Overview: CS 5432 Spring 2021

Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science Cornell University Ithaca, New York 14853 U.S.A.

Today's Agenda

- Course content
- Organizational matters

Content: Big Picture

- CS 5430: Principles and mechanisms in use today.
 - These address a need that exists today.
 - These are available in systems that exist today.
- CS 5432: Mechanisms, policies, and analysis not in use today but **likely to be used within a decade**.
 - Will enable transition from craft \rightarrow engineering discipline.
 - Avoid ad hoc simplifications (about trust and policy).
 - (Basis for startups and new product offerings).

Future: Threat stays the same

... but the targets of attack change in the future.

- Greater use of COTS in critical public infrastructure.
 - Power grid, communications, ...
- More societal dependence on commercial infrastructure.
 - E.g. google's gmail, ...
- Advent of smart "things" (some can kill).
 - E.g. cars
- New societal sensibilities \rightarrow new policies.
 - Privacy, fairness, mis-information, accountability

... today's "military grade" security (mechanisms and policies) will be needed and used in tomorrow's commercial settings.

CS5432 Content Overview

Gold Standard

- Authentication
- Authorization
- Audit

Defenses

- Isolation
- Monitoring
- Independence
- Asymmetric Work

Authentication of Things

"Easy" if there is a shared secret...

- What principal stores the secret for a "thing"?
- What principals must be trusted?

Authentication of Things: Topics

- Authentication of inanimate objects
 - Paper money, other objects, chips, ...
- PUFs (to authenticate an IC)
- Measured principals and gating functions
 - HW support (TPM)
 - Remote attestation protocols
- Use of says/speaksfor for specifying and reasoning about trust assumptions and consequences.

Authorization: Information Flow

Access control associated with

- object (DAC vs MAC) -vs-
- content (information flow)
- Information flow "solves"
 - spectre/meltdown + other side channels
 - *actual* confidentiality / integrity

Information Flow: Topics

- Lattice-based policies
- Enforcement
 - static
 - dynamic
 - reclassification
- Other flow policies
 - semantics of flow
 - verification of flow policies

Independence

- Replication for fault-tolerance
- = Replication for attack-tolerance?

Independence: Topics

- Support for independent replicas
 - secret sharing and threshold cryptography
 - proactive secret sharing
 - proactive code obfuscation
- Moving target defenses

Execution Assumptions

Control flow

- Attacks (buffer overflow, ROP)
- Defenses (CFI/XFI)
- Memory
 - Attacks
 - Defenses (memory safety)

CS5432 Administration

Course Staff

Fred B. Schneider – <u>fbs@cs.cornell.edu</u> Natalie Neamtu – <u>nan55@cornell.edu</u>

Content Delivery

Lectures: Mon and Wed 2:40 – 3:30pm

- By zoom. Plan to attend, live.
- Recordings avail for review afterwards.

Readings: Will be added to course outline as semester progresses.

- Suggestion: Do the reading <u>after</u> the lecture.

Office Hours:

- Drop-in (=not private) scheduled Mon Thurs.
- Send email to FBS for individual meetings.

Learn by Doing

Written Homework (30%)

- Opportunity to exercise what you have learned.
- Project (50%)
 - Implement a social networking system.
 - Authentication of people, of machines, authorization of access, confidentiality of content
 - Work in groups
 - Multiple phases
 - Presentation and demo last 2 weeks
- Other inputs to grade (20%)
 - Extra-credit HW assignments
 - Class attendance and participation
 - Other engagement with course content

Nota bene

• Letter grade only (no S/U)

- Avoids odd dynamics in groups
- Academic integrity.
 - It matters and will be enforced.
 - Source and sink of collaboration both are in violation.

Truth in Advertising

New course

- New lectures (presentation undebugged)
- New content (understanding undebugged)
- New homeworks (but project is not new ③)
- Course staff learning, too
- Logic and formalism alert

 $\neg P \land (P \Rightarrow Q) = \neg P ?$

– We will do a review...

Equational Proof

 $\neg P \land (P \Rightarrow Q)$ = (defn of \Rightarrow : Implication Laws (2.22a)) $\neg P \land (\neg P \lor Q)$ = (distribution of \land over \lor : Distributive Laws (2.16b)) ($\neg P \land \neg P$) $\lor (\neg P \land Q)$ = (identity of \land : And-Simplification Law (2.26a)) ($\neg P$) $\lor (\neg P \land Q)$ = (absorption. Or-Simplification (2.25d)) $\neg P$