
CS 5432:

Information Flow
Part III: Reactive Information Flow (RIF)

Fred B. Schneider
Samuel B Eckert Professor of Computer Science

(joint work with Elisavet Kozyri)

Department of Computer Science
Cornell University

Ithaca, New York 14853
U.S.A.

Label Creep with FBAC

Flow-Label Invariant (FLI):
v → w ⟹ Γ(v) ⊑ Γ(w)

Problematic examples:

wi := maj(v1, v2, …, vn)
v1 : voter1; v2 : voter2; … w : public

ctext := Enc(ptext, key)
ptext : secret; key : secret; ctext : public

Fred B. Schneider Cornell University
1

Toward a Rich Language for Tags
Reactive Information Flow (RIF) Tags

RIF Tag: Seq of reclassifiers à restrictions
Defined in terms of (Λ, R, T).

– Λ is a set of labels
– R is a restriction function R: Λ à restrictions

§ Assume ordering relation ≤ on restrictions.
– T is a transition function T: Λ x F* à Λ

F* is a finite sequence of reclassifiers, which abstract
the operations available for deriving values.

Fred B. Schneider Cornell University
2

(Λ, R, T)

● Values and variables are tagged with labels r∈Λ.
● R(ρ) are the restrictions on a value with label r.
● When value is transformed by operations, its label

is transformed, too. Require that:
§ T(ρ , ") = ρ
§ T(T(ρ , F1) , F2)) = T(ρ , F1 F2)

Fred B. Schneider Cornell University
3

Specifying Reclassification

v : ρ
– v subject to restrictions: R(ρ)
– [v]F has tag T(ρ , F)
– [v]F subject to restrictions: R(T(ρ , F))

Fred B. Schneider Cornell University
4

⊑ for RIF Labels

r ⊑ ρ′ defined to be:
(∀F*: R(T(r , F*)) ≤ R(T(ρ′ , F*)))

– ρ′ imposes at least the restrictions r does
– any value derived (via F*) from ρ′ does, too

Fred B. Schneider Cornell University
5

RIF Tag Example: RIF Automata

Fred B. Schneider Cornell University
6

allA
Fv :

Automaton states give sets of restrictions.
Edge labels abstract classes of operations.
Implicit self-loop for unspecified operations

RIF Automata
Transitions

[expr]F Operation expr treated as an “F”

expr :

[expr]F :

Fred B. Schneider Cornell University
7

allA
F

allA
F

RIF Automata
Definitions for ⊔ and⊑

Every automaton M accepts a language L(M)
Each word in L(M)

– is a sequence F1 F2 … Fn of reclassifiers
– is associated with a set of restrictions

● M ⊔ M’ is product automaton M × M’
● M ⊑M’ is:

(∀F*: R(T(M , F*)) ≤ R(T(M’ , F*)))

Fred B. Schneider Cornell University
8

w := [maj(v1 , v2 , …, vn)]F

RIF Automata
Example: Majority Voting

9

allB F

allA F

…

Fred B. Schneider Cornell University

…

w := [maj(v1 , v2 , …, vn)]F

Example: Majority Voting

Fred B. Schneider Cornell University
10

allB F

allA F

allB F

allA F

…

w := [maj(v1 , v2 , …, vn)]F

Example: Majority Voting

Fred B. Schneider Cornell University
11

allB F

allA F

all

…

RIF Tags for Crypto Operations

Concern: Confidentiality / symmetric crypto
m : secret k : secret

– c := Enc(m, k) c can be public
– d := Dec(c, k’) d can be public if k≠ k’
– e := Dec(c, k’) e should be secret if k= k’

… finite state automata are not sufficiently expressive.
… stack automata are not decidable.
Fred B. Schneider Cornell University

14

Crypto Tag Anatomy

c := encrypt(m,k) à c:= [encrypt(m,k)]ENC(k)

v’ : { …., ⟨ F*, KN(v) ⟩ ….}

⟨ F*, KN(v) ⟩ defines restrictions on flow from v’
§ KN(v) is set of principals allowed to read v
§ F* is a canonical sequence of operations involving

• ENC(k), DEC(k) for all keys k

Canonical sequence: Adjacent symbols aren’t inverses.
... F ENC(k) DEC(k) F’ ... → ... F F’ ...

Fred B. Schneider Cornell University
15

Crypto Tags Restrict Reading

Assume set of keys known to P is given.

v’ : { … ⟨ F*, KN(v) ⟩ …}

⟨ F*, KN(v) ⟩ means v’ can be read by P if:
– P ∈ KN(v) -or-
– Keys known to P insufficient to reduce F* to

empty sequence.

Fred B. Schneider Cornell University
16

Crypto Tags Details

● T ⊔ T’ is union
● T ⊑ T’ holds if readers under T’ are also

readers under T.
● Canonical sequence depends on what crypto

operations are available.
– Assume: equational theory that provides reductions.
– Can handle shared key, public key, homomorphic, 1-time pad, …

Fred B. Schneider Cornell University
17

What Policy Do RIF Tags Enforce?

