
Chapter 2

Formal Logic

The methods in this textbook for reasoning about programs are based on
using formal logic to characterize program execution. Here, we review some
rudiments of logic and show how logic can be used to formalize safety and live-
ness. Our study of logic is done from the programmer’s viewpoint, not the
logician’s. For us, logic is simply a tool. However, as with most tools, it must
be understood to be used effectively.

2.1 Formal Logical Systems
A formal logical system consists of
a set of symbols,
a set of formulas constructed from the symbols,
a set of distinguished formulas, called axioms, and
a set of inference rules.

The set of formulas is called the language of the logic; it is defined by a giving a
syntax for constructing formulas from the symbols.

The inference rules of the logic allow formulas to be derived from other
formulas. We specify inference rules using the notation

C
P 1, P 2, ..., Pn

where premises P 1, P 2, ..., Pn and conclusion C are either formulas or schematic
representations of formulas. An inference rule can be used to derive a formula F
from formulas F1, ..., Fn if F is an instantiation of the conclusion of the rule and
F1, ..., Fn are instantiations of its premises. We give an example shortly.

A proof in a formal logical system is a sequence of formulas in which each
formula is an axiom or can be derived by using an inference rule whose premises
are axioms or previous formulas in the sequence. Any formula in a proof is
called a theorem. Thus, theorems are special only in that they are axioms or the
result of applying inference rules to axioms and other theorems. We use the
notation LF to assert that F is a theorem of logic L and the notation
A 1, A 2, ..., An LF to assert that F is a theorem of the logical system resulting
when A 1 through An are added to L as axioms.

To illustrate these ideas, we investigate a simple formal logical system,
PQ−L:

Symbols: P, Q, −

Formulas: Formulas have the form a P b Q c, where a, b, and c each
represents a finite sequence of zero or more dashes (“−”).

Axioms:
− P − Q − −(2.1)
− − P − Q − − −(2.2)

Inference Rule:

a d P b e Q c f
a P b Q c, d P e Q f(2.3)

Examples of PQ−L formulas are:

− − − P − Q − −
PQ −
− P − Q − −

We now give an example of a PQ−L proof. Strictly speaking, the justification
delimited by « and » that precedes each formula is not part of the proof. How-
ever, such justifications simplify reading the proof, so they are usually included.

«Axiom (2.1)»
1. − P − Q − −

«Axiom (2.2)»
2. − − P − Q − − −

«Rule (2.3) with 1 and 2»
3. − − − P − − Q − − − − −

«Rule (2.3) with 1 and 3»
4. − − − − P − − − Q − − − − − − −

Formulas 1 and 2 are axioms of PQ−L; formula 3 is the result of using inference
rule (2.3) with formulas 1 and 2 as premises; and formula 4 results from using
inference rule (2.3) with formulas 1 and 3 as premises. Note that this proof con-
tains four theorems—one theorem on each line.

February 15, 1997

10 Chapter 2 Formal Logic

Models and Interpretations
A digital computer could be instructed in the rules of some formal logic

and would thereafter be able to prove theorems of the logic. Such theorems
would probably not be very useful, though. A formal logical system stops being
an exercise in symbol pushing and becomes a powerful tool when its theorems
are true statements of some domain of discourse that concerns us. An interpreta-
tion for a logic L gives a meaning to formulas of L in terms of a domain of
discourse by mapping each formula to true or false. For example, we might be
interested in statements about the domain “integers and addition,” and we would
expect an interpretation to map formula 1+3=4 to true and 1+4=6 to false.

Interpretations usually deal with some class of mathematical objects, such
as sets, relations, mappings, or sequences. For example, when program states are
the domain of discourse, the class of possible interpretations is the set of map-
pings from program variables to values; when program executions are the
domain of discourse, the class might be sequences of such mappings.

An interpretation ι is a model for a formula P, denoted by ι P, if P is
mapped to true by ι. Thus, an interpretation that maps the symbols “0” to zero,
“1” to one, “+” to the function we know as integer addition, and “=” to equality
is a model for the formula 1+0=1, but so is an interpretation that instead maps
“0” to false, “1” to true, and “+” to logical-or. Not only can a formula have
more than one model, but a given interpretation can be a model for more than
one formula. For example, both of the interpretations just described are models
for 0+1=1, 0+0=0, 1+0=1, and many other formulas.

An interpretation ι is a model for a logic L if it is a model for every
theorem of L. For example, PQ−L has the following model:

(2.4) Addition-Equality Interpretation. A formula a P b Q c is mapped to
true iff | a | + | b | = | c | , where | x | is the number of dashes in sequence
x.

To see that Addition-Equality Interpretation (2.4) is a model for PQ−L, first note
that it is a model for each PQ−L axiom. (Under the interpretation, axiom (2.1)
asserts 1+1=2 and (2.2) asserts 2+1=3.) Next, observe that formulas obtained
using inference rule (2.3) have Addition-Equality Interpretation (2.4) as a model,
because if a +b =c and d +e = f hold, then so does (a +d)+ (b +e)= (c + f). Thus,
all theorems of PQ−L have Addition-Equality Interpretation (2.4) as a model.

The following interpretation is also a model for PQ−L.

(2.5) Addition-Inequality Interpretation. A formula a P b Q c is mapped to
true iff | a | + | b | ≤ | c | , where | x | is the number of dashes in sequence
x.

This interpretation is not the same as Addition-Equality Interpretation (2.4).
Some formulas have Addition-Inequality Interpretation (2.5) as a model but not
Addition-Equality Interpretation (2.4). An example of such a formula is:

February 15, 1997

2.1 Formal Logical Systems 11

(2.6) − P − − Q − − − −

If every element in some set R of interpretations is a model for P, then P is
said to be R-valid. This is denoted by R P. When R is clear from the context, it
may be omitted. A formula P is R-satisfiable if at least one interpretation in R is
a model for P. Observe that R-satisfiable formulas need not be R-valid and that
R-valid formulas need not be theorems. For example, consider any set of
interpretations containing Addition-Equality Interpretation (2.4) and Addition-
Inequality Interpretation (2.5). PQ−L formula (2.6) is then satisfiable but not
valid because Addition-Inequality Interpretation (2.5) is a model but Addition-
Equality Interpretation (2.4) is not.

An important attribute of a logic is soundness relative to a set of interpreta-
tions R. An axiom is R-sound iff it is R-valid. An inference rule is R-sound iff
any formula derived using that rule is R-valid whenever all its premises are R-
valid. And a logic is R-sound iff all of its axioms and inference rules are. If a
logic is R-sound, then facts about a domain of discourse characterized by R can
be deduced in a purely mechanical fashion—theorems of the logic are derived
mechanically by applying inference rules, and soundness means that theorems
are true statements about the domain of discourse.

Soundness of a logic is rarely an accident. A logic is usually intended to
facilitate reasoning about a given domain of discourse, so the logic is defined
with a particular set R of interpretations in mind. Each axiom is defined so that
all interpretations in R are models; each inference rule is formulated so that any
formula derived using it will be R-valid whenever its premises are R-valid.

A logic L is complete iff every R-valid formula is a theorem. If we let
FACTS be the set of R-valid formulas of L and THMS be the set of theorems,
then soundness means that THMS⊆FACTS and completeness means that
FACTS⊆THMS. For example, Addition-Inequality Interpretation (2.5) is a
model for formula (2.6), but (2.6) is not provable in PQ−L, so PQ−L is not com-
plete with respect to formulas that are valid according to Addition-Inequality
Interpretation (2.5). A logic that is both sound and complete allows exactly the
R-valid formulas to be proved. Our failure to prove that an R-valid formula is a
theorem in such a logic cannot be attributed to weakness of the logic.

Unfortunately, the domains of discourse of concern to us—arithmetic
truths, program behavior, and so on—do not have sound and complete axiomati-
zations. This is a consequence of Go..del’s incompleteness theorem, which states
that no formal logical system that axiomatizes arithmetic can be both sound and
complete.1 Fortunately, this incompleteness is not a problem in practice. The
theorems we will have to prove when reasoning about most programs are ones
for which proofs can be constructed with ease.

1More precisely, no logical system in which the set of axioms is recursive can provide a sound
and complete axiomatization of arithmetic.

February 15, 1997

12 Chapter 2 Formal Logic

In order to isolate sources of incompleteness in a logic, the logic can be
defined in a hierarchical fashion. Logic L is an extension of logic L′ if the sym-
bols, formulas, axioms, and inference rules of L′ are included in L. We say that
L is complete relative to L′ if adding as axioms to L every R-valid formula of L′
results in a complete formal logical system. If a logic L is complete relative to
L′, then L introduces no source of incompleteness beyond that already in L′. The
logics we will define for reasoning about programs are extensions of logics for
reasoning about integers under the arithmetic operations, sequences under the
usual sequence operations, and so on. In light of Go..del’s incompleteness
theorem, the best we can then hope for is relative completeness.

A final important property for a logic is expressiveness. A logic is expres-
sive with respect to a domain of discourse insofar as it allows statements about
that domain of discourse to be expressed as formulas. For example, the syntax of
PQ−L does not allow statements like 3+1=1+3 to be made. PQ−L is not very
expressive.

Formal and Informal Proofs
The point of a proof is to provide convincing evidence of the correctness

of some statement that is expressed as a formula. What is convincing evidence?
Imagine a logical system for which the soundness of each axiom and inference
rule can be accepted without question. A formal proof using such a logic will
constitute convincing evidence, because each step in the proof is, by supposition,
truth-preserving. Moreover, although such a proof might be tedious, it can be
checked mechanically.

Consider an informal proof written as English text. Although perhaps
easier to read, such a proof might leave steps out or contain subtle errors, since
English is rich but ambiguous. Thus, one might argue that such a text cannot be
construed as convincing evidence.

On the other hand, a good informal proof can be viewed as an outline, or
set of instructions, for constructing a formal proof in some specified formal logi-
cal system. In that case, such an informal proof might well be considered con-
vincing evidence. Informal proofs are legitimate reasoning tools when they are
constructed to serve as descriptions of formal proofs.

2.2 Propositional Logic
Propositional Logic, the first nontrivial formal logical system we study, is

the basis for all the other logical systems discussed in this text. It is a formaliza-
tion of the type of reasoning most would call common sense. A proposition is a
statement that is either true or false. In Propositional Logic, propositional vari-
ables are used to denote propositions, and propositional connectives are used to
form formulas from propositional variables and propositional constants.

Various sound and complete axiomatizations of Propositional Logic have
been proposed. The one described below has the virtue of brevity; it is impres-
sive how powerful such a small logical system can be.

February 15, 1997

2.2 Propositional Logic 13

Symbols: Propositional connective: ⇒
Propositional constant: false
Propositional variables: p, q, r, ...
Grouping symbols: (,)

Formulas: false is a formula.

Each propositional variable is a formula.

For P and Q formulas: (P⇒Q) is a formula; P is called the
antecedent and Q the consequent. Parentheses may be omitted
when no ambiguity results.

