
CS 5432:
Authentication Logics

Fred B. Schneider
Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University

Ithaca, New York 14853
U.S.A.

Goals

Facility in reasoning with says and speaksfor
– Knowledge of CAL axioms and inference rules.
– Formalization of protocol goals in CAL.
– Formalization of protocol description in CAL.

N.b. Comfort in formal logics also will be useful for
defining type systems for information flow.

1

Overview

● Why formalize? Applicability of Authentication Logics.
● Logic refresher (with apologies)

– Formulas, Theorems, Interpretations, …

● CAL
– Formulas
– Interpretations
– Compound Principals

● Accountability
● Credentials and certificates
● Applications

2

Overview

● Why formalize? Applicability of Authentication Logics.
● Logic refresher (with apologies)

– Formulas, Theorems, Interpretations, …

● CAL
– Formulas
– Interpretations
– Compound Principals

● Accountability
● Credentials and certificates
● Applications

3

What is a Formal Logic?

● A language of formulas.
– Mechanically checkable whether a string is a formula.

● A subset of formulas called axioms.
● A set of inference rules, where conclusion ! is

mechanical transformation of hypotheses "#, "%, … , "'
"#, "%, … , "'

!
A proof is a sequence of formulas, each is an axiom or the
conclusion of an inference rule whose premises appeared
earlier. A theorem is any line in a proof.

4

Logic Example: Pqa [Hofstadter]

Formulas: ! P # Q % where !, #, % denote aa…
Axioms

– Axiom 1: a P a Q aa
– Axiom 2: aa P a Q aaa

Inference rule
! P # Q % , ' P (Q)

! ' P # (Q % ϕ

5

PQa Proof Example

1. a P a Q aa Axiom 1

2. aa P a Q aaa Axiom 2

3. aaa P aa Q aaaaa Inference rule: 1,2

4. aaaa P aaa Q aaaaaaa Inference rule: 1,3

6

Assigning Meaning to Formulas

! ⊨ #
– ⊨ (read: models) is a relation between statements
! (aka “structures”) and formulas # of the logic.

– If ! ⊨ # holds then ! is called a model for formula # .

● # is valid (written ⊨ #): ! ⊨ # holds in all !.
● # is satisfiable: ! ⊨ # holds for some !.

7

Mechanics with Semantics

Theorems are mechanically derived. Yet they can reveal
truths about reality…

● Logic is sound: ! ⊨ # holds and # is a theorem implies
! is a true statement.
– Thms ⊆ Facts

● Logic is complete: ! is a true statement and ! ⊨ # holds
implies # is a theorem.
– Facts ⊆ Thms

8

Meaning(s) for PQa

Interpretation 1:
– " + $ = & ⊨ " P $ Q &

Interpretation 2:
– " + $ ≥ & ⊨ " P $ Q &

Sound?
Complete?

9

Meaning(s) for PQa

Interpretation 1:
– " + $ = & ⊨ " P $ Q &

Interpretation 2:
– " + $ ≥ & ⊨ " P $ Q &

Sound?
Complete?

10

Proof Styles

Derivation Tree: Leaves must be axioms.

a PaQaa, aaPaQaaa
aaaPaaQaaaaa ,

a PaQaa, a PaQaa, aaPaQaaaaaaPaaQaaaaa
aaaaPaaaQaaaaaaa

aaaaaaaPaaaaaQaaaaaaaaaaaa

Hilbert Style:
1. a P a Q aa Axiom 1

2. aa P a Q aaa Axiom 2

3. aaa P aa Q aaaaa Inference rule: 1,2

4. aaaa P aaa Q aaaaaaa Inference rule: 1,3

11

Proof Styles

Derivation Tree: Leaves must be axioms.

