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State Machine Replication

The basic recipe …
● Servers:

– deterministic state machines 
– assumed to fail independently

● Clients:
– make requests
– synthesize service response from 

individual server responses 

Servers

Client

request response
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State Machine Replication

Supports:
– Confidentiality
– Integrity
– Availability

of whatever service is
provided by a single replica.

Servers

Client

request response
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State Machine Replication: Internals

● Agreement protocol so all 
correct servers process 
requests in same order.

Client

request
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State Machine Replication: Internals

● Agreement protocol so all 
correct servers process 
requests in same order.

● Authentication protocol so 
client can distinguish and 
synthesize responses from 
different servers.
– Servers need (different) secrets.

Client

responses



Big Picture:  State Involving Secrets

Alternative Implementations:
● Secret stored at every replica; client 

counts votes.
● Pieces of secret stored at every 

replica; client combines pieces.
● Every replica performs computation 

using secret pieces; client combines 
results of those computations.
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(", $) Secret Sharing

(", $):  " shares, where $ suffice to reconstruct.

Variations:
– (", ") secret splitting
– (", $) using (", ") secret splitting
– (", $) using polynomials
– verifiable secret sharing
– function sharing

§ … authentication of replica responses
– proactive secret sharing
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(", ") Secret splitting

Goal: Given a secret %:
– compute shares %', %(, … , %*
– Knowledge of all shares allows % to be recomputed
– Knowledge of fewer shares reveals nothing about %.
Assume: %, %', %(, … , %* come from a finite field.

Naïve non-solution for (2,2) split
– ,',(,-,. ⇒ ,',( and ,-,.
– Knowledge of ,',( potentially quite revealing.  !
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(2,2) Secret Splitting Solution

Given a secret bit string ! = #$#% … #'
– Choose a random bit string !$ = ($(% … ('
– Compute !% = )$)% … )'

§ where )* = (#* ⊕ (*) for all ..
Recovery of secret bit ![.] from !$[.] and !%[.]:

– !$ . ⊕ !% .
– = (* ⊕ )*
– = (* ⊕ (#* ⊕ (* )
– = (* ⊕ ((* ⊕ #* )
– = ( (*⊕ (* ) ⊕ #*
– = 0 ⊕ #*
– = #*
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(2,2) Secret Splitting: Correctness

● Secret can be reconstructed from shares
– Proof:  Calculation on previous slide.

● Neither !" or !# reveals anything about the secret
– Proof:

§ !" = %"%# … %' conveys no information.  It’s random.
§ !# = ("(# … (' conveys no information.  For any !#, any value 

of ! is possible. 
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(2,2) Secret Splitting: Correctness
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(", ") Secret Splitting Solution

Given a secret % = '(') … '+
– Choose " − 1 random shares %( , %) , … %./(
– Construct %.

%. = % ⊕ %( ⊕ %) ⊕ …⊕ %./(

Construction also works for integers % = 1(1) … 1+
– Choose " − 1 random shares %( , %) , … %./(
– Construct %.

%. = % − ( %( + %) + …+ %./( ) 345 6
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!, # Sharing:  Using Splitting

● (!, #)-shares built using shares from (&, &)-splitting.
● Each (!, #)-share is a set of (&, &)-shares.

– Union of # (!, #)-shares contains all of the (&, &)-shares
§ So # (!, #)-shares suffices to recover secret.

– Union of # − 1 or fewer (!, #)-shares omits at least one (&, &)-
share.
§ So # − 1 or fewer (!, #)-shares reveals nothing about the secret.
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Building !, # -shares

● Construct $, $ -split     % ⇒ %' , %( , … %* where $ = ,
-.'

● Construct subsets /' , /( …/* of 1, 2, … ! with /6 = # − 1.
– Elements of each /6 identify a set ℎ%'6 , ℎ%(6 , … of !, # -shares
– Should not be possible to reconstruct % using only !, # -shares 

identified in /6 or in a subset of /6.   [Defn of !, # secret sharing]
● Define each ℎ%96 is a set of $, $ -shares 

– Should not be able to reconstruct % using $, $ -shares contained in 
!, # -shares ℎ%'6 , ℎ%(6 , … for any /6 .

– Associate the share %6 from $, $ -split with /6:
ℎ%96 ∈ /6 if and only if %6 ∉ ℎ%96
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Building !, # -shares: Example

(4,2) sharing of $ :

● % = '
()* = +

* = +!
*! +)* ! = 4

● Create (%, %) split $ ⇒ $* $/ $0 $+
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ℎ$* { $/, $0, $+}
ℎ$/ { $*, $0, $+}
ℎ$0 { $*, $/, $+}
ℎ$+ { $*, $/, $0}



(!, 2)-sharing Direct Implementation

● Infinite number of lines intersect 0, % .
● A line & = ( ) is a sharing of % if that line 

intersects 0, %
– Any point (), ( ) ) is a share.

§ Infinite number of lines pass through a share (),, ( ), ) .
– ( ) : /) + 1 can be recovered from (only!) 2 shares

§ & intercept % can be recovered:  It’s 1
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(!, #)-sharing: Polynomials   [Shamir 79]

Facts about (t-1)-degree polynomials:
$ % : '()*%()* + '(), %(), + … + '.

● (0, '.) satisfies $ % .
● An infinite number of polynomials are satisfied by (0, '.).
● Unique polynomial $ % can be recovered from # points.