Axioms:
Affirmation of the Consequent: p⇒ (q⇒ p)(2.7)

Self-Distributive Law of Implication:(2.8)
(r⇒ (p⇒ q))⇒ ((r⇒ p)⇒ (r⇒ q))

Double Negation: (((p⇒ false)⇒ false)⇒ p)(2.9)

Inference Rules:
Modus Ponens:(2.10)

Q
P, (P⇒Q)

(2.11) Substitution: Let PQ
q denote the formula obtained by substituting

formula Q for every occurrence of propositional variable q in for-
mula P. Then:

PQ
q
P

The following proof in Propositional Logic establishes that p⇒ p is a theorem:

«Self-Distributive Law of Implication (2.8)»
1. (r⇒ (p⇒ q))⇒ ((r⇒ p)⇒ (r⇒ q))

«Substitution (2.11) into 1 using s for p»
2. (r⇒ (s⇒ q))⇒ ((r⇒ s)⇒ (r⇒ q))

«Substitution (2.11) into 2 using p for q»
3. (r⇒ (s⇒ p))⇒ ((r⇒ s)⇒ (r⇒ p))

«Substitution (2.11) into 3 using p for r»
4. (p⇒ (s⇒ p))⇒ ((p⇒ s)⇒ (p⇒ p))

«Substitution (2.11) into 4 using q for s»
5. (p⇒ (q⇒ p))⇒ ((p⇒ q)⇒ (p⇒ p))

«Affirmation of the Consequent (2.7)»
6. p⇒ (q⇒ p)

February 15, 1997

14 Chapter 2 Formal Logic

«Modus Ponens (2.10) using 6, 5»
7. (p⇒ q)⇒ (p⇒ p)

«Substitution (2.11) into 7 using q⇒ p for q»
8. (p⇒ (q⇒ p))⇒ (p⇒ p)

«Modus Ponens (2.10) using 6, 8»
9. p⇒ p

In addition to the propositional constant and connective defined above,
another propositional constant, true, and other connectives, “¬” (read “not”) for
logical negation, “∨ ” (read “or”) for disjunction, “∧ ” (read “and”) for conjunc-
tion, and “=” (read “equals”) to denote equivalence, can be viewed as abbrevia-
tions, according to:

true: false ⇒ false
¬P: P⇒ false
P ∨ Q: (P⇒Q)⇒Q
P ∧ Q: ¬ (¬P ∨ ¬Q)
P =Q: (P⇒Q) ∧ (Q⇒P)

When parentheses are omitted, the connectives are assumed to have pre-
cedence given by these binding strengths:

¬ = ∧ ∨ ⇒

Tightest Weakest

In addition, all except the equals connective are assumed to be left associative.
For example:

P ∧Q ∧R is an abbreviation for (P ∧Q)∧R
¬P⇒Q is an abbreviation for (¬P)⇒Q
P ∨ Q ∧R is an abbreviation for P ∨ (Q ∧R)

The equals connective is assumed to be conjunctional, which means that
P =Q =R is an abbreviation for (P =Q) ∧ (Q =R).

Formulas of Propositional Logic are interpreted by functions, called states,
that map each propositional variable to true or false. The value of a proposi-
tional variable p in a state s is denoted by s[[p]].

(2.12) Interpretation for Propositional Logic. For a propositional variable p
and state s:

s p iff s[[p]] equals true

For Propositional Logic formulas P and Q and state s:

February 15, 1997

2.2 Propositional Logic 15

s (¬P) iff s / P

s (P ∨ Q) iff s P or s Q

s (P ∧Q) iff s P and s Q

s (P⇒Q) iff s / P or s Q

s (P =Q) iff s P equals s Q

The value of a formula P in a state s need not be computed recursively
using Interpretation for Propositional Logic (2.12); instead, it can be computed as
follows. First, each propositional variable p in P is replaced by its value s[[p]] in
s. The resulting formula is then simplified by repeatedly selecting a subexpres-
sion that involves a single propositional connective and replacing it with a propo-
sitional constant, according to the table below. This process is repeated until it
can no longer be carried out; it yields a single propositional constant. That pro-
positional constant is taken to be the value of the original formula P.

The following table gives the values for subexpressions that contain a sin-
gle propositional connective. Each row of the table corresponds to possible
values for the constant(s) in the subexpression; each column corresponds to a
subexpression containing a single propositional connective. The value of a
subexpression is the value that appears in the row and column corresponding to
the propositional constant(s) and the subexpression being simplified.

(2.13) Meaning of Propositional Connectives:

p q ¬ p p ∧ q p ∨ q p⇒ q p =q
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

For example, the value of ¬ p⇒ (p ∨ q) in a state where p is false and q is true is
computed as follows.

¬ false⇒ (false∨ true) replacing variables by their values.
true⇒ (false∨ true) replacing ¬ false.
true⇒ true replacing false∨ true.
true replacing true⇒ true.

February 15, 1997

16 Chapter 2 Formal Logic

Some Convenient Enhancements
Although the axiomatization given above for Propositional Logic is com-

plete, using it can be awkward. Completeness of an axiomatization is a far cry
from convenience. Therefore, we augment the axiomatization to allow simpler
proofs of theorems that tend to arise in practice—theorems of the form P =Q and
P⇒Q, where P and Q are formulas of Propositional Logic.

The laws2 below are formulated in terms of propositional variables p, q,
and r. Substitution (2.11) can be used to replace these variables by arbitrary pro-
positional formulas.

Commutative Laws: (a) (p ∧ q) = (q ∧ p)(2.14)
(b) (p ∨ q) = (q ∨ p)
(c) (p = q) = (q = p)

Associative Laws: (a) (p ∧ (q ∧ r)) = ((p ∧ q) ∧ r)(2.15)
(b) (p ∨ (q ∨ r)) = ((p ∨ q) ∨ r)

Distributive Laws: (a) (p ∧ (q ∧ r)) = ((p ∧ q) ∧ (p ∧ r))(2.16)
(b) (p ∧ (q ∨ r)) = ((p ∧ q) ∨ (p ∧ r))
(c) (p ∨ (q ∧ r)) = ((p ∨ q) ∧ (p ∨ r))
(d) (p ∨ (q ∨ r)) = ((p ∨ q) ∨ (p ∨ r))
(e) (p ∨ (q =r)) = ((p ∨ q)= (p ∨ r))
(f) (p ∨ (q⇒ r)) = ((p ∨ q)⇒ (p ∨ r))
(g) (p⇒ (q ∧ r)) = ((p⇒ q) ∧ (p⇒ r))
(h) (p⇒ (q ∨ r)) = ((p⇒ q) ∨ (p⇒ r))
(i) (p⇒ (q =r)) = ((p⇒ q)= (p⇒ r))
(j) (p⇒ (q⇒ r)) = ((p⇒ q)⇒ (p⇒ r))

De Morgan’s Laws: (a) ¬ (p ∧ q) = (¬ p ∨ ¬ q)(2.17)
(b) ¬ (p ∨ q) = (¬ p ∧ ¬ q)

Identity Law: p = p(2.18)

Negation Law: p = ¬¬ p(2.19)

Excluded Middle Law: (p ∨ ¬ p) = true(2.20)

Contradiction Law: (p ∧ ¬ p) = false(2.21)

2Here and throughout, we label as “laws” useful theorems that are not axioms.

February 15, 1997

2.2 Propositional Logic 17

Implication Laws: (a) (p⇒ q) = (¬ p ∨ q)(2.22)
(b) (p⇒ q) = ((p ∧ q)=p)

Equality Law: (p =q) = ((p⇒ q) ∧ (q⇒ p))(2.23)

Equality-Simplification Law: p = (p = true)(2.24)

Or-Simplification Laws: (a) (p ∨ p) = p(2.25)
(b) (p ∨ true) = true
(c) (p ∨ false) = p
(d) (p ∨ (p ∧ q)) = p

And-Simplification Laws: (a) (p ∧ p) = p(2.26)
(b) (p ∧ true) = p
(c) (p ∧ false) = false
(d) (p ∧ (p ∨ q)) = p

Implication-Simplification Laws: (a) (p⇒ true) = true(2.27)
(b) (true⇒ p) = p

Importation/Exportation Law: (p⇒ (q⇒ r)) = ((p ∧ q)⇒ r)(2.28)

Antecedent-Strengthening Law: (p ∧ q) ⇒ p(2.29)

Consequent-Weakening Law: p ⇒ (p ∨ q)(2.30)

Implication-Deduction Laws: (a) p ∧ (p⇒ q) ⇒ q(2.31)
(b) ¬ q ∧ (p⇒ q) ⇒ ¬ p

Contrapositive Law: (p⇒ q) = (¬ q⇒¬ p)(2.32)

Constructive Dilemma Laws:(2.33)
(a) (p⇒ q) ∧ (r⇒ s) ⇒ ((p ∧ r)⇒ (q ∧ s))
(b) (p⇒ q) ∧ (r⇒ s) ⇒ ((p ∨ r)⇒ (q ∨ s))

Some additional inference rules will also be convenient. These rules do
not allow new theorems to be proved, but they do simplify the construction and
presentation of proofs.

The first rules assert that equals can be substituted for equals. As we shall
see, this supports an equational style of reasoning that is similar to the familiar
one used for manipulating algebraic formulas.

February 15, 1997

18 Chapter 2 Formal Logic

(2.34) Substitution of Equals: For any propositional variable p:

(a)
PQp = PRp
Q =R (b)

PRp = PQp
Q =R

Generalizing from Substitution of Equals (2.34), one might try to infer
PQp ⇒ PRp from a theorem Q⇒R. However, such an inference could be
unsound. As an example, consider the case where P is p⇒ q and premise Q⇒R
is the theorem a⇒ (a ∨ b). PQ

p ⇒ PR
p would be (p⇒ q)ap ⇒ (p⇒ q)a ∨ b

p , which
is (a⇒ q)⇒ ((a ∨ b)⇒ q) and is not valid. But notice that it is sound to con-
clude (p⇒ q)aq ⇒ (p⇒ q)a ∨ b

q (i.e., (p⇒ a)⇒ (p⇒ (a ∨ b))) from theorem
a⇒ (a ∨ b).

We seek a sound inference rule that, given a theorem Q⇒R, yields a for-
mula involving two instances of P—one instance with some propositional vari-
able p replaced by Q and the other with p replaced by R. Towards this end, we
define the parity of a propositional variable in a formula.

(2.35) Parity of a Variable. For P a Propositional Logic formula and p a pro-
positional variable not appearing in an operand of an equivalence3 in P:

p has even parity in P iff each occurrence of p is within an even
number of negations and antecedents of implications.
p has odd parity in P iff each occurrence of p is within an odd
number of negations and antecedents of implications.

For example, in p⇒ q, p has odd parity and q has even parity; in ¬ (p⇒ q), p
has even parity and q has odd parity.

If Q⇒R is a theorem, then PQp ⇒ PRp is valid if p has even parity in P, and
PRp ⇒ PQp is valid if p has odd parity in P. This can be shown by structural
induction on P and is the basis for the following inference rules.

(2.36) Monotonicity Rule: For a propositional variable p that has even parity in
Propositional Logic formula P:

PQp ⇒ PRp
Q⇒R

(2.37) Antimonotonicity Rule: For a propositional variable p that has odd parity
in Propositional Logic formula P:

PRp ⇒ PQp
Q⇒R

3Recall, any equivalence A =B is equal to (A⇒B) ∧ (B⇒A), so precluding equivalences does
not really constitute a restriction.

February 15, 1997

2.2 Propositional Logic 19

Monotonicity Rule (2.36) allows us to conclude from premise a⇒ (a ∨ b) that
(p⇒ a)⇒ (p⇒ (a ∨ b)) and (¬ a⇒ q)⇒ (¬ (a ∨ b)⇒ q) are theorems, and
Antimonotonicity Rule (2.37) allows us to conclude that
((a ∨ b)⇒ q)⇒ (a⇒ q) is a theorem.

The next inference rules assert that equality and implication are transitive.
They are useful for combining formulas whose principal connective is equals
and/or implies.

Transitivity of Equality:(2.38)
P =R

P =Q, Q =R

Transitivity of Implication:(2.39)

(a)
P⇒R

P⇒Q, Q⇒R (b)
P⇒R

P =Q, Q⇒R (c)
P⇒R

P⇒Q, Q =R

It now becomes possible to write proofs and proof steps in an equational
format. This equational format consists of a sequence of formulas, each on a
separate line, with adjacent lines being separated by equals or implies, along with
a justification (delimited by « and »). An example is the following:

(2.40) A
= «Why A =B is a theorem»

B
⇒ «Why B⇒C is a theorem»

C
= «Why C =D is a theorem»

D

In our equational proofs, a justification “Why X is a theorem” gives only
the premise that enables X to be proved whenever the inference rule being used
to make that deduction is obvious—and it usually is obvious.