a PaQaa, aaPaQaaa
aaaPaaQaaaaa ,

a PaQaa, a PaQaa, aaPaQaaaaaaPaaQaaaaa
aaaaPaaaQaaaaaaa

aaaaaaaPaaaaaQaaaaaaaaaaaa

Hilbert Style:
1. a P a Q aa Axiom 1

2. aa P a Q aaa Axiom 2

3. aaa P aa Q aaaaa Inference rule: 1,2

4. aaaa P aaa Q aaaaaaa Inference rule: 1,3

12

Proof Styles

Equational Style (not always possible)
¬" ∧ " ⇒ %

= ⟨ defn of ⇒: Implication Laws (2.22a)⟩
¬" ∧ ¬" ∨ %

= ⟨ distribution of ∧ over ∨: Distributive Laws (2.16b) ⟩
¬" ∧ ¬" ∨ ¬" ∧ %

= ⟨ identity of ∧: And-Simplification Law (2.26a) ⟩
¬" ∨ ¬" ∧ %

= ⟨ absorption. Or-Simplification (2.25d) ⟩
¬"

13

Proof Styles (not)

Proof: “We know 1+1=2. We also know that
2+1 = 3. Adding equals to equals produces
(2+1)+(1+1)=(3+2). That can be formalized as

aaa P aa Q aaaa
…”
● Explanation of how to get formal proof? (Not)
● This proof is reasoning about models but using the

language of the logic.

14

Sequents

!", !$, … , !& ⊢(! is called a sequent.

Asserts that ! could be proved using logic L if
formulas !", !$, … , !& were made axioms.

– Derivation tree with !", !$, … , !& as leaves.
– In some logics, sequents are formulas and there is an

inference rule:
!", !$, … , !& ⊢ !

⊢ !"∧ !$ ∧ …∧ !& ⇒ !

15

Model Checking

Given a formula F, identify a set of “critical” models
I1, I2, …, In.

– Check Ii⊨ F (only) for critical models I1, I2 …, In.
§ Potentially intractable computation.
§ Often requires restriction to finite state space.

– Conclude ⊨ F

Example: Using a “truth table” in propositional logic.

16

Overview

● Why formalize? Applicability of Authentication Logics.
● Logic refresher (with apologies)

– Formulas, Theorems, Interpretations, …

● CAL
– Formulas
– Interpretations
– Compound Principals

● Accountability
● Credentials and certificates
● Applications

17

CAL

Language:
C ::= F (F a formula of First-order Predicate Logic)

| P says C
| P’ speaksfor P
| P’ speaks x:C for P
| C ∧ C’
| C ∨ C’
| C ⇒ C’

N.b. ¬C: (C ⇒ false)
18

Models for CAL

! ,# ⊨ C:
– ! is a state. It maps variables to values.

§ ! ,# ⊨ F iff ! ⊨)*+, F (for pred logic F)

– #(P) is the set of beliefs principal P has.
§ ! ,# ⊨ P says C iff C ∈ #(P)
§ ! ,# ⊨ P’ speaksfor P iff #(P’)⊆ #(P)

#(P) called the worldview of P
19

Contents of ! ⋅ ?

Requirement: A trustworthy P issues a credential
conveying P says C only if C ∈ !(P).

Conservative Approximation for !(P).
– !(P) contains some initial beliefs InitP
– !(P) is closed under logical consequence.

§ Logical consequence conservatively models everything that
any program could deduce from local state and beliefs.

20

Inconsistent Beliefs

P might hold beliefs: B and ¬B (aka B ⇒ false)
– P received inconsistent credentials.
– P read the state at two different times.
– P executed a buggy or malicious program.

