of the (L, L)-shares
- So $t(n, t)$-shares suffices to recover secret.
- Union of $t-1$ or fewer (n, t)-shares omits at least one (L, L) share.
- So $t-1$ or fewer (n, t)-shares reveals nothing about the secret.

Building (n, t)-shares

- Construct (L, L)-split $\quad s \Rightarrow s_{1}, s_{2}, \ldots s_{L} \quad$ where $L=\binom{n}{t-1}$
- Construct subsets $P_{1}, P_{2} \ldots P_{L}$ of $\{1,2, \ldots n\}$ with $\left|P_{i}\right|=t-1$.
- Elements of each P_{i} identify a set $\left\{h s_{1}^{i}, h s_{2}^{i}, \ldots\right\}$ of (n, t)-shares
- Should not be possible to reconstruct s using only (n, t)-shares identified in P_{i} or in a subset of P_{i}. [Defn of (n, t) secret sharing]
- Define each $h s_{j}^{i}$ is a set of (L, L)-shares
- Should not be able to reconstruct s using (L, L)-shares contained in (n, t)-shares $\left\{h s_{1}^{i}, h s_{2}^{i}, \ldots\right\}$ for any P_{i}.
- Associate the share s_{i} from (L, L)-split with P_{i} :

$$
h s_{j}^{i} \in P_{i} \text { if and only if } s_{i} \notin h s_{j}^{i}
$$

Building (n, t)-shares: Example

$(4,2)$ sharing of s :

- $L=\binom{n}{t-1}=\binom{4}{1}=\frac{4!}{1!(4-1)!}=4$
- Create (L, L) split $s \Rightarrow s_{1} s_{2} s_{3} s_{4}$

$h s_{1}$	$\left\{s_{2}, s_{3}, s_{4}\right\}$
$h s_{2}$	$\left\{s_{1}, s_{3}, s_{4}\right\}$
$h s_{3}$	$\left\{s_{1}, s_{2}, s_{4}\right\}$
$h s_{4}$	$\left\{s_{1}, s_{2}, s_{3}\right\}$

(n, 2)-sharing Direct Implementation

- Infinite number of lines intersect $(0, s)$.
- A line $y=f(x)$ is a sharing of s if that line intersects $(0, s)$
- Any point $(x, f(x))$ is a share.
- Infinite number of lines pass through a share $\left(x_{i}, f\left(x_{i}\right)\right)$.
- $f(x): m x+b$ can be recovered from (only!) 2 shares
- y intercept s can be recovered: It's b

(n, t)-sharing: Polynomials [Shamir 79]

Facts about (t-1)-degree polynomials:

$$
f(x): a_{t-1} x^{t-1}+a_{t-2} x^{t-2}+\ldots+a_{0}
$$

- $\left(0, a_{0}\right)$ satisfies $f(x)$.
- An infinite number of polynomials are satisfied by $\left(0, a_{0}\right)$.
- Unique polynomial $f(x)$ can be recovered from t points.
- Construct LaGrange Interpolating polynomial.
- $t-1$ or fewer points defines an infinite number of polynomials.

(n, t)-sharing: Direct Implementation

(n, t)-sharing of s :

- Choose a random $t-1$ degree polynomial where $f(0)=s$.
- Calculate shares ...
- $s_{1}:(1, f(1)), \quad s_{2}:(2, f(2)), \ldots, \quad s_{n}:(n, f(n))$,

Verifiable Secret Sharing (VSS)

Given (n, n) secret splitting

$$
s \Rightarrow s_{1} s_{2} s_{3} \ldots s_{n}
$$

Is \hat{s} one of those shares or a bogus share?
Soln: Add information to each share s_{i} :

$$
\left\langle s_{i}, i, a, a^{s}, a^{s_{1}}, \ldots, a^{s_{n}}\right\rangle
$$

where a is generator for a large finite field, so
$-\left\langle i, a, a^{s}, a^{s_{1}}, \ldots, a^{s_{n}}\right\rangle$ reveals nothing about $s, s_{1}, \ldots s_{n}$.

VSS Checks

How to check $\left\langle s_{i}, i, a, a^{s}, a^{s_{1}}, \ldots, a^{s_{n}}\right\rangle$?

- Is it a share from a splitting of s ?
- Compute and check: $a^{s}=a^{s_{1}} \cdot \ldots \cdot a^{s_{n}}$?
- ... simplifies to: $a^{s}=a^{\left(s_{1}+s_{2}+\ldots+s_{n}\right)}$?
- If true then $a, a^{s}, a^{s_{1}}, \ldots, a^{s_{n}}$ from a sharing of s.
- Is s_{i} the $i^{t h}$ share?
- Compute $a^{s_{i}}$ using s_{i} and (public) a.
- Compare $a^{s_{i}}$ with $a^{s_{i}}$ value found in check vector.

Back to Replication...

Client

Authentication protocol so client can distinguish and synthesize responses from different servers.

- Signing key for each server?
- Signature verification key for service?