Threat model: Attacker with clearance L sees
each update to a program variable v where:

Tv ⊑ L

Goal: Enforce flow-based restrictions associated
with all values.

E.g., if s>0 then p:=1 else p:= 2 fi

Fred B. Schneider Cornell University
18

Evidence of a Leak [Goguen + Meseguer]

Fred B. Schneider Cornell University

19

p = p
s ≠ s p = pimplies ?

Final states do not agree on public values when
starting states agree on public values.

Evidence of a Leak [Goguen + Meseguer]

Fred B. Schneider Cornell University

20

p = p
s ≠ s p = pimplies ?

Final states do not agree on public values when
starting states agree on public values.

Evidence of a Leak (for updates)

Fred B. Schneider Cornell University 21

p = p
s ≠ s

Public updates do not agree on values when
starting states agree on public values.

x1 :=v1 x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

x1 :=v1 x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

=? =? =? =? =?=?

Evidence of a leak:
Handling Initial Declassification

Fred B. Schneider Cornell University 22

p = p
s ≠ s

Public updates do not agree on values when
starting states agree on public values.

x1 :=x x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

x1 :=x x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

≠ =? =? =? =?=?

x :=[vs]D

x :=[vs]D

Evidence of a leak:
Handling Initial Declassifcation

Fred B. Schneider Cornell University 23

vs = vs
p = p
s ≠ s

Public updates do not agree on values when
starting states agree on public values and
on values being declassified.

x1 :=x x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

x1 :=x x2 :=v2 x3 :=v3 x4 :=v4 x6 :=v6x5 :=v5

≠ =? =? =? =?=?

x :=[vs]D

x :=[vs]D

PWNI for Internal Declassifications

Fred B. Schneider Cornell University 24

For each piece: Updates agree on public values if starting states
agree on public values and on values being declassified.

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx1 :=x x2 :=[v2s]Dx :=[vs]D

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]D

PWNI for Internal Declassifications

Fred B. Schneider Cornell University 26

For each piece: Updates agree on public values if starting states
agree on public values and on values being declassified.

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx1 :=x x2 :=[v2s]Dx :=[vs]D

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]D

Evidence of a leak:
PWNI for Internal Declassifications

Fred B. Schneider Cornell University 27

For each piece: Public updates do not agree on values if starting
states agree on public values and on values being declassified.

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx1 :=x x2 :=[v2s]Dx :=[vs]D

x1 :=x x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]Dx :=[vs]D

x2 :=[v2s]D x3 :=v3 x4 :=v4 x6 :=v6x5 :=[v3s]D

PWNI Check: Details

No leak exists provided:
For initial pieces p, p’ in every pair of executions
“blue” / “green”: Check pwni(p,p’), comprising

– if p and p’ agree on initial command, public values, and
declassified values

– then
§ p and p’ agree on final command, updates to public values,

and
§ pieces p” and p” that are successors to p and p’ satisfy

pwni(p”, p”)

Fred B. Schneider Cornell University
28

Declassification Example

{high=high high’≠high’}
� low := [high]D

� low’ := [high’]D

� low := high

Fred B. Schneider Cornell University
29

Declassification Example

{high=high high’≠high’}
� low := [high]D

� low’ := [high’]D

� low := high

Fred B. Schneider Cornell University
30

Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� low’ := [high’]D

� low := high

Fred B. Schneider Cornell University
31

Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� low’ := [high’]D If high’ ≠ high’ then …
� low := high

Fred B. Schneider Cornell University
32

Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� low’ := [high’]D If high’=high’ then …
� low := high

Fred B. Schneider Cornell University
33

Declassification Example

{ high=high high’=high’ }
� low := [high]D

� low’ := [high’]D

� low := high

Fred B. Schneider Cornell University
34

Declassification Example

{ high=high high’=high’ }
� low := [high]D

� low’ := [high’]D If high’=high’ then …
� low := high

Fred B. Schneider Cornell University
35

Declassification Example (2)

{high=high high’≠high’}
� low := [high]D

� high := high’
� low := high

Fred B. Schneider Cornell University
36

Declassification Example

{high=high high’≠high’}
� low := [high]D

� high := high’
� low := high

Fred B. Schneider Cornell University
37

Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� high := high’
� low := high

Fred B. Schneider Cornell University
38

Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� high := high’
� low := high

Fred B. Schneider Cornell University
39

Declassification Example

{ high=high high’≠high’ }
� low := [high]D

� high := high’
� low := high

Fred B. Schneider Cornell University
40

Handling Upgrades

low := [low’]U
§ satisfies PWNI
§ differences in H values lead to differences in L

values!
Conclude: PWNI does not handle upgrades.

Solution: Replace each upgraded expression (e.g.
[low’]U) with reference to fresh sequence of values
to provide values of each high variable.
Fred B. Schneider Cornell University

41

[low’]U ⊑ low’

Summary

● RIF labels specify
– restrictions on values
– RIF labels for derived values

… suffices for reclassification

● PWNI (piecewise non-interference)
– candidate security condition for RIF labels

Fred B. Schneider Cornell University
42