P then cannot be trusted -- it holds all beliefs:
1. B
2. B ⇒ false
3. False
4. B’

22

CAL Inference Rules: says

⊢%&' (
) says (

) says (
) says () says ()

) says () says ()
) says (

) says ((⇒ (-)
) says (⇒ () says (-)

23

Example CAL Proof (1)

! says %, ! says (% ⇒ %))
! says % ⇒ (! says %))
! says %)

24

Example CAL Proof (2)

! says %, ! says (% ⇒ %))
! says % ⇒ (! says %))
! says %)

25

Example CAL Proof (3)

! says %, ! says (% ⇒ %))
! says % ⇒ (! says %))
! says %)

26

CAL Inference Rules: speaksfor

) *+,* ().*/0+1*234))
).*/0+1*234) hand-off

).*/0+1*234)
).*+,* 6 ⇒) *+,* 6

) */0+1*234).,).*/0+1*234)..
) 9:;<=9>?@)..

27

Inherited Inconsistency in CAL?

Can worldviews for different principals cause some
principal to have inconsistent beliefs?

– P says C and P says ¬C -vs-
– P says C and P’ says ¬C , where

§ P’ speaksfor P?
§ No delegation to P’ by P?

28

CAL Non-Interference

Set of principals is independent if no element makes a
delegation to another element.

Thm: For P∈ IP, a set of independent principals:
C1, …, Cm ⊢#$% P says false

iff
D1, …, Dn ⊢#$% P says false

where no Di includes “Pj says …” for Pj∈ IP-{P}.

29

Unrestricted Delegation

!′ #$%# &, !′ #()$*#+,- !
!′ #$%# & ⇒ ! #$%# &
! #$%# &

● Warning: P inherits beliefs from any principal that was
delegated to.

● P trusting P’ means
– P		 adopts all beliefs of P’
– P		also adopts beliefs of any principal P’ trusts (transitive).

30

Why Delegate?

Transitivity of delegation allows clients to be
ignorant of the implementation details of services
the clients invoke.

– Transitive delegations are made by implementation of
service to lower-level services.

– Transitive delegations are hidden from clients.

31

Restricted Delegation

!"#$%&'# (: * +,- !
!"#&.# * (≔ 0 ⇒ ! #&.# * (≔ 0

Example:
*2 #&.# 34567 89:;<
*2 #&.# ¬34567 89:;<
*> #&.# *2 #$%&'#+,- *> !

*> #&.# *2 #$%&'# (:34567 (+,- *> "

… *> does not inherit ¬34567 (from *2

32

Compound Principals

● Every principal ! has a worldview " ! .

● Compound principals combine worldviews from
multiple principals to obtain a worldview for the
compound principal.

● Example:
– ! ∧ %: " ! ∧ % : " ! ∩ " %

33

Useful Compound Principals

● Subprincipals of P: P.x
● Groups G = { P1, P2, … Pn }

34

Subprincipals

For any term !:

" #$%&'#()* ". !
! = !′

". ! #$%&'#()* ". !′

35

Use of Subprincipals

● Any belief of P is attributed to P.x for any x.
– Hack: Employ $. % for beliefs by P	 that should not be

attributed to other sub-principals of P .
● If L implements H then H is a subprincipal of L.

– Example: HW implements OS, so HW.OS is the
principal that corresponds to the operating system.

36

Implements: CAL Analysis

L		implements H,		so H		is a subprincipal of L.
– ' ()*(+ ()*(,
– ' (-.)/(012 +

' ()*(+ ()*(, , ' (-.)/(012 +
' ()*(+ ()*(, ⇒ (+ ()*(+ ()*(,
+ ()*((+ ()*(,)

+ ()*(,

37

Implements: CAL Analysis

L		implements H,		so H		is a subprincipal of L.
– ' ()*(+ ()*(,
– ' (-.)/(012 +

' ()*(+ ()*(, , ' (-.)/(012 +
' ()*(+ ()*(, ⇒ (+ ()*(+ ()*(,
+ ()*((+ ()*(,)

+ ()*(,

38

Group Principals

A group is defined by a finite enumeration of its
member principals. ! = { $% , $' , …$) }
● Conjunctive Groups

$+ ,-., /, 012 3432. $+ ∈ !
$6 ,-., /

78 9:;9 <
7 9:;9 < 78 ,=3->,012 7

for $ ∈ !