(2.41) Equational Proof Justifications. A justification “Why X is a theorem”
in an equational proof must be:
(i) The theorem that enables X to be deduced by repeated uses of Sub-

stitution (2.11). Details of the substitutions may be omitted when
they are obvious.

(ii) The theorem that enables X to be deduced according to one of the
Substitution of Equals (2.34) rules.

(iii) The theorem that enables X to be deduced according to Monotoni-
city Rule (2.36).

(iv) The theorem that enables X to be deduced according to Antimono-
tonicity Rule (2.37).

February 15, 1997

20 Chapter 2 Formal Logic

Without mention, conjuncts or disjuncts in formulas may be reordered,
thereby omitting steps that involve Commutative Laws (2.14).

Equational proof (2.40) establishes A⇒D. Formally, that conclusion fol-
lows from repeated use of Transitivity of Equality (2.38) and Transitivity of
Implication (2.39) on justifications A =B, B⇒C, and C =D. But that is not all
that can be deduced from (2.40).

(2.42) Equational Proof Conclusions.
(i) Given a proof of A⇒D with A a theorem, D is also a theorem.
(ii) Given a proof of A =D with A a theorem, D is also a theorem.
(iii) Given a proof of A =D with D a theorem, A is also a theorem.

The formal justification for part (i) of Equational Proof Conclusions (2.42) is a
single Modus Ponens (2.40) step. To justify part (ii), three steps suffice—an
equational proof and two steps involving Modus Ponens (2.40).

1. A =D
= «Equality Law (2.23)»
(A⇒D) ∧ (D⇒A)

⇒ «Antecedent-Strengthening Law (2.29)»
(A⇒D)

«Modus Ponens (2.40) with A =D (assumed previously proved) and 1»
2. A⇒D

«Modus Ponens (2.40) with A (assumed previously proved) and 2»
3. D

The justification of part (iii) is similar to that just given for part (ii).
In order to illustrate the virtues of the equational proof format, consider

proving:

(2.43) (InA⇒¬ InB) = ¬ (InA ∧ InB)

If InA and InB denote propositions

InA: “process A is executing in its critical section”

InB: “process B is executing in its critical section”

then a proof of (2.43) would establish that processes A and B are not both execut-
ing at the same time in their critical sections provided that whenever A executes
in its critical section, B does not. Here is an equational proof:

InA ⇒ ¬ InB
= «Implication Law (2.22a)»

February 15, 1997

2.2 Propositional Logic 21

¬ InA ∨ ¬ InB
= «De Morgan’s Law (2.17a)»

¬ (InA ∧ InB)

For comparison, here is a nonequational proof of (2.43).

«Implication Law (2.22a)»
1. (p⇒ q) = (¬ p ∨ q)

«Substitution (2.11) into 1 using InA for p and ¬ InB for q»
2. (InA⇒¬ InB) = (¬ InA ∨ ¬ InB)

«De Morgan’s Law (2.17a)»
3. ¬ (p ∧ q) = (¬ p ∨ ¬ q)

«Substitution of Equals (2.34b) using p for P and 3 for Q =R»
4. (¬ p ∨ ¬ q) = ¬ (p ∧ q)

«Substitution (2.11) into 4 using InA for p and InB for q»
5. (¬ InA ∨ ¬ InB) = ¬ (InA ∧ InB)

«Transitivity of Equality (2.38) with 2, 5»
6. (InA⇒¬ InB) = ¬ (InA ∧ InB)

Decision Procedure for Propositional Logic
In any sound and complete axiomatization of a logic, a formula is valid iff

it is a theorem. This fact can be used to determine whether a formula of Proposi-
tional Logic is a theorem: simply determine whether the formula is valid.4

(2.44) Decision Procedure for Propositional Logic. If the value of formula P
is true in every possible state, then P is a theorem.

In order to determine validity of a propositional formula that involves N
distinct variables, 2N states must be checked. For example, we show that

¬ (p ∧ q) = (¬ p ∨ ¬ q)

is valid by checking 22 cases:

p q ¬ (p ∧ q) ¬ p ∨ ¬ q ¬ (p ∧ q) = (¬ p ∨ ¬ q)
false false true true true
false true true true true
true false true true true
true true false false true

4The valid formulas in Propositional Logic are sometimes called tautologies.

February 15, 1997

22 Chapter 2 Formal Logic

2.3 A Predicate Logic
We now turn attention to Predicate Logic, a logic that is considerably

more expressive than Propositional Logic. Predicate Logic augments Proposi-
tional Logic in three ways:

A new class of variables is introduced to denote values other than true and
false.
Predicates and functions allow properties of values to be expressed.
Quantification allows properties about sets of values to be expressed.

This makes the logic well suited for characterizing relationships among program
variables.

Various formulations of Predicate Logic have been proposed. The one
given below is an extension of Propositional Logic. Thus, it contains all the for-
mulas, axioms, and inference rules given in §2.2. Although not as terse as some
axiomatizations of Predicate Logic, it is convenient for reasoning about program
states.

Formulas
In our Predicate Logic, individual variables, henceforth simply called vari-

ables (in contrast to propositional variables), denote values from a fixed domain
that includes booleans (i.e., the constants true and false), integers, reals,
sequences, and other values commonly found in programming. Terms are
defined to be constants, variables, derived terms (discussed below), and function
applications (often denoted by infix operators) that involve zero or more terms.
The set of functions and operators is presumed to include all those permitted in
expressions of the programming language at hand. The value of a term T in a
state s, denoted by s[[T]], is the value that results from replacing all variables in
T by their values in s and applying the designated function(s).

Relationships among terms are characterized in Predicate Logic by using
predicates. A predicate is a function application that always yields a boolean
and is specified by giving a predicate symbol and a parenthesized5 list of zero or
more terms: for p a predicate symbol and T1, ..., Tn terms, p(T1, T2, ..., Tn)
denotes a predicate. To improve readability, predicates are sometimes written
using an infix notation, as in x <y, where “<” is the predicate symbol. Another
predicate—different, because it involves different terms—is x +1<y +1. The
value of a predicate p(T1, T2, ..., Tn) in a state s is either true or false, based on
the meaning of p after T1, T2, ..., Tn is each replaced by its value in s.

Predicate symbols in our Predicate Logic include equality6 (=) along with

5The parentheses may be omitted when the list contains zero terms.
6In fact, “=” in Propositional Logic was defined to bind tightest of all the binary propositional

connectives just so it would have the same precedence as a predicate symbol, and therefore, a single
symbol could be employed for both.

February 15, 1997

2.3 A Predicate Logic 23

all the other standard ones from logic, mathematics, and programming.7 Rather
than fix this set here, we leave it unspecified and introduce predicate symbols as
needed. We rely on the reader’s familiarity with the usual meaning associated
with a predicate symbol instead of giving axioms for predicates constructed
using it.

Predicates and terms are defined for all values of their arguments.8 Predi-
cates always evaluate to true or false. Terms, on the other hand, are guaranteed
to produce a value but are not guaranteed to produce a value in any given set.
Thus, we assume that the term x /y, which denotes the result of dividing x by y,
has a value even when y =0 or when x and/or y denote non-numeric values. For
example, when y is 0, x /y might equal “abc.”

We avoid problems associated with having predicates and terms be defined
for all values of their arguments by postulating the existence of other predicates
to characterize when a predicate or term is meaningful. For this purpose, it is
often convenient to be able to assert that the value of a given variable or term is
an element of some set. Figure 2.1 gives a useful collection of such sets. In
addition, for each term or predicate E, we postulate a predicate defE that is true
in exactly those states where E is meaningful. As an example, defx /y might be
equivalent to

x ∈ Int ∧ y ∈ Int ∧ y ≠0

Bool booleans: false, true
Nat natural numbers: 0, 1, 2, 3, 4, ...
Int integers: ..., −3, −2, −1, 0, 1, 2, ...
Rat rationals: any value x /y, where x ∈ Int, y ∈ Int, and y ≠0
Real reals
Char characters
V ∗ the set of finite-length sequences of values from set V
V + the set of nonempty finite-length sequences of values from set V
V∞ the set of finite-length sequences and infinite-length sequences of

values from set V

Figure 2.1. Sets of values

7Due to Go..del’s incompleteness theorem, this means that our Predicate Logic is incomplete,
since it axiomatizes arithmetic. The logic, however, is complete relative to arithmetic.

8This approach is not satisfactory for reasoning about whether terms and predicates are
undefined. But we have no need for such reasoning, so we will not be handicapped. Logics that al-
low reasoning about whether terms and predicates are undefined usually involve three truth-values—
true, false, and undefined—and/or have more complicated axiomatizations than the one given in this
chapter.

February 15, 1997

24 Chapter 2 Formal Logic

which is false unless x and y are integers and x /y is defined. This means that

(2.45) defx /y ∧ z ∈Rat ∧ (x /y)=z

is false unless x and y are integers, x /y is defined, z is a rational, and x /y =z.
Therefore, (2.45) is false if y is zero, no matter what the (unspecified) value x /y
is.

Quantification
It is often useful to be able to assert that values in a given set satisfy some

property of interest. We might wish to specify that all values in array a[1 .. n]
are 0. Conjunction would seem suitable for this purpose:

a[1]=0 ∧ a[2]=0 ∧ . . . ∧ a[n]=0(2.46)

Disjunction could be used to assert that some value in a set satisfies a property of
interest. Thus,

b[1]=16 ∨ b[2]=16 ∨ . . . ∨ b[m]=16(2.47)

would assert that some element in array b[1 .. m] equals 16. Unfortunately, this
approach is flawed because the ellipses in (2.46) and (2.47) are ambiguous. For-
mula (2.46) might assert that a[p]=0 for all even values of p between 1 and n, or
for all values of p that are powers of 2 and at most n, or for all values of p that
are prime numbers and at most n, or any number of other things.

Predicate Logic provides quantified expressions for unambiguously speci-
fying properties of sets of values. To give a meaning to quantified expressions, it
is helpful to have a notation for redefining the value of a variable in a state. For
a state s, variable v, and term e, define augmented state (s; v:e) to be the state
that is identical to s, except that the value of v equals the value of e in s:

(s; v:e)[[x]]: s[[x]] for “v”≠“x”
s[[e]] for “v”=“x”

(2.48)

For example, (s; w:22)[[w +3]] equals 25, and (s; w:22)[[v +3]] equals s[[v +3]].
Since (s; v:e) is itself a state, nested augmented states can be constructed.

Thus, state ((s; v:9); w:88) associates 88 with variable w, associates 9 with vari-
able v, and otherwise associates values according to s. Composition of aug-
mented states is defined to be left associative, so:

(2.49) (s; v:e; v ′:e ′) = ((s; v:e); v ′:e ′)

For example, (s; v:2; v:3)[[v]] equals 3 and (s; v:2; w:v +2)[[w]] equals 4.
Predicate Logic has two types of quantified expressions: one for conjunc-

tion and one for disjunction. For Predicate Logic formulas R and P and variable

February 15, 1997

2.3 A Predicate Logic 25

x, the universally quantified expression with range R and body P

(∀x: R: P)(2.50)

is true in a state s iff for every value V, R⇒P is satisfied in state (s; x:V). For
this reason, (2.50) is read “For all x satisfying R, P holds.” An example of a
universally quantified expression is

(∀i: 1≤ i ≤n ∧ i∈Int: a[i]=0)

which is true in a state s iff a[1], a[2], ..., a[n] each equals 0 in state s, just as
was intended by (2.46).

