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Label Creep with FBAC

Flow-Label Invariant (FLI):
v → w ⟹ Γ(v) ⊑ Γ(w)

Problematic examples:

wi := maj(v1, v2, …, vn)
v1 : voter1; v2 : voter2; … w : public

ctext := Enc( ptext, key)
ptext : secret;  key : secret;  ctext : public
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Toward a Rich Language for Tags
Reactive Information Flow (RIF) Tags

RIF Tag:  Seq of reclassifiers à restrictions
Defined in terms of (Λ, R, T).

– Λ is a set of labels
– R is a restriction function R: Λ à restrictions

§ Assume ordering relation ≤ on restrictions.
– T is a transition function T: Λ x F* à Λ

F* is a finite sequence of reclassifiers, which abstract 
the operations available for deriving values.
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(Λ, R, T)

● Values and variables are tagged with labels r∈Λ. 
● R(ρ) are the restrictions on a value with label r.
● When value is transformed by operations, its label 

is transformed, too.  Require that:
§ T(ρ , ") = ρ
§ T( T( ρ , F1) , F2)) = T( ρ , F1 F2) 
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Specifying Reclassification 

v : ρ
– v subject to restrictions:   R(ρ) 
– [ v ]F has tag  T(ρ , F)
– [ v ]F subject to restrictions:  R(T(ρ , F))
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⊑ for RIF Labels

r ⊑ ρ′ defined to be:
(∀F*:    R(T(r , F*)) ≤ R(T(ρ′ , F*)))

– ρ′ imposes at least the restrictions r does
– any value derived (via F*) from ρ′ does, too
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RIF Tag Example:  RIF Automata
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allA
Fv : 

Automaton states give sets of restrictions.
Edge labels abstract classes of operations.
Implicit self-loop for unspecified operations



RIF Automata
Transitions

[ expr ]F     Operation expr treated as an “F”

expr :

[ expr ]F     :
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RIF Automata
Definitions for ⊔ and⊑

Every automaton M accepts a language L(M)
Each word in L(M)

– is a sequence F1 F2 … Fn of reclassifiers
– is associated with a set of restrictions

● M ⊔ M’  is product automaton M × M’
● M ⊑M’  is:

(∀F*:    R(T(M , F*)) ≤ R(T(M’ , F*))) 

Fred B. Schneider Cornell University
8



w :=  [maj( v1 , v2 , …,  vn)]F  

RIF Automata
Example:  Majority Voting
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allB F

allA F

…
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…

w :=  [maj( v1 , v2 , …,  vn)]F  

Example:  Majority Voting
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allB F

allA F

allB F

allA F

…



w :=  [maj( v1 , v2 , …,  vn)]F  

Example:  Majority Voting
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allB F

allA F

all

…



RIF Tags for Crypto Operations

Concern:  Confidentiality / symmetric crypto
m :  secret      k : secret

– c := Enc( m, k )     c can be public
– d := Dec( c, k’ )     d can be public if k≠ k’
– e := Dec( c, k’ )     e should be secret if k= k’

… finite state automata are not sufficiently expressive.
… stack automata are not decidable.
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Crypto Tag Anatomy

c := encrypt(m,k)    à c:= [encrypt(m,k)]ENC(k)

v’ : { …., ⟨ F*, KN( v ) ⟩ ….}

⟨ F*, KN( v ) ⟩ defines restrictions on flow from  v’
§ KN(v)  is set of principals allowed to read v
§ F* is a canonical sequence of operations involving

• ENC(k), DEC(k)   for all keys k

Canonical sequence:  Adjacent symbols aren’t inverses.
... F ENC(k) DEC(k) F’ ...   →   ... F F’ ... 
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Crypto Tags Restrict Reading

Assume set of keys known to P is given.

v’ : { … ⟨ F*, KN( v ) ⟩ …}

⟨ F*, KN( v ) ⟩ means v’ can be read by P if:
– P ∈ KN( v )   -or-
– Keys known to P insufficient to reduce F* to 

empty sequence.

