
CS 5432:
Secret Sharing
Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University

Ithaca, New York 14853
U.S.A.

1

State Machine Replication

The basic recipe …
● Servers:

– deterministic state machines
– assumed to fail independently

● Clients:
– make requests
– synthesize service response from

individual server responses

Servers

Client

request response

2

State Machine Replication

Supports:
– Confidentiality
– Integrity
– Availability

of whatever service is
provided by a single replica.

Servers

Client

request response

3

State Machine Replication: Internals

● Agreement protocol so all
correct servers process
requests in same order.

Client

request

4

State Machine Replication: Internals

● Agreement protocol so all
correct servers process
requests in same order.

● Authentication protocol so
client can distinguish and
synthesize responses from
different servers.
– Servers need (different) secrets.

Client

responses

Big Picture: State Involving Secrets

Alternative Implementations:
● Secret stored at every replica; client

counts votes.
● Pieces of secret stored at every

replica; client combines pieces.
● Every replica performs computation

using secret pieces; client combines
results of those computations.

5

Client

(", $) Secret Sharing

(", $): " shares, where $ suffice to reconstruct.

Variations:
– (", ") secret splitting
– (", $) using (", ") secret splitting
– (", $) using polynomials
– verifiable secret sharing
– function sharing

§ … authentication of replica responses
– proactive secret sharing

6

(", ") Secret splitting

Goal: Given a secret %:
– compute shares %', %(, … , %*
– Knowledge of all shares allows % to be recomputed
– Knowledge of fewer shares reveals nothing about %.
Assume: %, %', %(, … , %* come from a finite field.

Naïve non-solution for (2,2) split
– ,',(,-,. ⇒ ,',(and ,-,.
– Knowledge of ,',(potentially quite revealing. !

7

(2,2) Secret Splitting Solution

Given a secret bit string ! = #$#% … #'
– Choose a random bit string !$ = ($(% … ('
– Compute !% =)$)% …)'

§ where)* = (#* ⊕ (*) for all ..
Recovery of secret bit ![.] from !$[.] and !%[.]:

– !$. ⊕ !% .
– = (* ⊕)*
– = (* ⊕ (#* ⊕ (*)
– = (* ⊕ ((* ⊕ #*)
– = ((*⊕ (*) ⊕ #*
– = 0 ⊕ #*
– = #*

8

(2,2) Secret Splitting: Correctness

● Secret can be reconstructed from shares
– Proof: Calculation on previous slide.

● Neither !" or !# reveals anything about the secret
– Proof:

§ !" = %"%# … %' conveys no information. It’s random.
§ !# = ("(# … (' conveys no information. For any !#, any value

of ! is possible.

9

(2,2) Secret Splitting: Correctness

● Secret can be reconstructed from shares
– Proof: Calculation on previous slide.

● Neither !" or !# reveals anything about the secret
– Proof:

§ !" = %"%# … %' conveys no information. It’s random.
§ !# = ("(# … (' conveys no information. For any !#, any value

of ! is possible.

10

(", ") Secret Splitting Solution

Given a secret % = '(') … '+
– Choose " − 1 random shares %(, %) , … %./(
– Construct %.

%. = % ⊕ %(⊕ %) ⊕ …⊕ %./(

Construction also works for integers % = 1(1) … 1+
– Choose " − 1 random shares %(, %) , … %./(
– Construct %.

%. = % − (%(+ %) + …+ %./() 345 6

11

!, # Sharing: Using Splitting

● (!, #)-shares built using shares from (&, &)-splitting.
● Each (!, #)-share is a set of (&, &)-shares.

– Union of # (!, #)-shares contains all of the (&, &)-shares
§ So # (!, #)-shares suffices to recover secret.

– Union of # − 1 or fewer (!, #)-shares omits at least one (&, &)-
share.
§ So # − 1 or fewer (!, #)-shares reveals nothing about the secret.

12

Building !, # -shares

● Construct $, $ -split % ⇒ %' , %(, … %* where $ = ,
-.'

● Construct subsets /' , /(…/* of 1, 2, … ! with /6 = # − 1.
– Elements of each /6 identify a set ℎ%'6 , ℎ%(6 , … of !, # -shares
– Should not be possible to reconstruct % using only !, # -shares

identified in /6 or in a subset of /6. [Defn of !, # secret sharing]
● Define each ℎ%96 is a set of $, $ -shares

– Should not be able to reconstruct % using $, $ -shares contained in
!, # -shares ℎ%'6 , ℎ%(6 , … for any /6 .

– Associate the share %6 from $, $ -split with /6:
ℎ%96 ∈ /6 if and only if %6 ∉ ℎ%96

13

Building !, # -shares: Example

(4,2) sharing of $:

● % = '
()* = +

* = +!
! +) ! = 4

● Create (%, %) split $ ⇒ $* $/ $0 $+

14

ℎ$* { $/, $0, $+}
ℎ$/ { $*, $0, $+}
ℎ$0 { $*, $/, $+}
ℎ$+ { $*, $/, $0}

(!, 2)-sharing Direct Implementation

● Infinite number of lines intersect 0, % .
● A line & = () is a sharing of % if that line

intersects 0, %
– Any point (), ()) is a share.

§ Infinite number of lines pass through a share (),, (),) .
– () : /) + 1 can be recovered from (only!) 2 shares

§ & intercept % can be recovered: It’s 1
15

%2 %3%

0 1 2

(!, #)-sharing: Polynomials [Shamir 79]

Facts about (t-1)-degree polynomials:
$ % : '()*%()* + '(), %(), + … + '.