An existentially quantified expression specifies that some value in a set
satisfies a property of interest. For Predicate Logic formulas R and P, the value
of existentially quantified expression with range R and body P

(2.51) (∃x: R: P)

in a state s is true iff for some value V, R ∧P is satisfied in state (s; x:V). Not
surprisingly, (2.51) is read “There exists an x satisfying R for which P holds.”
For example, (∃i: 1≤ i ≤m ∧ i ∈ Int: b[i]=16) is true in a state s iff at least one of
b[1], b[2] , ..., b[m] equals 16 in state s (as was intended by (2.47)).

In a quantified expression, the variable that follows quantifier ∀ or ∃ is
called a bound variable, and it is associated with that quantifier. The scope of a
bound variable is defined by the parentheses that delimit the quantified expres-
sion in which it is introduced. This is similar to the way scope of identifiers is
defined in a block-structured programming language.

An occurrence of a variable v in a formula of Predicate Logic is con-
sidered free if v is different from every bound variable whose scope contains that
occurrence. An occurrence is considered bound if v is the same as some bound
variable whose scope contains that occurrence. Here are some examples:

i <n(2.52)

(∀i: 1≤ i <10: i <n)(2.53)

(∀i: 1≤ i <10: i <n) ∧ i <n(2.54)

In (2.52), the occurrences of i and n are free; in (2.53), the three occurrences of i
are bound, and the occurrence of n is free; in (2.54), all but the last occurrence of
i are bound, the last occurrence is free, and both occurrences of n are free.

Finally, where convenient, we shorten quantified expressions by employ-
ing some abbreviations. (Q represents a quantifier “∀” or “∃.”)

(Q i: P) denotes (Q i: true: P)

(Q i∈V: P) denotes (Q i: i∈V: P)

February 15, 1997

26 Chapter 2 Formal Logic

(Q i∈V: R: P) denotes (Q i: i∈V ∧ R: P)

Derived Terms
A facility to associate names with terms gives us the power to extend our

Predicate Logic with abstractions tailored for a task at hand. To specify such a
derived term, we give its name, the set of states in which it is defined, and a
method for computing its (unique) value in those states.9 The syntax we employ
for defining a derived term Z is:

Z:
en if Bn

. . .
e 1 if B 1

(2.55)

Each expression and its corresponding guard define a clause.
The value of Z in a state s is the value of the unique expression ei for

which a corresponding guard Bi holds. If no guard holds or more than one guard
holds in s, then the value of Z is unspecified.

Notice that the notation we have been using for definitions,

Z: e

can be regarded as an abbreviation for the following definition of a derived term:

Z: { e if true

As an illustration of a derived term, here is one named M, which equals the
maximum of a and b.

M: b if a ≤b
a if b<a

(2.56)

Notice that appearances of M in a formula give no hint to the reader that its
value depends on a and b. This ability to hide details is important when defining
abstractions. But it does create free occurrences of variables in formulas even
though those variables do not explicitly appear in the formula. For example, any
formula that mentions M may contain free occurrences of a and b.10 A derived

9By convention, derived terms will be named by identifiers starting with an uppercase letter.
10The occurrences of a and b are not necessarily free. For example, (∀x: M ≤x) contains free

occurrences of both a and of b, but (∀a: M ≤a) contains bound occurrences of a and free occurrences
of b.

February 15, 1997

2.3 A Predicate Logic 27

term Z contains a free occurrence of a variable v whenever an expression or
guard containing a free occurrence of v appears in the definition of Z.

By imposing restrictions on the definition of a derived term Z, we ensure
that the value of Z is specified when it ought to be. For a term, derived term, or
predicate E , let FDT(E) (“free derived terms”) be the set of derived terms on
which E depends. FDT(E) is defined formally in terms of fdt(E , ES), the union
of a set ES of derived terms and the set of derived terms that are free in term E :

FDT(E): fdt(E , ∅)

The definition of fdt(E , ES) is by induction on the structure of E . It is given in
Figure 2.2.

The restrictions on definitions of derived terms are:

(2.57) Derived Term Restrictions. A derived term Z defined by (2.55) is well-
defined provided:
(i) Z ∉

1≤i≤n
∪ (FDT(ei) ∪ FDT(Bi))

(ii) B 1, ..., Bn are pairwise-disjoint predicates.
(iii) (B 1⇒ defe 1) ∧ . . . ∧ (Bn ⇒ defen) is valid.

Restriction (i) guarantees termination of the procedure given above for comput-
ing the value of Z. The alternative, allowing the value of Z to depend on Z, could
lead to infinite recursion. If restriction (ii) is not satisfied, then a state could
satisfy both Bi and Bj (for i ≠ j), and the value of Z might not be uniquely

E fdt(E , ES)

a constant or variable ES

a derived term, where E∈ES ES

a derived term, where E ∉ ES
and defined by:

E:
en if Bn

. . .
e 1 if B 1

1≤i≤n
∪ (fdt(ei , ES∪{E})

∪ fdt(Bi , ES∪{E}))

a function application or
predicate E (T1, ..., Tn) 1≤i≤n

∪ fdt(T i , ES)

Figure 2.2. fdt definition

February 15, 1997

28 Chapter 2 Formal Logic

determined in that state. Restriction (iii) ensures that ei is defined whenever ei is
used to compute the value of Z.

In light of Derived Term Restrictions (2.57), the value of derived term Z
(2.55) is uniquely determined in states that satisfy:

defZ:
1≤i≤n
∨ Bi

Syntax and Interpretation for Predicate Logic
With these preliminaries out of the way, we can now give a syntax and

semantics for Predicate Logic. The language of Predicate Logic consists of Pro-
positional Logic formulas and Propositional Logic formulas in which all proposi-
tional variables have been replaced by predicates and quantified expressions.

Predicate Logic formulas are interpreted with respect to states. The value
of a Predicate Logic formula P in state s is the value of the propositional formula
that results from replacing every propositional variable, predicate, and quantified
expression in P by its value in s. This is formalized by:

(2.58) Interpretation for Predicate Logic. For a predicate p(T1, ..., Tn) where
p is a predicate symbol, T1, ..., Tn are terms, and s is a state:

s p(T1, ..., Tn) iff p(s[[T1]], ..., s[[Tn]]) is true

For Predicate Logic formulas P and Q and state s:

s (¬P) iff s / P

s (P ∨ Q) iff s P or s Q

s (P ∧Q) iff s P and s Q

s (P⇒Q) iff s / P or s Q

s (P =Q) iff s P equals s Q

s (∀x: P: Q) iff For all V: (s; x:V) (P⇒Q)

s (∃x: P: Q) iff Exists V: (s; x:V) (P ∧Q)

Note (from the final two cases of Interpretation for Predicate Logic (2.58)) that
free occurrences of variables obtain their values directly from the state but bound
occurrences do not.

Textual Substitution in Predicate Logic
Propositional Logic uses the notation Pex to denote the formula that results

from substituting e for each occurrence of variable x in P. Thus, the value of Pex

February 15, 1997

2.3 A Predicate Logic 29

in a state s is the same as the value of P in state (s; x:e). By taking this to be the
defining characteristic of textual substitution, we get:

(2.59) Semantics for Textual Substitution. For x a variable, e and T terms,
and P a Predicate Logic formula:

(a) s[[T e
x]] = (s; x:e)[[T]]

(b) s Pex iff (s; x:e) P

Textual substitution of e for x when T is a constant, variable, or function
application is simply a matter of replacing appearances of x with e:

(2.60) Textual Substitution [Constant]: For a constant C: Cex = C

(2.61) Textual Substitution [Variable]: For a variable v:

vex = e for “x”=“v”
v for “x”≠“v”

(2.62) Textual Substitution [Term]: For a function f and terms T1, T2, ..., Tn:
f(T1, T2, ..., Tn)ex = f((T1)ex , (T2)ex , ..., (Tn)ex)

It is not difficult to demonstrate that each of these axioms satisfies Seman-
tics for Textual Substitution (2.59) and is, therefore, sound. As an illustration,
here is the soundness proof for part of Textual Substitution [Variable] (2.61).

s[[vev]]
= «Textual Substitution [Variable] (2.61)»

s[[e]]
= «(2.48)»
(s; v:e)[[v]]

For a derived term Z, textual substitution of e for x produces another
derived term Zex whose definition is like that of Z but with all its clauses modified
to reflect the textual substitution:

(2.63) Textual Substitution [Derived Term]:

Zex:
(en)ex if (Bn)ex
. . .

(e 1)ex if (B 1)ex

For example, the definition for Mb
a, where M is defined by (2.56), is:

February 15, 1997

30 Chapter 2 Formal Logic

Mb
a: b if b ≤b

b if b<b

Since b<b is satisfied by no state and b ≤b is satisfied by all states, Mb
a is

equivalent to b.
Observe that if Z has no free occurrences of x, then for all i, (ei)ex =ei and

(Bi)ex =Bi . We conclude:

(2.64) Derived Term Simplification: For Z with no free occurrences of x:
Zex =Z.

Thus, according to Derived Term Simplification (2.64), for M defined by (2.56),
Me

v equals M because there are no free occurrences of v inM.
We now turn to axioms concerning textual substitution into formulas of

Predicate Logic. For predicates and for formulas constructed using propositional
connectives, textual substitution behaves as might be expected.

(2.65) Textual Substitution [Predicate]: For a predicate symbol p and terms T1,
..., Tn:

p(T1, ..., Tn)ex = p((T1)ex , ..., (Tn)ex)

(2.66) Textual Substitution [Propositional Connectives]: For Predicate Logic
formulas P and Q:

(a) (¬P)ex = ¬ (Pex)
(b) (P ∧ Q)ex = (Pex ∧ Qe

x)
(c) (P ∨ Q)ex = (Pex ∨ Qe

x)
(d) (P⇒Q)ex = (Pex ⇒Qe

x)
(e) (P =Q)ex = (Pex =Qe

x)

Textual substitution into quantified expressions is tricky because of
interactions with bound variables. The naive definition for (∀i: R: P)ex is to per-
form the designated textual substitutions in R and P, obtaining (∀i: Rex: Pex).
However, without restricting i, x, and e, it is possible for (∀i: R: P)ex and
(∀i: Rex: Pex) to have different meanings.

To understand the problem, consider the meanings of:

(2.67) s (∀i: R: P)ex

(2.68) s (∀i: Rex: Pex)

First, here is the meaning of (2.67).

s (∀i: R: P)ex
= «Semantics for Textual Substitution (2.59a)»

February 15, 1997

2.3 A Predicate Logic 31

(s; x:e) (∀i: R: P)
iff «Interpretation for Predicate Logic (2.58)»

For all V: (s; x:e; i:V) (R⇒P)

Here is the meaning of (2.68).

s (∀i: Rex: Pex)
iff «Interpretation for Predicate Logic (2.58)»

For all V: (s; i:V) (Rex ⇒Pex)
iff «Textual Substitution [Propositional Connectives] (2.66d)»

For all V: (s; i:V) (R⇒P)ex
iff «Semantics for Textual Substitution (2.59b)»

For all V: (s; i:V; x:e) (R⇒P)

Thus, (2.67) and (2.68) are equivalent in a state s iff the value that aug-
mented state (s; x:e; i:V) assigns to each variable’s occurrence in R⇒P is the
same as the value that (s; i:V; x:e) assigns to that occurrence. In light of (2.48),
variables x and i are the only ones whose values might differ; the values assigned
to them are summarized in the following table.

x and i value of variable in state
distinct? variable (s; x:e; i:V) (s; i:V; x:e)
no i V (s; i:V)[[e]]
no x V (s; i:V)[[e]]
yes i V V
yes x s[[e]] (s; i:V)[[e]]

From the first pair of rows, we see that if x and i are the same variable,
then for (2.67) and (2.68) to be equivalent, V and (s; i:V)[[e]] must be the same
value. Since V is a constant and e is not, there exist states s in which they are not
the same. Therefore, one condition for ensuring the equivalence of (2.67) and
(2.68) is to rule out textual substitutions where x, the variable being replaced, is
not distinct from i, a bound variable in the original formula.

