Overview: CS 5432
Spring 2021

Fred B. Schneider
Samuel B Eckert Professor of Computer Science
Department of Computer Science
Cornell University
Ithaca, New York 14853
U.S.A.
Today’s Agenda

- Course content
- Organizational matters
Content: Big Picture

- **CS 5430**: Principles and mechanisms in use today.
 - These address a need that exists today.
 - These are available in systems that exist today.

- **CS 5432**: Mechanisms, policies, and analysis not in use today but likely to be used within a decade.
 - Will enable transition from craft to engineering discipline.
 - Avoid ad hoc simplifications (about trust and policy).
 - (Basis for startups and new product offerings).
Future: Threat stays the same

... but the targets of attack change in the future.

- Greater use of COTS in critical public infrastructure.
 - Power grid, communications, ...
- More societal dependence on commercial infrastructure.
 - E.g. google’s gmail, ...
- Advent of smart “things” (some can kill).
 - E.g. cars
- New societal sensibilities → new policies.
 - Privacy, fairness, mis-information, accountability

... today’s “military grade” security (mechanisms and policies) will be needed and used in tomorrow’s commercial settings.
CS5432 Content Overview

Gold Standard
● Authentication
● Authorization
● Audit

Defenses
● Isolation
● Monitoring
● Independence
● Asymmetric Work
Authentication of Things

“Easy” if there is a shared secret...

- What principal stores the secret for a “thing”?
- What principals must be trusted?
Authentication of Things: Topics

- Authentication of inanimate objects
 - Paper money, other objects, chips, ...
- PUFs (to authenticate an IC)
- Measured principals and gating functions
 - HW support (TPM)
 - Remote attestation protocols
- Use of *says/speaks for* for specifying and reasoning about trust assumptions and consequences.
Authorization: Information Flow

Access control associated with
- object (DAC vs MAC) vs
- content (information flow)

Information flow “solves”
- spectre/meltdown + other side channels
- actual confidentiality / integrity
Information Flow: Topics

- Lattice-based policies
- Enforcement
 - static
 - dynamic
 - reclassification
- Other flow policies
 - semantics of flow
 - verification of flow policies
Independence

- Replication for fault-tolerance
- = Replication for attack-tolerance?
Independence: Topics

- Support for independent replicas
 - secret sharing and threshold cryptography
 - proactive secret sharing
 - proactive code obfuscation

- Moving target defenses
Execution Assumptions

- Control flow
 - Attacks (buffer overflow, ROP)
 - Defenses (CFI/XFI)

- Memory
 - Attacks
 - Defenses (memory safety)
CS5432
Administration
Course Staff

Fred B. Schneider
 – fbs@cs.cornell.edu

Natalie Neamtu
 – nan55@cornell.edu
Content Delivery

Lectures: Mon and Wed 2:40 – 3:30pm
- By zoom. Plan to attend, live.
- Recordings avail for review afterwards.

Readings: Will be added to course outline as semester progresses.
- Suggestion: Do the reading after the lecture.

Office Hours:
- Drop-in (=not private) scheduled Mon - Thurs.
- Send email to FBS for individual meetings.
Learn by Doing

- **Written Homework (30%)**
 - Opportunity to exercise what you have learned.

- **Project (50%)**
 - Implement a social networking system.
 - Authentication of people, of machines, authorization of access, confidentiality of content
 - Work in groups
 - Multiple phases
 - Presentation and demo last 2 weeks

- **Other inputs to grade (20%)**
 - Extra-credit HW assignments
 - Class attendance and participation
 - Other engagement with course content
Nota bene

- Letter grade only (no S/U)
 - Avoids odd dynamics in groups
- Academic integrity.
 - It matters and will be enforced.
 - Source and sink of collaboration both are in violation.
Truth in Advertising

● New course
 – New lectures (presentation undebugged)
 – New content (understanding undebugged)
 – New homeworks (but project is not new 😊)
 – Course staff learning, too

● Logic and formalism alert

\[\neg P \land (P \Rightarrow Q) = \neg P \quad ? \]
 – We will do a review...
Equational Proof . . .

\[\neg P \land (P \Rightarrow Q) \]

\[= \langle \text{defn of } \Rightarrow : \text{Implication Laws (2.22a)} \rangle \]

\[\neg P \land (\neg P \lor Q) \]

\[= \langle \text{distribution of } \land \text{ over } \lor : \text{Distributive Laws (2.16b)} \rangle \]

\[(\neg P \land \neg P) \lor (\neg P \land Q) \]

\[= \langle \text{identity of } \land : \text{And-Simplification Law (2.26a)} \rangle \]

\[(\neg P) \lor (\neg P \land Q) \]

\[= \langle \text{absorption. Or-Simplification (2.25d)} \rangle \]

\[\neg P \]

\[\neg P \]