● (0, '.) satisfies $ % .
● An infinite number of polynomials are satisfied by (0, '.).
● Unique polynomial $ % can be recovered from # points.

– Construct LaGrange Interpolating polynomial.
● # − 1 or fewer points defines an infinite number of

polynomials.

16

(!, #)-sharing: Direct Implementation

(!, #)-sharing of $:
– Choose a random # − 1 degree polynomial where
((0) = $.

– Calculate shares …
§ $-: (1, ((1)), s /: (2, ((2)), …, $1: (! , ((!)),

17

Verifiable Secret Sharing (VSS)

Given !, ! secret splitting
⇒ #% #& #' … #)

Is #̂ one of those shares or a bogus share?

Soln: Add information to each share #+:
⟨ #+ , ., /, /0, /01 , … , /02 ⟩

where / is generator for a large finite field, so
– ⟨ ., /, /0, /01 , … , /02 ⟩ reveals nothing about #, #% ,… #) .

18

VSS Checks

How to check ⟨ "# , %, &, &', &'(,…, &') ⟩?
● Is it a share from a splitting of "?

– Compute and check: &' = &'(⋅… ⋅ &') ?
– … simplifies to: &' = &('(/'0/… / ')) ?
– If true then &, &', &'(,… , &') from a sharing of ".

● Is "# the %34 share?
– Compute &'5 using "# and (public) &.
– Compare &'5 with &'5 value found in check vector.

19

20

Back to Replication…

Authentication protocol so client can
distinguish and synthesize responses from
different servers.
● Signing key for each server?
● Signature verification key for service?

Client

(", $)-Function Sharing: Definition

Let &-' (be a function that depends on secret & and on
argument (.

(), *)-Function Sharing for +-,(-)
– Can compute &-' (for any (by using $ or more shares &. from

a sharing of &.
– No information about &-' (can be deduced by using fewer

than $ shares &. from a sharing of &.

21

(", $)-Function Sharing: Implement

(", $)-Function Sharing for &-'(()
– & ⇒ &+ , &, ,… , &.
– Compute /01$2034 = 6(&4 , ()
– Compute 17&83$ ≔ :;<= /01$203+ , …/01$203>

● 6(⋅ ,⋅) and :;</(…) depend on &-' (.
● Not all functions can be shared.

– RSA digital signatures and decryption can be shared.

22

(", $)-Function Sharing: Example

Define &-&'(") :)+

& = (&-+&/))01 2
(&3 ,) :)+4 50)2(2&-, 2&/): 2&- × 2&/

--
50)2 2&-, 2&/ …
= 50)2 (&3 ,) , (&3 ,)
= 50)2)+8,)+9
=)+8 ×)+9
=)+8:+9
=)+

23

Proactive Secret Sharing (PSS)

Mobile adversary accumulates shares of secret.
Even if at most one server is compromised at
any time, a majority of shares still eventually
compromised.

Defense: Periodically re-share key.
§ Create new, independent sharing of key.
§ Replace old shares with new shares.

24

PSS Requirements

Given: sharing !" , !$, … , !& of secret !.
Goal: Compute a new sharing (" , ($,… , (& of secret !
where:

Fewer than) old shares !" , !$, … , !& cannot be combined with
fewer than) new shares (" , ($, … , (& to learn anything about
secret !.

Obvious solution: Compute ! from shares; calculate a
new sharing for !.
Obvious problem: Materializing ! risks compromise.

25

26

PSS for Splitting via Splitting

s1 s2 s3

old sharing

old share: si
s = s1 + s2 + s3

27

PSS for Splitting via Splitting

s1 s2 s3

old sharing

old share: si

split:
=si1+si2+si3 …

split
+
+++

+ +

s = s1 + s2 + s3

28

PSS for Splitting via Splitting

s1 s2 s3

old sharing

s1’
s2’
s3’

ne
w

 s
ha

rin
g

old share: si

split:
=si1+si2+si3 …

reconstruct:
s1i+s2i+s3i …

=new share: si’

split

reconstruct

++
+
+

+
+

s = s1 + s2 + s3

PSS for Polynomial Secret Sharing

(", $)-sharing of & using a ($ − 1)-degree polynomial:
) * : ,-./*-./ + ,-.1 *-.1 + … + ,3

where
) 0 = &,) 1 = &/,) 2 = &1,) 3 = &8 , …

Goal: Find a new ($ − 1)-degree polynomial 9 * :
9 0 = &, 9 1 = :/, 9 2 = :1, 9 3 = :8 , …

29

Adding a Random Function to ! "

To re-share secret ! 0 = %, each share %& holder invents a
random (' − 1) - degree polynomial that is a sharing for 0:

!& " : +,-.",-. + +,-0",-0 + … + +." + 0

Polynomial 2 " is a re-sharing of ! 0 = %:
2 " : ! " + !. " + !0 " + …+ !3 (")

30

Dissemination of the !"($)

& $: ! $ + !) $ + !* $ + …+ !, ($)

Suffices to distribute (using secure channels)
1 à j: Enc(!) 1)
2 à j: Enc(!* 2)
…

31

(", $) Secret Sharing: Summary

(", $): " pieces, where $ suffice to reconstruct.
– (", ") secret splitting
– (", $) using (", ") secret splitting
– (", $) using polynomials
– verifiable secret sharing
– function sharing

§ … authentication of replica responses
– proactive secret sharing

32