From the second pair of rows, we see that even when x and i are distinct,
the value assigned to x by one augmented state is not necessarily the same as the
value assigned by the other. In particular, the value assigned to x is either s[[e]]
or (s; i:V)[[e]]. These values differ when i appears in e. Therefore, a second
condition for ensuring equivalence of (2.67) and (2.68) is to rule out textual sub-
stitution where e, the replacement term, has a free occurrence of i, a bound vari-
able in the original formula.

We combine these two restrictions to obtain:
(2.69) Textual Substitution [Quantification]: For i distinct from x and distinct

from all variables occurring free in e:

(∀i: R: P)ex = (∀i: Rex: Pex)

February 15, 1997

32 Chapter 2 Formal Logic

We can circumvent the restrictions on i, x, and e in Textual Substitution
[Quantification] (2.69) by renaming the bound variable to make it distinct from x
and every variable occurring free in e. For example, bound variable i in
(∀i: 0≤ i: i <x)i +1x might first be renamed to j, producing (∀j: 0≤ j: j <x)i +1x ,
which does satisfy the restrictions of (2.69) and therefore equals
(∀j: 0≤ j: j <i +1).

Care must be exercised in choosing a new name for a bound variable.
Otherwise, the quantified expression that results from the renaming will have a
different meaning than the original. The association of bound variable
occurrences with quantifiers must be unchanged, and free occurrences of vari-
ables must remain unaltered.

We say that a variable v is captured when a free occurrence of v becomes
a bound occurrence or when the quantifier with which v has been associated
changes. For example, renaming i to j in (∃i: i < j) results in (∃j: j < j), a
quantified expression in which a free occurrence of j has become captured
because it became bound. Bound variables can also be captured by a renaming.
Renaming i to n in (∀i: (∃n: i ≠n)) leads to the capture of i by the universal
quantifier: (∀n: (∃n: n ≠n)).

The examples of the preceding paragraph suggest that bound variable
renaming be permitted only when the new name does not cause capture:

(2.70) Bound Variable Renaming Rule: Provided that
(i) j is different from every free variable that occurs in R and P,
(ii) j is different from every bound variable that occurs in R and P,
then:

(Q i: R: P) = (Q j: Rj
i : Pj

i)

Restriction (i) prevents renaming i to j in (∃i: i < j). Restriction (ii) prevents
renaming i to n in (∀i: (∃n: i ≠n)) or renaming i to a in (∃i: i >M) for M defined
by (2.56).

The need for restrictions (i) and (ii) in Bound Variable Renaming Rule
(2.70) is best seen through the rule’s soundness proof. We consider the case
where “Q” is “∀.”

s (∀j: Rj
i : Pj

i)
iff «Interpretation for Predicate Logic (2.58)»

For all V: (s; j:V) (Rj
i ⇒Pj

i)
iff «Textual Substitution [Propositional Connectives] (2.66d)»

For all V: (s; j:V) (R⇒P) ji
iff «Semantics for Textual Substitution (2.59b)»

For all V: (s; j:V; i:j) (R⇒P)
iff «(s; j:V; i:j)= (s; j:V; i:V) due to (2.49) and (2.48)»

For all V: (s; j:V; i:V) (R⇒P)
iff «due to (i) and (ii) R⇒P does not depend on j»

February 15, 1997

2.3 A Predicate Logic 33

For all V: (s; i:V) (R⇒P)
iff «Interpretation for Predicate Logic (2.58)»

s (∀i: R: P)

By combining the above laws for textual substitution, we obtain a reason-
ably straightforward procedure for performing textual substitutions.

(2.71) Textual Substitution. For a Predicate Logic formula P, compute Pex as
follows.
(i) First, use Bound Variable Renaming Rule (2.70) to rename bound

variables in P so that they are distinct from each other, from x, and
from every variable that occurs free in e.

(ii) Then, use Textual Substitution [Derived Term] (2.63) to replace
every derived term Z in P by Zex .

(iii) Finally, use Textual Substitution [Variable] (2.61) to replace every
occurrence of variable x in P by e.

Textual substitution can be generalized to handle simultaneous replace-
ment of more than one variable. This generalization is particularly useful for
reasoning about assignment statements. Let x denote a list of (not necessarily
distinct) variables x 1, x 2, ..., xn and let e denote a list of terms e 1, e 2, ..., en,
possibly involving the x’s. Then for lists x and e, Pex or Pe 1, e 2, ..., en

x 1, x 2, ..., xn denotes the
simultaneous substitution of e for x in P.

Simultaneous substitution specifies that variables are replaced only once
by terms; unlike nested textual substitutions, substitutions are not repeatedly
made into terms that replace the variables. For example, (x =y)y+1,13x,y is y +1=13
and not 13+1=13. In addition, unlike nested textual substitutions, it is con-
venient if we define simultaneous substitution to be such that when a variable
appears more than once in x, the rightmost replacement is used. Thus, (x =y)1,2x,x
is 2=y and not 1=y.

The following definition of simultaneous substitution formalizes these
ideas using nested textual substitutions. In it, the apparent reversal in the order
of variables is an artifact of our requirement that the rightmost replacement be
used for a variable that appears more than once in x.

(2.72) Simultaneous Substitution. Let y1, y2, ..., yn be distinct identifiers that
do not occur in x, e, and P:

Pex = ((. . . ((((. . . (Pynxn) . . .)y2x2)y1x1)enyn) . . .)e2y2)e1y1

It is not difficult to prove laws for simultaneous substitution that are analo-
gous to Textual Substitution Laws (2.60) through (2.69). We leave this to the
reader.

February 15, 1997

34 Chapter 2 Formal Logic

Inferences with Textual Substitution
Any theorem of Propositional Logic in which propositional variables are

replaced by Predicate Logic formulas is a valid formula of Predicate Logic. This
is so because theorems of Propositional Logic are true for any values of their
propositional variables; Predicate Logic formulas substituted for these variables
provide one such set of values. We allow Predicate Logic formulas derived in
this manner to become theorems of Predicate Logic by having the following
inference rules:

(2.73) Predicate Logic Substitution: Let PQ1, Q2, ..., Qn
q1, q2, ..., qn denote the formula

obtained by substituting into Propositional Logic formula P Predicate
Logic formulas Q1, Q2, ..., Qn for corresponding propositional variables
q1, q2, ..., qn. Then:

PQ1, Q2, ..., Qn
q1, q2, ..., qn

P

(2.74) Predicate Logic Modus Ponens: Let P and Q be Predicate Logic formu-
las. Then:

Q
P , P ⇒ Q

We next generalize Substitution of Equals (2.34) to enable individual vari-
ables to be replaced.

(2.75) Substitution of Equals: For any individual variable x:

(a)
PQx = PRx
Q =R (b)

PRx = PQx
Q =R

A related formulation, which is sometimes more convenient, is:

Substitution Equivalence Law: (e 1 =e 2)⇒ (Pe 1
x =Pe 2

x)(2.76)

Substitution Equivalence Law (2.76) asserts that Pe 1
x and Pe 2

x are equal in states
where e 1 equals e 2; in contrast, Substitution of Equals (2.75) only concerns the
case where e 1 and e 2 are equal in all states.

The next inference rule allows substitution for a derived term Z, thereby
expanding Z according to its definition.

(2.77) Derived Term Expansion Rule: For Z a derived term that is well-defined
according to Derived Term Restrictions (2.57)

Z:
en if Bn

. . .
e 1 if B 1

February 15, 1997

2.3 A Predicate Logic 35

and P a Predicate Logic formula:

PZx = ((B 1 ∧ Pe 1
x) ∨ . . . ∨ (Bn ∧ Pen

x))
1≤k≤n
∧ (Bk = ¬ (

j≠k
∨ Bj))

We might use this rule to prove that derived term M, defined in (2.56), satisfies
(a<M) = (a<b).

a<M
= «Textual Substitution (2.71)»
(a<x)Mx

= «Derived Term Expansion Rule (2.77), since b<a = ¬ (a ≤b)»
(b<a ∧ (a<x)ax) ∨ (a ≤b ∧ (a<x)bx)

= «Textual Substitution (2.71)»
(b<a ∧ a<a) ∨ (a ≤b ∧ a<b)

= «Arithmetic»
((b<a ∧ false) ∨ (a<b))

= «And-Simplification Law (2.26c)»
false ∨ a<b

= «Or-Simplification Law (2.25c)»
a<b

Laws for Quantification
Textual substitution allows the value of (∀x: R: P) in a state s to be refor-

mulated as the value in s of an infinite conjunction

(∀x: R: P) = ((R⇒P)V1
x ∧ (R⇒P)V2

x ∧ . . .)(2.78)

where V1, V2, ... are the constants that any variable (e.g. x) can assume. Simi-
larly, the value of (∃x: R: P) in a state s can be reformulated in terms of an
infinite disjunction:

(∃x: R: P) = ((R ∧ P)V1
x ∨ (R ∧ P)V2

x ∨ . . .)(2.79)

These equations, then, enable reasoning informally about quantified expressions
by using Propositional Logic.11 For example, we have the following proof of
(∃x: R: P) = ¬ (∀x: R: ¬P).

(∃x: R: P)
= «Predicate Logic Substitution (2.73) using (∃x: R: P)

for p in Negation Law (2.19)»
¬ (¬ (∃x: R: P))

= «(2.79)»

11Only informal reasoning is possible because (2.78) and (2.79) have ellipses.

February 15, 1997

36 Chapter 2 Formal Logic

¬ (¬ ((R ∧ P)V1
x ∨ (R ∧ P)V2

x ∨ . . .))
= «repeated application of De Morgan’s Law (2.17b)»

¬ (¬ (R ∧ P)V1
x ∧ ¬ (R ∧ P)V2

x ∧ . . .)
= «Textual Substitution [Propositional Connectives] (2.66b)»

¬ (¬ (RV1
x ∧ PV1

x) ∧ ¬ (RV2
x ∧ PV2

x) ∧ . . .)
= «repeated application of De Morgan’s Law (2.17a)»

¬ ((¬RV1
x ∨ ¬PV1

x) ∧ (¬RV2
x ∨ ¬PV2

x) ∧ . . .)
= «repeated application of Textual Substitution [Propositional

Connectives] (2.66a) and (2.66c)»
¬ ((¬R ∨ ¬P)V1

x ∧ (¬R ∨ ¬P)V2
x ∧ . . .)

= «repeated application of Implication Law (2.22a)»
¬ ((R ⇒ ¬P)V1

x ∧ (R ⇒ ¬P)V2
x ∧ . . .)