Fred B. Schneider Cornell University
16



Crypto Tags Details

● T ⊔ T’    is union 
● T ⊑ T’    holds if readers under T’ are also 

readers under T.
● Canonical sequence depends on what crypto 

operations are available.
– Assume: equational theory that provides reductions.
– Can handle shared key, public key, homomorphic, 1-time pad, …
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What Policy Do RIF Tags Enforce?

Threat model:  Attacker with clearance L sees 
each update to a program variable v where:

Tv ⊑ L

Goal:  Enforce flow-based restrictions associated 
with all values.

E.g.,    if s>0 then p:=1 else p:= 2 fi
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Evidence of a Leak   [Goguen + Meseguer]
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p = p
s ≠ s p = pimplies ?

Final states do not agree on public values when
starting states agree on public values.



Evidence of a Leak   [Goguen + Meseguer]
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p = p
s ≠ s p = pimplies ?

Final states do not agree on public values when
starting states agree on public values.



Evidence of a Leak (for updates)
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p = p
s ≠ s

Public updates do not agree on values when
starting states agree on public values.

x1 :=v1 x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

x1 :=v1 x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

=? =? =? =? =?=?



Evidence of a leak:
Handling Initial Declassification
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p = p
s ≠ s

Public updates do not agree on values when
starting states agree on public values.

x1 :=x x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

x1 :=x x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

≠ =? =? =? =?=?

x :=[vs]D

x :=[vs]D



Evidence of a leak:
Handling Initial Declassifcation
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vs = vs
p = p
s ≠ s

Public updates do not agree on values when
starting states agree on public values and
on values being declassified.

x1 :=x x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

x1 :=x x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

≠ =? =? =? =?=?

x :=[vs]D

x :=[vs]D



PWNI for Internal Declassifications
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For each piece:  Updates agree on public values if starting states 
agree on public values and on values being declassified.

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx1 :=x x2 :=[v2s]Dx :=[vs]D

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]D



PWNI for Internal Declassifications
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For each piece:  Updates agree on public values if starting states 
agree on public values and on values being declassified.

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx1 :=x x2 :=[v2s]Dx :=[vs]D

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]D



Evidence of a leak:
PWNI for Internal Declassifications
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For each piece:  Public updates do not agree on values if starting 
states agree on public values and on values being declassified.

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx1 :=x x2 :=[v2s]Dx :=[vs]D

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]D



PWNI Check:  Details

No leak exists provided:
For initial pieces p, p’ in every pair of executions 
“blue” / “green”:  Check pwni(p,p’), comprising

– if p and p’ agree on initial command, public values, and 
declassified values

– then
§ p and p’ agree on final command, updates to public values, 

and
§ pieces p” and p” that are successors to p and p’ satisfy 

pwni(p”, p”)
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Declassification Example

{high=high    high’≠high’}
� low := [high]D

� low’ := [high’]D

� low := high
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Declassification Example

{high=high    high’≠high’}
� low := [high]D

� low’ := [high’]D

� low := high
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Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� low’ := [high’]D

� low := high
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Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� low’ := [high’]D              If high’ ≠ high’ then …
� low := high
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Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� low’ := [high’]D              If high’=high’ then …
� low := high
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Declassification Example

{ high=high high’=high’ }
� low := [high]D

� low’ := [high’]D

� low := high
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Declassification Example

{ high=high high’=high’ }
� low := [high]D

� low’ := [high’]D              If high’=high’ then …
� low := high
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Declassification Example (2)

{high=high    high’≠high’}
� low := [high]D

� high := high’
� low := high
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Declassification Example

{high=high    high’≠high’}
� low := [high]D

� high := high’
� low := high
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Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� high := high’
� low := high
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Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� high := high’
� low := high
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Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� high := high’
� low := high
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Handling Upgrades

low := [low’]U
§ satisfies PWNI
§ differences in H values lead to differences in L 

values!
Conclude:  PWNI does not handle upgrades.

Solution:  Replace each upgraded expression (e.g. 
[low’]U) with reference to fresh sequence of values 
to provide values of each high variable.  
Fred B. Schneider Cornell University
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[low’]U ⊑ low’



Summary

● RIF labels specify
– restrictions on values
– RIF labels for derived values

… suffices for reclassification

● PWNI (piecewise non-interference)
– candidate security condition for RIF labels
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