39

Group Principals

● Disjunctive Groups. Hold beliefs that any
member principal holds plus deductive closure!

! "#$" %
!& "#$" % ! '()*+',-. !&

for / ∈ 1

/2 '*3' 4 , /2 '*3' (4 ⇒ 48)
/2 '*3' 48

40

Overview

● Why formalize? Applicability of Authentication Logics.
● Logic refresher (with apologies)

– Formulas, Theorems, Interpretations, …

● CAL
– Formulas
– Interpretations
– Compound Principals

● Accountability
● Credentials and certificates
● Applications

41

Constructive Logics (1)

Constructive logics omit certain inference rules. In return,
proofs have certain useful properties for our application
domain.

– Evidence that justifies a decision is visible in the proof.
– Inferences made when there is partial information cannot

become invalidated and new information becomes known.

42

Constructive Logics (2)

Omit all variants of the following rule:

! ∨ ¬ ! -excluded middle

So the following is not a proof:

$
$ ⇒ &

¬ $
¬$ ⇒ & $ ∨ ¬$

&

… & because $ holds or because ¬$ holds?

43

Constructive Logics (3)

Monotonicity wrt partial structures…
● Define ! , # ≪ !% , #′

– ! assigns values to only some variables that !%does
– # has a subset of the beliefs that #′ does, for all prins.

● Thm: For all CAL formulas F:
! , # ≪ !% , #% ⇒ (! , # ⊨ + ⇒ !% , #′ ⊨ +)

– + may hold before you know whether ¬+ does
– + may hold even though all certificates have not been received.
– N.b. ¬ (P says S) is not a CAL formula

44

Overview

● Why formalize? Applicability of Authentication Logics.
● Logic refresher (with apologies)

– Formulas, Theorems, Interpretations, …

● CAL
– Formulas
– Interpretations
– Compound Principals

● Accountability
● Credentials and certificates
● Applications

45

Credentials Can Convey Beliefs

kS-sign(C): KS says C
– Public keys are principals.
– KS speaksfor S if principal S is the only agent with

access to private key kS.

A principal S can be a hash of the running code
and data that was read.

46

Overview

● Why formalize? Applicability of Authentication Logics.
● Logic refresher (with apologies)

– Formulas, Theorems, Interpretations, …

● CAL
– Formulas
– Interpretations
– Compound Principals

● Accountability
● Credentials and certificates
● Applications

47

Application 1:
Public Key Infrastructure (PKI)

kS-sign(C):
– Certificate: KS-⟨C⟩
– CAL formalization: KS says C

CAL formalization of delegation certificate:
– Certificate: KI-⟨#/com : Kcom⟩
– CAL formalization: KI says (Kcom speaksfor #/com)

48

Public Key Infrastructure (PKI)

49

/

/edu/com

/edu/cu /edu/mit

/edu/cu/cs /edu/cu/ece /edu/cu/…

PKI Excerpt

50

…
KI-⟨"/com : Kcom⟩
KI-⟨"/edu : Kedu⟩
…

…
Kedu-⟨"/edu/cu : Kcu⟩
Kedu-⟨"/edu/mit : Kmit⟩
…

…
Kcu-⟨"/edu/cu/cs : Kcs⟩
Kcu-⟨"/edu/cu/ece : Kece⟩
…

…
Kcs-⟨"/edu/cu/cs/fbs : Kfbs⟩
Kcs-⟨"/edu/cu/cs/la : Kla⟩
…

/

/edu

/edu/cu

/edu/cu/cs

CAL Model for PKI Excerpt

51

…
KI-⟨"/com : Kcom⟩
KI-⟨"/edu : Kedu⟩
…

…
Kedu-⟨"/edu/cu : Kcu⟩
Kedu-⟨"/edu/mit : Kmit⟩
…

…
Kcu-⟨"/edu/cu/cs : Kcs⟩
Kcu-⟨"/edu/cu/ece : Kece⟩
…

…
Kcs-⟨"/edu/cu/cs/fbs : Kfbs⟩
Kcs-⟨"/edu/cu/cs/la : Kla⟩
…

KI says (Kcom speaksfor "/com)
KI says (Kedu speaksfor "/edu)