= «(2.78)»
¬ (∀x: R: ¬P)

A number of other laws can be discovered in this fashion or by further
manipulations. Let P, Q, and R be formulas of Predicate Logic. The laws are:

De Morgan’s Laws: (a) (∃x: R: P) = ¬ (∀x: R: ¬P)(2.80)
(b) (∀x: R: P) = ¬ (∃x: R: ¬P)

Conjunction Law: (∀x: R: P ∧ Q) = ((∀x: R: P) ∧ (∀x: R: Q))(2.81)

Disjunction Law: (∃x: R: P ∨ Q) = ((∃x: R: P) ∨ (∃x: R: Q))(2.82)

Empty-Range Laws: (a) (∀x: false: P) = true(2.83)
(b) (∃x: false: P) = false

Range Laws: (a) (∀x: R ∧ P: Q) = (∀x: R: P ⇒ Q)(2.84)
(b) (∃x: R ∧ P: Q) = (∃x: R: P ∧ Q)

Range Partitioning Laws:(2.85)
(a) (∀x: P ∨ R: Q) = ((∀x: P: Q) ∧ (∀x: R: Q))
(b) (∃x: P ∨ R: Q) = ((∃x: P: Q) ∨ (∃x: R: Q))

Range Narrowing Law:(2.86) (∀x: R: P) ⇒ (∀x: R ∧ Q: P)
(2.87) Range Widening Law: (∃x: R: P) ⇒ (∃x: R ∨ Q: P)

(2.88) Quantification Weakening Laws: (a) (∀x: R: P) ⇒ (∀x: R: P ∨ Q)
(b) (∃x: R: P) ⇒ (∃x: R: P ∨ Q)

(2.89) Quantification Implication Laws:
(a) (∀x: R: P⇒Q) ⇒ ((∀x: R: P)⇒ (∀x: R: Q))
(b) (∀x: R: P⇒Q) ⇒ ((∃x: R: P)⇒ (∃x: R: Q))

February 15, 1997

2.3 A Predicate Logic 37

(2.90) Distributive Laws: Provided that x does not occur free in Q:
(a) (Q ∧ (∃x: R: P)) = (∃x: R: Q ∧ P)
(b) (Q ∨ (∀x: R: P)) = (∀x: R: Q ∨ P)
(c) (Q⇒ (∀x: R: P)) = (∀x: R: Q⇒P)

(2.91) Distributive Rules: Provided that x does not occur free in Q:

(a)
(Q ∨ (∃x: R: P)) = (∃x: R: Q ∨ P)

(∃x: R)

(b)
(Q ∧ (∀x: R: P)) = (∀x: R: Q ∧ P)

(∃x: R)

(c)
(Q⇒ (∃x: R: P)) = (∃x: R: Q⇒P)

(∃x: R)

The need for premise (∃x: R) in Distributive Rules (2.91) can be seen by choos-
ing false for R and observing that the conclusion of the laws need not be valid.

Here are some laws for introducing or removing quantifiers.

(2.92) Quantification Simplification Laws: Provided that x does not occur free in Q:
(a) (∀x: Q) = Q
(b) (∃x: Q) = Q
(c) (∀x: R: true) = true
(d) (∃x: R: false) = false

(2.93) One-Point Laws: Provided that x does not occur free in e:
(a) Pex = (∀x: x =e: P)
(b) Pex = (∃x: x =e: P)

The conditions on x in Quantification Simplification Laws (2.92a) and (2.92b)
and in One-Point Laws (2.93a) and (2.93b) prevent capture of x.

Next are inference rules that allow introduction and removal of a universal
quantifier. If a formula R⇒Q is valid, then it holds in all states. Thus, R ⇒ Q
holds for all possible values of any variable, and we have:

Quantification Introduction Rule:
(∀x: R: Q)
R ⇒ Q(2.94)

If, on the other hand, (∀x: R: Q) is valid, then Q holds for every value of
x that satisfies R. When Rex is false in a state, (R⇒Q)ex is trivially valid; and
when Rex is true in a state, we conclude from (∀x: R: Q) that Qe

x holds, so
(R⇒Q)ex must also be true in that state. Thus, whether or not Rex holds in a
state, we conclude that (R⇒Q)ex holds. This gives:

February 15, 1997

38 Chapter 2 Formal Logic

Quantification Elimination Rule:
(R ⇒ Q)ex
(∀x: R: Q)

(2.95)

Finally, here are some rules for manipulating formulas involving nested
quantifiers. Such nesting can arise when R and P in (Q x : R: P) contain
quantified expressions.

(2.96) Quantifier Interchange Laws: Provided that x does not occur free in Q,
and y does not occur free in R:

(a) (∀x: R: (∀y: Q: P)) = (∀y: Q: (∀x: R: P))
(b) (∃x: R: (∃y: Q: P)) = (∃y: Q: (∃x: R: P))
(c) (∃x: R: (∀y: Q: P)) ⇒ (∀y: Q: (∃x: R: P))

Note that the converse of Quantifier Interchange Law (2.96c) is not, in general,
valid. For example, (∀y: (∃x: y ∈ Int ∧ x ∈Rat⇒ x*y =1) is valid and
(∃x: (∀y: y ∈ Int ∧ x ∈Rat⇒ x*y =1) is false.

Equational Proofs for Predicate Logic
Equational proofs for Predicate Logic theorems are easier to construct if

we can substitute equals for R and P in a quantified expression (Q x : R: P).
However, Substitution of Equals (2.75) cannot be used for this task when R or P
have free occurrences of x, because Textual Substitution (2.71) would rename
bound variable x to be distinct from any variables occurring in R and P. For
example, using Substitution of Equals (2.75) we would conclude
(∀x:: v >0)2∗xv = (∀x:: v >0)x+xv from premise 2∗x = x +x, but this conclusion
is not equivalent to (∀x:: 2∗x >0) = (∀x:: x +x >0).

Rules that do allow equals to be substituted for R and P without bound
variables being renamed are:

Equals in Quantified Expressions: (a)
(∀x: R: P) = (∀x: Q: P)

R = Q(2.97)

(b)
(∃x: R: P) = (∃x: Q: P)

R = Q

(c)
(∀x: R: P) = (∀x: R: Q)

R ⇒ (P = Q)

(d)
(∃x: R: P) = (∃x: R: Q)

R ⇒ (P = Q)

We shall also find it helpful to replace R and P in (Q x : R: P) by stronger
or weaker formulas. Inference rules for these manipulations subsume Range
Narrowing Laws (2.86), Range Widening Law (2.87), Quantification Weakening
Laws (2.88), and Quantification Implication Laws (2.89).

February 15, 1997

2.3 A Predicate Logic 39

Monotonicity in Quantified Expressions:(2.98)

(a)
(∃x: R: P)⇒ (∃x: R: Q)

R ⇒ (P⇒Q)

(b)
(∀x: R: P)⇒ (∀x: R: Q)

R ⇒ (P⇒Q)

(c)
(∃x: P: R)⇒ (∃x: Q: R)

R ⇒ (P⇒Q)

(d)
(∀x: Q: R)⇒ (∀x: P: R)

¬R ⇒ (P⇒Q)

Notice from Monotonicity in Quantified Expressions (2.98d) that the range of a
universally quantified expression behaves as if it has odd parity. The other three
inference rules suggest that the body of a universally quantified expression, the
range of an existentially quantified expression, and the body of an existentially
quantified expression, behave as if they each have even parity.

Given these rules, it often is convenient to give as a justification for a step
in an equational proof only the premise for the first in a chain of inferences. For
example, we might write

(∀x: (∀y: (∃z: P)))
⇒ «P⇒Q»

(∀x: (∀y: (∃z: Q)))

because from premise P⇒Q, Monotonicity in Quantified Expressions (2.98a)
derives (∃z: P)⇒ (∃z: Q), and that formula then can be used as a premise for
Quantified Expressions (2.98b) to conclude (∀y: (∃z: P))⇒ (∀y: (∃z: Q)),
which, in turn, can be used as a premise for Quantified Expressions (2.98b) in
order to deduce the desired conclusion:

(∀x: (∀y: (∃z: P)))⇒ (∀x: (∀y: (∃z: Q)))

For constructing equational proofs, Predicate Logic also has analogues of
Propositional Logic inference rules Substitution of Equals (2.34), Monotonicity
Rule (2.36), and Antimonotonicity Rule (2.37).

To justify an equational-proof step that asserts A =B, we use:

(2.99) Predicate Logic Substitution of Equals: For Predicate Logic formulas
PQp and PRp :

(a)
PQp = PRp
Q = R (b)

PRp = PQp
Q = R

In order to formulate Predicate Logic analogues of Monotonicity Rule
(2.36) and Antimonotonicity Rule (2.37), we define:

February 15, 1997

40 Chapter 2 Formal Logic

(2.100) Parity of a Subformula. For PQp a formula in which subformula Q does
not appear in an operand of an equivalence in P:

subformula Q has even parity in PQp iff each occurrence of Q is
within an even number of negations, antecedents of implications,
and ranges of universal quantifications.
subformula Q has odd parity in PQp iff each occurrence of Q is
within an odd number of negations, antecedents of implications,
and ranges of universal quantifications.

Then we have:

(2.101) Predicate Logic Monotonicity Rule: For Predicate Logic formulas PQp
and R, where subformula Q has even parity in PQp :

PQp ⇒ PRp
Q⇒R

(2.102) Predicate Logic Antimonotonicity Rule: For Temporal Logic formulas
PQp and R, where subformula Q has odd parity in PQp :

PRp ⇒ PQp
Q⇒R

The conventions concerning justifications for equational proofs in Predi-
cate Logic are summarized by:

(2.103) Predicate Logic Equational Proof Justifications. A justification “Why
X is a theorem” in an equational proof of a Predicate Logic theorem
must be one of the following:
(i) A law or previously proved theorem X of Predicate Logic.
(ii) The theorem of Propositional Logic that enables X to be deduced

by Predicate Logic Substitution (2.73). Details of the substitutions
may be omitted when they are obvious.

(iii) The theorem of Predicate Logic that enables X to be deduced by
Substitution of Equals (2.75), Predicate Logic Substitution of
Equals (2.99), Predicate Logic Monotonicity Rule (2.101), or
Predicate Logic Antimonotonicity Rule (2.102).

(iv) The theorem that enables X to be deduced by a sequence of one or
more other Predicate Logic inference rules.

February 15, 1997

2.3 A Predicate Logic 41

2.4 Safety and Liveness Revisited
We can use Predicate Logic and set theory to formalize the notions of pro-

perty, safety property, and liveness property. These formalizations then allow us
to prove that every property is the conjunction of a safety property and a liveness
property. Thus, knowledge of how to prove that a program satisfies safety pro-
perties and liveness properties suffices for reasoning about any property.

The formalizations require introducing some notation. Let σ be a finite or
infinite sequence s 0 s 1 ... of states; the empty sequence is denoted by ε. Define
|σ | to be the number of states in σ (|σ | =∞ if σ is an infinite sequence of
states), and also define:

σ[i]: ε otherwise
si for i∈Int ∧ 0≤ i < |σ |

σ[..i]: ε otherwise
s 0 s 1 ... smin(i , |σ | −1) for i∈Int ∧ 0≤ i

σ[i..]: ε otherwise
si si +1 ... for i∈Int ∧ 0≤ i < |σ |

An anchored sequence is a pair (σ, j), where σ is a finite or infinite
sequence of states and j is a natural number that satisfies j < |σ | . If σ is finite,
then (σ, j) is called a finite anchored sequence. State sequence σ in anchored
sequence (σ, j) is partitioned by j into a sequence σ[0..j −1] of past states, a
current state σ[j], and a sequence σ[j +1..] of future states. Thus, not only do
anchored sequences describe histories, but they also are expressive enough to
describe snapshots of partial executions.

Some sets and operations involving anchored sequences will prove con-
venient. Let S + be the set of nonempty finite-length sequences of program
states, and let S∞ be the set of all finite and infinite sequences of program states
(including the empty sequence ε). Define sets of anchored sequences:

ΣS
+ : {(σ, i) |σ∈S + ∧ i ∈ Int ∧ 0≤ i < |σ | }

ΣS
∞: {(σ, i) |σ∈S∞ ∧ i ∈ Int ∧ 0≤ i < |σ | }

That (σ, i) is a prefix of (τ, j) will be denoted by the infix predicate symbol
≤ ; it is defined as follows:

(σ, i)≤ (τ, j): i ≤ j ∧ σ[..i]=τ[..i]

For describing certain prefixes of anchored sequences, it is useful to have a
notation like the one introduced above for describing prefixes of (ordinary) state
sequences:

February 15, 1997

42 Chapter 2 Formal Logic

(σ, i)[..j]: (σ[..j], min(i, |σ[..j] | −1))

Observe that if (σ, i) is an anchored sequence, then by construction, (σ, i)[..j] is
also one—no matter what value j has.