(n, t)-Function Sharing: Definition

Let $s-F(x)$ be a function that depends on secret s and on argument x.
(n, t)-Function Sharing for $\boldsymbol{s}-\boldsymbol{F}(\boldsymbol{x})$

- Can compute $s-F(x)$ for any x by using t or more shares s_{i} from a sharing of s.
- No information about $s-F(x)$ can be deduced by using fewer than t shares s_{i} from a sharing of s.

(n, t)-Function Sharing: Implement

(n, t)-Function Sharing for $s-F(x)$
$-s \Rightarrow s_{1}, s_{2}, \ldots, s_{n}$

- Compute partial $=g\left(s_{i}, x\right)$
- Compute result $:=\operatorname{Comb}\left(\right.$ partial $_{1}, \ldots$ partial $\left._{t}\right)$
- $g(\cdot, \cdot)$ and $\operatorname{Comp}(\ldots)$ depend on $s-F(x)$.
- Not all functions can be shared.
- RSA digital signatures and decryption can be shared.

(n, t)-Function Sharing: Example

Define $s-\operatorname{sign}(m)$: m^{s}

$$
\begin{array}{ll}
s=\left(s_{1}+s_{2}\right) \bmod p & \\
g\left(s_{i}, m\right): m^{s_{i}} & \operatorname{Comp}\left(p s_{1}, p s_{2}\right): p s_{1} \times p s_{2}
\end{array}
$$

$\operatorname{Comp}\left(p s_{1}, p s_{2}\right) \ldots$
$=\operatorname{Comp}\left(g\left(s_{i}, m\right), g\left(s_{i}, m\right)\right)$
$=\operatorname{Comp}\left(m^{s_{1}}, m^{s_{2}}\right)$
$=m^{s_{1}} \times m^{s_{2}}$
$=m^{s_{1}+s_{2}}$
$=m^{s}$

Proactive Secret Sharing (PSS)

Mobile adversary accumulates shares of secret. Even if at most one server is compromised at any time, a majority of shares still eventually compromised.

Defense: Periodically re-share key.

- Create new, independent sharing of key.
- Replace old shares with new shares.

PSS Requirements

Given: sharing $s_{1}, s_{2}, \ldots, s_{n}$ of secret s.
Goal: Compute a new sharing $u_{1}, u_{2}, \ldots, u_{n}$ of secret s where:

Fewer than t old shares $s_{1}, s_{2}, \ldots, s_{n}$ cannot be combined with fewer than t new shares $u_{1}, u_{2}, \ldots, u_{n}$ to learn anything about secret s.

Obvious solution: Compute s from shares; calculate a new sharing for s.
Obvious problem: Materializing s risks compromise.

PSS for Splitting via Splitting

$$
\mathrm{s}=\mathrm{s}_{1}+\mathrm{s}_{2}+\mathrm{s}_{3}
$$

old share: S_{i}

PSS for Splitting via Splitting

old share: S_{i}
split:

$$
=\mathrm{s}_{\mathrm{i} 1}+\mathrm{s}_{\mathrm{i} 2}+\mathrm{s}_{\mathrm{i} 3} \ldots
$$

PSS for Splitting via Splitting

old share: S_{i}
split:

$$
=\mathrm{s}_{\mathrm{i} 1}+\mathrm{s}_{\mathrm{i} 2}+\mathrm{s}_{\mathrm{i} 3} \ldots
$$

reconstruct:

$$
s_{1 i}+s_{2 i}+s_{3 i} \ldots
$$

$$
\downarrow
$$

$$
=\text { new share: } \mathrm{s}_{\mathrm{i}}^{\prime}
$$

PSS for Polynomial Secret Sharing

(n, t)-sharing of s using a $(t-1)$-degree polynomial:

$$
f(x): a_{t-1} x^{t-1}+a_{t-2} x^{t-2}+\ldots+a_{0}
$$

where

$$
f(0)=s, f(1)=s_{1}, f(2)=s_{2}, \quad f(3)=s_{3}, \ldots
$$

Goal: Find a new $(t-1)$-degree polynomial $g(x)$:

$$
g(0)=s, g(1)=u_{1}, g(2)=u_{2}, g(3)=u_{3}, \ldots
$$

Adding a Random Function to $f(x)$

To re-share secret $f(0)=s$, each share s_{i} holder invents a random $(t-1)$ - degree polynomial that is a sharing for 0 :

$$
f_{i}(x): a_{t-1} x^{t-1}+a_{t-2} x^{t-2}+\ldots+a_{1} x+0
$$

Polynomial $g(x)$ is a re-sharing of $f(0)=s$:

$$
g(x): f(x)+f_{1}(x)+f_{2}(x)+\ldots+f_{n}(x)
$$

Dissemination of the $f_{i}(x)$

$$
g(x): f(x)+f_{1}(x)+f_{2}(x)+\ldots+f_{n}(x)
$$

Suffices to distribute (using secure channels)

```
1 T j: Enc(f1(1))
2 }->\textrm{j}:\operatorname{Enc}(\mp@subsup{f}{2}{\prime}(2)
```


(n, t) Secret Sharing: Summary

$(n, t): n$ pieces, where t suffice to reconstruct.

- (n, n) secret splitting
- (n, t) using (n, n) secret splitting
- (n, t) using polynomials
- verifiable secret sharing
- function sharing
- ... authentication of replica responses
- proactive secret sharing