Kedu says (Kcu speaksfor "/edu/cu)
Kedu says (Kmit speaksfor "/edu/mit)

Kcu says (Kcs speaksfor "/edu/cu/cs)
Kcu says (Kece speaksfor "/edu/cu/ece)

Kcs says (Kfbs speaksfor "/edu/cu/cs/fbs)
Kcs says (Kla speaksfor "/edu/cu/cs/la)

Sample Derivation

Kcu says Kcs speaksfor !/edu/cu/cs
Kcu speaksfor !/edu/cu

!/edu/cu says Kcs speaksfor !/edu/cu/cs
!/edu/cu speaksfor !/edu/cu/cs

!/edu/cu/cs says Kcs speaksfor !/edu/cu/cs
KCS speaksfor !/edu/cu/cs
Kcs says Kfbs speaksfor !/edu/cu/cs/fbs

KCS speaksfor !/edu/cu/cs
!/edu/cu/cs says Kfbs speaksfor !/edu/cu/cs/fbs

!/edu/cu/cs speaksfor !/edu/cu/cs/fbs
!/edu/cu/cs/fbs says Kfbs speaksfor !/edu/cu/cs/fbs
Kfbs speaksfor !/edu/cu/cs/fbs

52

CAL Model for PKI Except

53

…
KI-⟨"/com : Kcom⟩
KI-⟨"/edu : Kedu⟩
…

…
Kedu-⟨"/edu/cu : Kcu⟩
Kedu-⟨"/edu/mit : Kmit⟩
…

…
Kcu-⟨"/edu/cu/cs : Kcs⟩
Kcu-⟨"/edu/cu/ece : Kece⟩
…

…
Kcs-⟨"/edu/cu/cs/fbs : Kfbs⟩
Kcs-⟨"/edu/cu/ece/la : Kla⟩
…

KI says (Kcom speaksfor "/com)
KI says (Kedu speaksfor "/edu)

Kedu says (Kcu speaksfor "/edu/cu)
Kedu says (Kmit speaksfor "/edu/mit)

Kcu says (Kcs speaksfor "/edu/cu/cs)
Kcu says (Kece speaksfor "/edu/cu/ece)

Kcs says (Kfbs speaksfor "/edu/cu/cs/fbs)
Kcs says (Kla speaksfor "/edu/cu/ece/la)

Sample Derivation (1)

Kcu says Kcs speaksfor !/edu/cu/cs
Kcu speaksfor !/edu/cu

!/edu/cu says Kcs speaksfor !/edu/cu/cs
!/edu/cu speaksfor !/edu/cu/cs

!/edu/cu/cs says Kcs speaksfor !/edu/cu/cs
KCS speaksfor !/edu/cu/cs
Kcs says Kfbs speaksfor !/edu/cu/cs/fbs

KCS speaksfor !/edu/cu/cs
!/edu/cu/cs says Kfbs speaksfor !/edu/cu/cs/fbs

!/edu/cu/cs speaksfor !/edu/cu/cs/fbs
!/edu/cu/cs/fbs says Kfbs speaksfor !/edu/cu/cs/fbs
Kfbs speaksfor !/edu/cu/cs/fbs

54

Sample Derivation (2)

Kcu says Kcs speaksfor !/edu/cu/cs
Kcu speaksfor !/edu/cu

!/edu/cu says Kcs speaksfor !/edu/cu/cs
!/edu/cu speaksfor !/edu/cu/cs

!/edu/cu/cs says Kcs speaksfor !/edu/cu/cs
KCS speaksfor !/edu/cu/cs
Kcs says Kfbs speaksfor !/edu/cu/cs/fbs