The length of an anchored sequence is just the length of its sequence of
states:

| (σ, i) | : |σ |

Finally, we define the catenation (σ, i) (τ, j) for anchored sequences (σ, i)
and (τ, j) as follows, where σ τ is the sequence obtained by appending τ to σ.

(σ, i) (τ, j): (σ τ, i)

Formalizing Properties
We model a property by a set of anchored sequences. The property

Mutual Exclusion, for example, is modeled by a set containing anchored
sequences (σ, j) such that all states of σ are ones in which the program counter
for at most one process points to an atomic action inside any critical section. The
property Termination might be modeled by the set of anchored sequences (σ, j)
such that σ is finite and σ[|σ | −1] is a state in which the program counter points
to the end of the program. Note that σ of an anchored sequence (σ, j) in a pro-
perty need not correspond to a possible execution of a particular—indeed,
any—program.

One way to define a set is by giving a characteristic predicate—a predi-
cate that is true for members of the set and false for other values. Use of a
characteristic predicate is attractive because it succinctly describes the shared
attributes of a set’s elements. In addition, Predicate Logic can be used in reason-
ing about sets defined with characteristic predicates:

(2.104) Set Membership: (a) γ∈{σ |P} = Pγ
σ

(b) γ∉{σ |P} = ¬Pγ
σ

We use characteristic predicates for defining properties. The set

P : {(σ, j) |Q}

where
Q is a predicate whose only free variables are σ and j,
Q implies that σ is a sequence of states, and
Q implies that j is an integer satisfying 0≤ j < |σ |

February 15, 1997

2.4 Safety and Liveness Revisited 43

defines P to be the property consisting of all anchored sequences (γ, k) such that
Qγ, k

σ, j holds. For example, below we formalize the property that stipulates that the
state remains constant.

{(σ, j) | σ∈S∞ ∧ j∈Int ∧ 0≤ j < |σ |
∧ (∀i∈Int: 0≤ i < |σ | : σ[0]=σ[i])}

Formalizing Safety and Liveness
Safety (1.1) and Liveness (1.2) of §1.3 are informal definitions. We now

formalize them.
Safety (1.1) stipulates that some “bad thing” does not happen. Thus for P

to be a safety property, if an anchored sequence α is not in P , then a “bad thing”
must occur in some prefix of α. Such a “bad thing” must be irremediable,
because a safety property stipulates that the “bad thing” never happens. This
suggests that whenever α∉P holds, there is a finite prefix β that is a “bad thing”
for which no γ is a mitigating extension.

(2.105) Safety Property. A property P is a safety property iff:
(∀α∈ΣS∞: α∉P ⇒ (∃β∈ΣS+ : β≤α: (∀γ∈ΣS∞: βγ∉P)))

Note that the only restriction imposed by this definition on the notion of a “bad
thing” is that if the “bad thing” happens in α, then there is an identifiable point
(i.e., β) at which it occurs.

Mutual Exclusion satisfies (informal definition) Safety (1.1), the “bad
thing” being a state in which more than one process is executing in a critical sec-
tion. To see that Mutual Exclusion also satisfies our formal definition, observe
that there is no way to extend a finite anchored sequence that contains such a
state to an anchored sequence in which there are no such states.

Liveness (1.2) stipulates that some “good thing” eventually happens. The
thing to observe about a liveness property is that no finite anchored sequence is
irremediable. This is because if some finite anchored sequence were irremedi-
able, then this would constitute a “bad thing,” and a liveness property cannot
proscribe a “bad thing” (a safety property does this) but can only prescribe a
“good thing.” Thus, if P is a liveness property, then for any finite anchored
sequence α, there is a β, containing the “good thing,” such that αβ∈P holds.

(2.106) Liveness Property. A property P is a liveness property iff:
(∀α∈ΣS+ : (∃β∈ΣS∞: αβ∈P))

This definition does not restrict what a “good thing” can be. Unlike a “bad
thing,” a “good thing” can involve an infinite number of states, and it need not
occur at an identifiable point.

February 15, 1997

44 Chapter 2 Formal Logic

Recall that Termination satisfies (informal definition) Liveness (1.2), the
“good thing” being a state in which the program counter value in the final state
of the sequence designates the end of the program. To see that Termination also
satisfies our formal definition, for a finite anchored sequence α, choose β to be
any finite anchored sequence whose last state is one in which the program
counter value is at the end of the program.

Although the “good thing” for Termination occurs at a single identifiable
point—the last state—this is not the case for all liveness properties. Consider the
(liveness) property that asserts that each process is executed infinitely often.
This property contains anchored sequences (σ, j) such that for each process,
there is an infinite number of states in σ in which the program counter for that
process has changed. Here, a “good thing” is not a finite anchored sequence, and
this “good thing” cannot be associated with a single identifiable point in the
sequence.

Decomposing Properties into Safety and Liveness
In order to show that every property P can be expressed in terms of safety

and liveness properties, we show how to construct a safety property Safe(P) and
a liveness property Live(P) such that P = Safe(P) ∩ Live(P)

Safe(P) contains all anchored sequences in property P as well as those
whose prefixes could be extended in a way that would make them part of P .

Safe(P): P ∪ {δ | δ∈ΣS∞ ∧ (∀κ∈ΣS+ : κ≤δ: (∃ι∈ΣS
∞: κι∈P))}(2.107)

To see informally that Safe(P) is a safety property, observe the following. For α
an anchored sequence, if α∉Safe(P) holds, then α∉P and, by Set Membership
(2.104b), ¬ (∀κ∈ΣS+ : κ≤δ: (∃ι∈ΣS

∞: κι∈P))αδ hold. This means that there
exists a finite prefix κ of α that satisfies (∀ι∈ΣS

∞: κι∉P), so we could consider
κ to be a “bad thing.” An anchored sequence that does not satisfy P only because
it violates a liveness property will satisfy Safe(P).

To show formally that Safe(P) is a safety property, we show that it
satisfies Safety Property (2.105).

1. β∈ΣS
+ ∧ (∀ι∈ΣS∞: βι∉P)

⇒ «Range Narrowing Law (2.86)»
β∈ΣS

+ ∧ (∀ι∈ΣS∞: ι=γ: βι∉P) ∧ (∀ι∈ΣS∞: βι∉P)
= «One-Point Law (2.93a»

β∈ΣS
+ ∧ βγ∉P ∧ (∀ι∈ΣS∞: βι∉P)

⇒ «Consequent-Weakening Law (2.30)»
β∈ΣS

+ ∧ βγ∉P ∧ (βγ∉ΣS∞ ∨ (∀ι∈ΣS∞: βι∉P))
= «One-Point Law (2.93b)»

β∈ΣS
+ ∧ βγ∉P ∧ (βγ∉ΣS∞ ∨ (∃κ: κ=β: (∀ι∈ΣS∞: κι∉P)))

⇒ «(β∈ΣS+ ∧ κ=β) ⇒ (κ∈ΣS+ ∧ κ≤βγ)»
βγ∉P ∧ (βγ∉ΣS∞ ∨ (∃κ∈ΣS+ : κ≤βγ: (∀ι∈ΣS∞: κι∉P)))

= «De Morgan’s Laws (2.17) and (2.80)»
βγ∉P ∧ ¬ (βγ∈ΣS∞ ∧ (∀κ∈ΣS+ : κ≤βγ: (∃ι∈ΣS∞: κι∈P)))

February 15, 1997

2.4 Safety and Liveness Revisited 45

= «Textual Substitution (2.71)»
βγ∉P ∧ ¬ (δ∈ΣS∞ ∧ (∀κ∈ΣS+ : κ≤δ: (∃ι∈ΣS∞: κι∈P)))βγδ

= «Set Membership (2.104b)»
βγ∉P ∧ βγ∉{δ | δ∈ΣS∞ ∧ (∀κ∈ΣS+ : κ≤δ: (∃ι∈ΣS∞: κι∈P))}

= «definition (2.107) of Safe(P)»
βγ ∉ Safe(P)

2. α∈ΣS
∞ ∧ α∉Safe(P)

= «definition (2.107) of Safe(P)»
α∈ΣS

∞ ∧ α∉(P ∪ {δ | δ∈ΣS∞ ∧ (∀κ∈ΣS+ : κ≤δ: (∃ι∈ΣS∞: κι∈P))})
⇒ «α∉(A ∪ B) ⇒ α∉B»

α∈ΣS
∞ ∧ α∉{δ | δ∈ΣS∞ ∧ (∀κ∈ΣS+ : κ≤δ: (∃ι∈ΣS∞: κι∈P))}

= «Set Membership (2.104b)»
α∈ΣS

∞ ∧ ¬ (δ∈ΣS∞ ∧ (∀κ∈ΣS+ : κ≤δ: (∃ι∈ΣS∞: κι∈P)))αδ
= «Textual Substitution (2.71)»

α∈ΣS
∞ ∧ ¬ (α∈ΣS∞ ∧ (∀κ∈ΣS+ : κ≤α: (∃ι∈ΣS∞: κι∈P)))

= «De Morgan’s Laws (2.17) and (2.80)»
α∈ΣS

∞ ∧ (α∉ΣS∞ ∨ (∃κ∈ΣS+ : κ≤α: (∀ι∈ΣS∞: κι∉P)))
= «Implication Law (2.22a)»

α∈ΣS
∞ ∧ (α∈ΣS∞ ⇒ (∃κ∈ΣS+ : κ≤α: (∀ι∈ΣS∞: κι∉P)))

⇒ «Implication-Deduction Law (2.31a)»
(∃κ∈ΣS+ : κ≤α: (∀ι∈ΣS∞: κι∉P))

= «Bound Variable Renaming Rule (2.70)»
(∃β∈ΣS+ : β≤α: (∀ι∈ΣS∞: βι∉P))

= «Quantification Simplification Law (2.92a)»
(∃β∈ΣS+ : β≤α: (∀γ∈ΣS∞: (∀ι∈ΣS∞: βι∉P)))

⇒ «line 1»
(∃β∈ΣS+ : β≤α: (∀γ∈ΣS∞: βγ ∉ Safe(P)))

«Quantification Introduction Rule (2.94) with 2»
3. (∀α∈ΣS∞: α∉Safe(P): (∃β∈ΣS+ : β≤α: (∀γ∈ΣS

∞: βγ∉Safe(P))))

4. (∀α∈ΣS∞: α∉Safe(P): (∃β∈ΣS+ : β≤α: (∀γ∈ΣS
∞: βγ∉Safe(P))))

= «Range Law (2.84a)»
(∀α∈ΣS∞: α∉Safe(P) ⇒ (∃β∈ΣS+ : β≤α: (∀γ∈ΣS

∞: βγ∉Safe(P))))

Since the first line of step 4 is step 3, a theorem, from Equational Proof Conclu-
sions (2.42) we conclude that the final line of step 4 is a theorem. This final line
is Safety Property (2.105) instantiated for property Safe(P)—we have formally
proved that Safe(P) is a safety property.

Live(P) contains all anchored sequences in P as well as those that violate
some safety property in P .