– Construct LaGrange Interpolating polynomial.
● # − 1 or fewer points defines an infinite number of 

polynomials.
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(!, #)-sharing: Direct Implementation

(!, #)-sharing of $:
– Choose a random # − 1 degree polynomial where 
((0) = $.

– Calculate shares …
§ $-: (1, ((1)), s /: (2, ((2)),  …,    $1: (! , ((!)), 
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Verifiable Secret Sharing (VSS)

Given !, ! secret splitting
# ⇒ #% #& #' … #)

Is #̂ one of those shares or a bogus share?

Soln:  Add information to each share #+:
⟨ #+ , ., /, /0, /01 , … , /02 ⟩

where / is generator for a large finite field, so
– ⟨ ., /, /0, /01 , … , /02 ⟩ reveals nothing about #, #% ,… #) .
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VSS Checks

How to check ⟨ "# , %, &, &', &'(,…, &') ⟩?
● Is it a share from a splitting of "?

– Compute and check:  &' = &'( ⋅… ⋅ &') ?
– … simplifies to: &' = &('(/'0/… / ') ) ?
– If true then &, &', &'(,… , &') from a sharing of ".

● Is "# the %34 share?
– Compute &'5 using "# and (public) &.
– Compare &'5 with &'5 value found in check vector.
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Back to Replication…

Authentication protocol so client can 
distinguish and synthesize responses from 
different servers.
● Signing key for each server?
● Signature verification key for service?

Client



(", $)-Function Sharing: Definition

Let &-' ( be a function that depends on secret & and on 
argument (.

(), *)-Function Sharing for +-,(-)
– Can compute &-' ( for any ( by using $ or more shares &. from 

a sharing of &.
– No information about &-' ( can be deduced by using fewer 

than $ shares &. from a sharing of &.
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(", $)-Function Sharing: Implement

(", $)-Function Sharing for &-'(()
– & ⇒ &+ , &, ,… , &.
– Compute /01$2034 = 6( &4 , ( )
– Compute 17&83$ ≔ :;<= /01$203+ , …/01$203>

● 6( ⋅ ,⋅ ) and :;</( … ) depend on &-' ( .
● Not all functions can be shared.

– RSA digital signatures and decryption can be shared.
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(", $)-Function Sharing: Example

Define &-&'(" ) : )+

& = (&-+&/) )01 2
( &3 ,) : )+4 50)2( 2&-, 2&/): 2&- × 2&/

----------------------------------------------
50)2 2&-, 2&/ …
= 50)2 ( &3 ,) , ( &3 ,)
= 50)2 )+8,)+9
= )+8 ×)+9
= )+8:+9
= )+
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Proactive Secret Sharing (PSS)

Mobile adversary accumulates shares of secret.  
Even if at most one server is compromised at 
any time, a majority of shares still eventually 
compromised.

Defense:  Periodically re-share key.
§ Create new, independent sharing of key.
§ Replace old shares with new shares.
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PSS Requirements

Given: sharing !" , !$, … , !& of secret !.
Goal: Compute a new sharing (" , ($,… , (& of secret !
where:

Fewer than ) old shares !" , !$, … , !& cannot be combined with 
fewer than ) new shares (" , ($, … , (& to learn anything about 
secret !.

Obvious solution:  Compute ! from shares;  calculate a 
new sharing for !.
Obvious problem:  Materializing ! risks compromise.
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PSS for Splitting via Splitting

s1 s2 s3

old sharing

old share: si
s = s1 + s2 + s3
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PSS for Splitting via Splitting

s1 s2 s3

old sharing

old share: si

split:
=si1+si2+si3 …

split
+
+++

+ +

s = s1 + s2 + s3
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PSS for Splitting via Splitting

s1 s2 s3

old sharing

s1’
s2’
s3’

ne
w

 s
ha

rin
g

old share: si

split:
=si1+si2+si3 …

reconstruct:
s1i+s2i+s3i …

=new share: si’

split

reconstruct

++
+
+

+
+

s = s1 + s2 + s3



PSS for Polynomial Secret Sharing

(", $)-sharing of & using a ($ − 1)-degree polynomial:
) * : ,-./*-./ + ,-.1 *-.1 + … + ,3

where
) 0 = &, ) 1 = &/,   ) 2 = &1,   ) 3 = &8 , …

Goal: Find a new ($ − 1)-degree polynomial 9 * :
9 0 = &, 9 1 = :/,  9 2 = :1,  9 3 = :8 , …
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Adding a Random Function to ! "

To re-share secret ! 0 = %, each share %& holder invents a 
random (' − 1) - degree polynomial that is a sharing for 0:

!& " : +,-.",-. + +,-0",-0 + … + +." + 0

Polynomial 2 " is a re-sharing of ! 0 = %:
2 " : ! " + !. " + !0 " + …+ !3 (")
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Dissemination of the !"($)

& $ : ! $ + !) $ + !* $ + …+ !, ($)

Suffices to distribute (using secure channels)
1 à j:  Enc(!) 1 )
2 à j:  Enc(!* 2 )
…
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(", $) Secret Sharing: Summary

(", $):  " pieces, where $ suffice to reconstruct.
– (", ") secret splitting
– (", $) using (", ") secret splitting
– (", $) using polynomials
– verifiable secret sharing
– function sharing

§ … authentication of replica responses
– proactive secret sharing
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