KCS speaksfor !/edu/cu/cs
!/edu/cu/cs says Kfbs speaksfor !/edu/cu/cs/fbs

!/edu/cu/cs speaksfor !/edu/cu/cs/fbs
!/edu/cu/cs/fbs says Kfbs speaksfor !/edu/cu/cs/fbs
Kfbs speaksfor !/edu/cu/cs/fbs

55

Sample Derivation (3)

Kcu says Kcs speaksfor !/edu/cu/cs
Kcu speaksfor !/edu/cu

!/edu/cu says Kcs speaksfor !/edu/cu/cs
!/edu/cu speaksfor !/edu/cu/cs

!/edu/cu/cs says Kcs speaksfor !/edu/cu/cs
KCS speaksfor !/edu/cu/cs
Kcs says Kfbs speaksfor !/edu/cu/cs/fbs

KCS speaksfor !/edu/cu/cs
!/edu/cu/cs says Kfbs speaksfor !/edu/cu/cs/fbs

!/edu/cu/cs speaksfor !/edu/cu/cs/fbs
!/edu/cu/cs/fbs says Kfbs speaksfor !/edu/cu/cs/fbs
Kfbs speaksfor !/edu/cu/cs/fbs

56

Sample Derivation (4)

Kcu says Kcs speaksfor !/edu/cu/cs
Kcu speaksfor !/edu/cu

!/edu/cu says Kcs speaksfor !/edu/cu/cs
!/edu/cu speaksfor !/edu/cu/cs

!/edu/cu/cs says Kcs speaksfor !/edu/cu/cs
KCS speaksfor !/edu/cu/cs
Kcs says Kfbs speaksfor !/edu/cu/cs/fbs

KCS speaksfor !/edu/cu/cs
!/edu/cu/cs says Kfbs speaksfor !/edu/cu/cs/fbs

!/edu/cu/cs speaksfor !/edu/cu/cs/fbs
!/edu/cu/cs/fbs says Kfbs speaksfor !/edu/cu/cs/fbs
Kfbs speaksfor !/edu/cu/cs/fbs

57

Sample Derivation (5)
KI speaksfor ! …
Kcu says Kcs speaksfor !/edu/cu/cs

Kcu speaksfor !/edu/cu
!/edu/cu says Kcs speaksfor !/edu/cu/cs

!/edu/cu speaksfor !/edu/cu/cs
!/edu/cu/cs says Kcs speaksfor !/edu/cu/cs
KCS speaksfor !/edu/cu/cs
Kcs says Kfbs speaksfor !/edu/cu/cs/fbs

KCS speaksfor !/edu/cu/cs
!/edu/cu/cs says Kfbs speaksfor !/edu/cu/cs/fbs

!/edu/cu/cs speaksfor !/edu/cu/cs/fbs
!/edu/cu/cs/fbs says Kfbs speaksfor !/edu/cu/cs/fbs
Kfbs speaksfor !/edu/cu/cs/fbs

58

Application 2:
Access to a Joint Project

● A works for Intel and is known as A@Intel.
– Public key KA; private key kA

– Laptop
– Member of Atom group

● MS has web page Spec
– ACL allows access to Spec for members of Atom
– CAL models as: Atom speaksfor Spec

§ Therefore: Atom says (access Spec) ⊢ Spec says (access Spec)

Suppose A requests access a Spec web page…

59

Application:
Accessing a Joint Project

1. read page: Spec

2. challenge: r

3. kA-sign(r, A)

4. A?

5. kintel-⟨ KA , A@Intel ⟩
6. A@Intel in Atom?

7. kMS-⟨ A@Intel, Atom ⟩
8. MS web server authorizes access by Atom: Atom ∈ Spec.ACL

60

…

Atom: …

A@Intel

…

….

…

Spec: …

ACL:

…

Atom

…

…
A

kA

A’s smartcard

A’s laptop

MS’s web server

MS’s Project database

…

A: KA

….

