CS 5432:

Information Flow

Part II: Dynamic Enforcement

Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science Cornell University Ithaca, New York 14853 U.S.A.

Enforcement of FBAC

FLI imposes restrictions on each statement.

$$v \to w \implies \Gamma(v) \sqsubseteq \Gamma(w)$$

- Static Enforcement
 - Compiler ensures type-correct programs satisfy restrictions.
- Dynamic Enforcement
 - run-time checks ensure program execution satisfies restrictions.
 - changes to labels mean program execution satisfies restrictions.

- Static enforcement: Rejects program if any execution could violate Flow-Label invariant.
- Dynamic enforcement: Blocks after partial execution when Flow-Label invariant could be violated.

if
$$0 = 0$$
 then $x_L = 2$ else $x_L = x_H$ fi

- Static enforcement: Rejects program if any execution could violate Flow-Label invariant.
- Dynamic enforcement: Blocks after partial execution when Flow-Label invariant could be violated.

Type error!

if
$$0 = 0$$
 then $x_L = 2$ else $x_L = x_H$ fi

- Static enforcement: Rejects program if execution could violates
 Flow-Label invariant
- Dynamic enforcement: Blocks after partial execution when Flow-Label invariant could be violated.

- Static enforcement: Rejects program if execution could violates
 Flow-Label invariant
- Dynamic enforcement: Blocks after partial execution when Flow-Label invariant could be violated.

Implementing Dynamic Enforcement

Conjecture: To implement dynamic enforcement:

- Precede x := Expr with check: "ctx ⊔ Γ(Expr) \sqsubseteq Γ(x)?"
- Block execution if check fails.

Implementing Dynamic Enforcement

Conjecture: To implement dynamic enforcement:

- Precede x := Expr with check: "ctx ⊔ Γ(Expr) \sqsubseteq Γ(x)?"
- Block execution if check fails

```
x_L \coloneqq 0
if B then \quad x_L \coloneqq Expr
else \quad skip
fi
```

Implementing Dynamic Enforcement

Conjecture:

- Precede x := Expr with check: "ctx $\sqcup \Gamma(Expr) \sqsubseteq \Gamma(x)$?"
- Block execution if check fails

```
x_L \coloneqq 0
if B then \quad x_L \coloneqq Expr
else \quad skip
fi
```

But... when stop on check:

- ... B=true leaks!
- Result: implemented RNI (=termination insensitive) only

Solution: Hybrid Enforcement

```
x_L \coloneqq 0
if B then x_L \coloneqq Expr
else skip
fi
```

- $B \to x_L$ whether or not $x_L \coloneqq Expr$ executes.
 - For $\Gamma(B) = H$, could exist memories M and M' with different H values causing termination with x_L having different values.

Solution: Hybrid Enforcement

- $B \to x_L$ whether or not $x_L := Expr$ executes.
 - For $\Gamma(B) = H$, could exist memories M and M' with different H values causing termination with x_L having different values.
 - FLI requires $\Gamma(B)$ \sqsubseteq x_L
 - Before if -or- Within then and within else -or- After if
 - FLI also requires $\Gamma(\text{Expr}) \sqsubseteq x_L$ before $x_L \coloneqq \text{Expr}$

Solution: Hybrid Enforcement

- $B \to x_L$ whether or not $x_L := Expr$ executes.
 - For $\Gamma(B)$ = H, could exist memories M and M' with different H values causing termination with x_L having different values.
 - FLI requires $\Gamma(B)$ \sqsubseteq x_L
 - Before if -or- Within then and within else -or- After if
 - FLI also requires $\Gamma(\text{Expr}) \sqsubseteq x_L$ before $x_L \coloneqq \text{Expr}$
- What if B is $x_H \neq x_H$?

Hybrid Enforcement: Summary

if B then C₁ else C₂ fi

- Insert check $\Gamma(\text{Expr}) \sqsubseteq \Gamma(x)$ before execution of each " $x \coloneqq \text{Expr}''$ in C_1 or C_2 .
- Insert check $\Gamma(B) \sqsubseteq \Gamma(x)$ within execution of both C_1 and C_2 if " $x \coloneqq ...$ " appears anywhere within C_1 or within C_2 .

Flow-Sensitive Labels

A given variable might be given different **flow-sensitive** labels during execution.

Example:

$$x := \text{Hval}; \quad x := 0; \quad x_L := x$$

Observe:

– If $\Gamma(x) = H$ then program does not type check.

Flow-Sensitive Labels

A given variable might be given different **flow-sensitive** labels during execution.

Example:

$$x := \text{Hval}; \quad x := 0; \quad x_L := x$$

red given label H; green given label L

Program does type check and satisfies:

$$v \rightarrow w \Rightarrow \Gamma(v) \sqsubseteq \Gamma(w)$$

Flow Sensitive Labels + Dynamic?

```
 x \coloneqq 0 \ \{ \Gamma(x) = L \}  if h > 0 then x \coloneqq 2; \{ \Gamma(x) = \Gamma(h) = H \}  else skip fi
```

- h > 0 is true: After fi $\Gamma(x) = H$
- h > 0 is false: After fi $\Gamma(x) = L$

Problem: $h \to x$ but $\Gamma(h) \not\sqsubseteq \Gamma(x)$

Flow Sensitive + ...

Soln 1

Rule: Block execution from entering conditional commands with high guards and lower targets.

```
x := 0

If h > 0 then x := 2

else skip

fi
```

Flow Sensitive + ...

Soln 2

Rule: Update labels of target variables in untaken branches to capture implicit flow.

```
x \coloneqq 0
if h > 0 then x \coloneqq 2; \Gamma(x) \coloneqq \Gamma(h)
else skip; \Gamma(x) \coloneqq \Gamma(h)
```

Leaks thru Flow-Sensitive Labels

Suppose: $\Gamma(m) = M$ and $L \sqsubseteq M \sqsubseteq H$

if m > 0 then w := hi else w := lo fi

Leaks thru Flow-Sensitive Labels

```
Suppose: \Gamma(m) = M and L \sqsubseteq M \sqsubseteq H
```

```
false M

if m > 0 then w := hi else w := lo fi
```

Leaks thru Flow-Sensitive Labels

Suppose: $\Gamma(m) = M$ and $L \sqsubseteq M \sqsubseteq H$

```
false M
if m > 0 then w := hi else w := lo fi
true H
```

Value of m leaks to label (M vs H) of w.

Avoiding Leaks thru Flow Sensitive 1

Rule: Use the same flow-sensitive label for an assignment target, independent of guard.

```
Example if m > 0 then w := hi else w := lo fi
```

(Sound but conservative.)

Avoiding Leaks thru Flow Sensitive 2

Rule: Associate a metalabel with each label.

Example:

```
false \langle M, M \rangle

if m > 0 then w := hi else w := lo fi

true \langle H, M \rangle
```

Labels for meta-labels?

Summary

FLI:
$$v \to w \implies \Gamma(v) \sqsubseteq \Gamma(w)$$

- Static enforcement
 - Conservative
- Dynamic enforcement
 - Insert tests
 - Mind the untaken assignment!
 - Change labels
 - Static
 - Dynamic: Leaks thru labels