Intel’s HR database

1

2

3

4

5

6

7

SSL connection KSSL

SSL connection KSSL

8

CAL Model for Spec Access

1. KSSL says (A@Intel says (read page: Spec))
2. KSSL says r
3. KSSL says (KA says (r,A))

KSSL speaksfor KA since KA is a subprincipal of KSSL

Conclude: KA says (r,A)
5. Kintel says KA speaksfor A@Intel

Kintel speaksfor *@Intel, so: Kintel speaksfor A@Intel
Conclude: KA speaksfor A@Intel

7. KMS says (A@Intel speaksfor Atom)
MS speaksfor Atom since Atom is a subprincipal of MS
KMS speaksfor MS defn of KMS

Conclude: A@Intel speaksfor Atom

61

CAL Model for Spec Access

1. KSSL says (A@Intel says (read page: Spec))
2. KSSL says r
3. KSSL says (KA says (r,A))

KSSL speaksfor KA since KA is a subprincipal of KSSL

Conclude: KA says (r,A)
5. Kintel says KA speaksfor A@Intel

Kintel speaksfor *@Intel, so: Kintel speaksfor A@Intel
Conclude: KA speaksfor A@Intel

7. KMS says (A@Intel speaksfor Atom)
MS speaksfor Atom since Atom is a subprincipal of MS
KMS speaksfor MS defn of KMS

Conclude: A@Intel speaksfor Atom

A@Intel says (read page: Spec), A@Intel speaksfor Atom

62

CAL Model for Spec Access

1. KSSL says (A@Intel says (read page: Spec))
2. KSSL says r
3. KSSL says (KA says (r,A))

KSSL speaksfor KA since KA is a subprincipal of KSSL

Conclude: KA says (r,A)
5. Kintel says KA speaksfor A@Intel

Kintel speaksfor *@Intel, so: Kintel speaksfor A@Intel
Conclude: KA speaksfor A@Intel

7. KMS says (A@Intel speaksfor Atom)
MS speaksfor Atom since Atom is a subprincipal of MS
KMS speaksfor MS defn of KMS

Conclude: A@Intel speaksfor Atom

A@Intel says (read page: Spec)
A@Intel speaksfor Atom

63

Access Authorization

A@Intel says (read page: Spec)
A@Intel speaksfor Atom
Atom speaksfor Spec due to Atom ∈ Spec.ACL
⊢
Spec says (read page: Spec)

64

Application 3:
Protocol 1 for Remote Attestation

Assumptions:
A1: R trusts S and has KS speaksfor S.
A2: S is exec environment for P.
A3: S implements a gating function [kP-sign].

1. R à S: ⟨r, P⟩, where r is fresh nonce
2. S: Generate KP/kp where Config([kP-sign]) = {P}
3. S à R: [kS-sign](r, P, KP)
4. R: Accept KP provided:

– Msg 3 verified as from S (by using KS) and N(DP)=P holds.

65

Gating Functions in CAL

! = Con&ig(*+ − -./0)
2+ -3456-789 !

! might be : ;

66

Protocol 1: Analysis

1. (3) S à R: [kS-sign](r, P, KP)
– KS says (S.r says (KP speaksfor P))

2. S.r implements S
– S.r speaksfor S

3. Assumption A1 and CAL Gating Functions Inference Rule
– KS speaksfor S

4. CAL with 1,3; then 2: S says (S says (KP speaksfor P))
5. CAL with 4: S says (KP speaksfor P)
6. P is a subprincipal of S (since S is exec env for P):

– S speaksfor P

7. CAL with 5, 4: P says (KP speaksfor P)
8. CAL Handoff with 7: KP speaksfor P

67

Review

● Why formalize? Applicability of Authentication Logics.
● Logic refresher (with apologies)

– Formulas, Theorems, Interpretations, …

● CAL
– Formulas
– Interpretations
– Compound Principals

● Accountability
● Credentials and certificates
● Applications

68