Live(P): P ∪ {δ | δ∈ΣS∞ ∧ (∃κ∈ΣS+ : κ≤δ: (∀ι∈ΣS
∞: κι ∉ P))}(2.108)

An informal justification that Live(P) is a liveness property is the following. All

February 15, 1997

46 Chapter 2 Formal Logic

anchored sequences γ that violate a safety property in P are in Live(P) because
by construction, γ will be in {δ | δ∈ΣS∞ ∧ (∃κ∈ΣS+ : κ≤δ: (∀ι∈ΣS

∞: κι ∉ P))}.
Therefore every prefix of an anchored sequence in Live(P) can be extended to
produce an anchored sequence in Live(P), and according to Liveness Property
(2.106), this is the defining characteristic of a liveness property.

To show formally that Live(P) is a liveness property, we prove below:

α∈ΣS
+ ⇒ (∃β∈ΣS∞: αβ∈Live(P))

From this, Quantification Introduction Rule (2.94) yields the desired conclusion,
(∀α∈ΣS+ : (∃β∈ΣS∞: αβ∈Live(P))).

α∈ΣS
+

= «And-Simplification Law (2.26b)»
α∈ΣS

+ ∧ true
= «Excluded Middle Law (2.20)»

α∈ΣS
+ ∧ ((∃β∈ΣS∞: αβ∈P) ∨ ¬ (∃β∈ΣS∞: αβ∈P))

= «Bound Variable Renaming Rule (2.70)»
α∈ΣS

+ ∧ ((∃β∈ΣS∞: αβ∈P) ∨ ¬ (∃ι∈ΣS∞: αι∈P))
= «De Morgan’s Laws (2.80b)»

α∈ΣS
+ ∧ ((∃β∈ΣS∞: αβ∈P) ∨ (∀ι∈ΣS∞: αι∉P))

= «Distributive Rule (2.91a), since (∃β: β∈ΣS∞)»
α∈ΣS

+ ∧ (∃β∈ΣS∞: αβ∈P ∨ (∀ι∈ΣS∞: αι∉P))
= «Distributive Law (2.90a)»
(∃β∈ΣS∞: α∈ΣS+ ∧ (αβ∈P ∨ (∀ι∈ΣS∞: αι∉P)))

⇒ «A ∧ (B ∨C) ⇒ B ∨ (A ∧ C)»
(∃β∈ΣS∞: αβ∈P ∨ (α∈ΣS+ ∧ (∀ι∈ΣS∞: αι∉P)))

⇒ «α∈ΣS+ ∧ β∈ΣS
∞ ⇒ αβ∈ΣS

∞»
(∃β∈ΣS∞: αβ∈P ∨ (α∈ΣS+ ∧ αβ∈ΣS

∞ ∧ (∀ι∈ΣS∞: αι∉P)))
= «One-Point Law (2.93b)»
(∃β∈ΣS∞: αβ∈P ∨ (α∈ΣS+ ∧ αβ∈ΣS

∞ ∧ (∃κ: κ=α: (∀ι∈ΣS∞: κι∉P))))
⇒ «(α∈ΣS+ ∧ κ=α) ⇒ (κ∈ΣS+ ∧ κ≤αβ)»

(∃β∈ΣS∞: αβ∈P ∨ (αβ∈ΣS∞ ∧ (∃κ∈ΣS+ : κ≤αβ: (∀ι∈ΣS∞: κι∉P))))
= «Textual Substitution (2.71)»
(∃β∈ΣS∞: αβ∈P ∨ (δ∈ΣS∞ ∧ (∃κ∈ΣS+ : κ≤δ: (∀ι∈ΣS∞: κι∉P)))αβδ)

= «Set Membership (2.104a)»
(∃β∈ΣS∞: αβ∈P ∨ αβ∈{δ | δ∈ΣS∞ ∧ (∃κ∈ΣS+ : κ≤δ: (∀ι∈ΣS∞: κι∉P))})

= «(a∈P ∨ a∈Q) = a∈(P ∪ Q)»
(∃β∈ΣS∞: αβ∈(P ∪ {δ | δ∈ΣS∞ ∧ (∃κ∈ΣS+ : κ≤δ: (∀ι∈ΣS∞: κι∉P))}))

= «definition (2.108) of Live(P)»
(∃β∈ΣS∞: αβ∈Live(P))

February 15, 1997

2.4 Safety and Liveness Revisited 47

Finally, we prove that every property can be specified in terms of a safety
property and a liveness property.12

Safe(P) ∩ Live(P)
= «definition (2.107) of Safe(P); definition (2.108) of Live(P);

TL: {δ | (∀κ∈ΣS+ : κ≤δ: (∃ι∈ΣS∞: κι∈P))}»
(P ∪ (ΣS∞ ∩ TL)) ∩ (P ∪ (ΣS∞ ∩ ∼TL))

= «distribution of ∩ over ∪»
(P ∩ P) ∪ (P ∩ ΣS

∞ ∩ ∼TL) ∪ (ΣS∞ ∩ TL ∩ P)
∪ (ΣS∞ ∩ TL ∩ ∼TL)

= «A ∩ A =A; A ∩ ∼A =∅; A ∩ ∅=∅; A ∪ ∅ = A»
P ∪ (P ∩ ΣS

∞ ∩ ∼TL) ∪ (ΣS∞ ∩ TL ∩ P)
= «(A ∩ B)⊆A; A⊆B ⇒ (B ∪ A =A)»

P ∪ P ∪ P
= «A ∪ A =A»

P

Hence, every property P can be partitioned into a safety component Safe(P) and
a liveness component Live(P) whose intersection is P .

Historical Notes
An introduction to logic, with particular attention to how it relates to computability

and artificial intelligence, can be found in [Hofstadter 79]. The book is well written—it
won a Pulitzer Prize—and easy to read.

Two popular texts for a first course in logic are [Church 56] and [Enderton 72].
Church’s book takes a proof-theoretic point of view, while Enderton’s takes a model-
theoretic one. A more advanced text, intended for a first-year graduate course, is [Bell &
Machover 77]. The text [Gries & Schneider 93], which was written concurrently with this
book, treats at an elementary level all the logics in this chapter. See [DeLong 70] for a
comprehensive annotated bibliography for formal logic.

The approach to proofs defined in §2.1 is due to Hilbert, although our equational
format was inspired by work of Feijen and first reported in [Dijkstra 85]. An alternative
style for presenting proofs is based on the way many people devise proofs, where a
theorem is proved by identifying goals that imply the desired result and then proving each
goal, perhaps by identifying subgoals, and so on. Logical systems that embody this style
of reasoning are called natural deduction systems. Gerhard Gentzen developed the first
such system in 1935. Textbooks [Quine 61] and [Smullyan 68] describe this approach.

Our presentation in §2.1 of formal logical systems was motivated by [Hofs-
tadter 79], and the PQ−L logic is from there. Our axiomatization of Propositional Logic is
from [Church 56], where it is called P1. The extensions are based on [Gries &
Schneider 93]. Many of our rules for quantified expressions are taken from [Hehner 84]
and [Dijkstra & Feijen 84].

12∼A denotes the complement of set A.

February 15, 1997

48 Chapter 2 Formal Logic

Informal definitions of safety and liveness were first proposed in [Lamport 77a].
The names are borrowed from Petri net theory. The first formal definition of safety did not
appear until seven years later [Lamport 85b]. Lamport’s definition (Safety Property
(2.109) in exercise 2.26) is adequate only for properties that are invariant under stuttering.
A formal definition of safety that works for all properties and the first formal definition of
liveness are given in [Alpern & Schneider 85]. The first proof that every property is the
conjunction of a safety property and a liveness property appeared there as well, although
the proof given in §2.4 is based on [Schneider 87]. The relationship between Safety Pro-
perty (2.109) and Safety Property (2.105) is discussed in [Alpern et al. 86].

Attempts to characterize safety properties and liveness properties in terms of the
syntax of the formulas used to express those properties are described in [Sistla 85],
[Sistla 86], and [Lichtenstein et al. 85]; automata-theoretic characterizations and an
automata-based proof that every property can be decomposed into safety and liveness pro-
perties is the subject of [Alpern & Schneider 87]. In [Manna & Pnueli 90], the notions of
safety and liveness are further refined into classes based on how that property can be
proved. See [Kindler 94] for a survey of research concerned with defining safety and live-
ness properties.

Exercises

2.1. (a) Give a finite set of axioms that can be added to PQ−L to make it sound and
complete under Addition-Equality Interpretation (2.4).

(b) Prove that the new logical system is sound and complete. (Hint: To show
that a logic is complete, use induction, where the induction hypothesis is that
every valid formula with fewer than i symbols is provable.)

2.2. Consider the formal logical system defined by
Symbols: M, I, o.
Formulas: Formulas have the form a M b I c where each of a, b, and c is

a sequence of zero or more o’s.
Axiom: A1. o o M o o I o o o o
Inference Rules: For a, b, and c each a sequence of zero or more o’s:

R1:
a a M b I c c
a M b I c

R2:
a a M b I c c
a M b b I c c

(a) Give five formulas in the logic.
(b) State and prove five theorems of the logic.
(c) Give an interpretation of the logic that makes multiplication of integers a

model.
(d) Give a formula that is true according to your interpretation but is not a

theorem. Give additional axioms and/or inference rules to make the logic
complete.

2.3. Two possible definitions for soundness of an inference rule are:
Theorem Soundness. An inference rule is sound if a formula derived
using that rule is valid whenever the premises used are theorems.

February 15, 1997

Exercises for Chapter 2 49

Model Soundness. An inference rule is sound if a formula derived using
that rule is valid whenever the premises used in that inference are valid.

What are the advantages/disadvantages of axiomatizations in which all inference
rules satisfy Theorem Soundness versus Model Soundness?

2.4. Translate the following English statements into Propositional Logic, assuming:
Prime_n : “n is prime”
Odd_n : “n is odd”
Even_n : “n is even”

(a) If n is not even then it is odd.
(b) If n is prime then it is odd, in which case it is not even.
(c) If n is even and prime then it is also odd.

2.5. Define appropriate propositions and then formulate the following statements as for-
mulas of Propositional Logic.
(a) If I am here then I am not there.
(b) I cannot be here and there at the same time.
(c) I cannot be here unless I am not there.
(d) Whenever the program terminates, it produces the correct answer.
(e) The program produces the correct answer only if it terminates.
(f) The program produces the correct answer or it does not terminate.

2.6. The formula P 1 ⊕ P 2 ⊕ ... ⊕ Pn is intended to be true when exactly one of P 1, P 2,
..., Pn is. Show how to translate P 1 ⊕ P 2 ⊕ ... ⊕ Pn into Propositional Logic.

2.7. Give proofs using Propositional Logic for the following theorems.
(a) ((p ∧ q)⇒ r) ⇒ (p⇒ (q⇒ r))
(b) (((p⇒ q) ∧ (q⇒ false))⇒ (p⇒ false))
(c) ((p⇒ q) ∧ (p⇒ r))⇒ (p⇒ (q ∧ r))
(d) (p⇒ (p⇒ false))⇒ (p⇒ false)
(e) (p⇒ (q⇒ false))⇒ (q⇒ (p⇒ false))
(f) (p⇒ q)⇒ ((q⇒ false)⇒ (p⇒ false))

2.8. Compute the value of each of the following Propositional Logic formulas in every
possible state.
(a) p ∨ q ∨ ¬ p
(b) p ∨ (p⇒ q)
(c) ¬ (p⇒ q)⇒ (p ∧ (q⇒ false))
(d) (p ∨ q) ∧ (¬ p ∨ q)
(e) (p ∧ q) ∨ (¬ p ∧ q)
(f) ¬ (¬ p ∧ (q⇒ p)) ∨ ¬ q

February 15, 1997

50 Chapter 2 Formal Logic

2.9. Replace axioms (2.7)− (2.9) in the axiomatization of Propositional Logic with the
following four axioms:

A1. (p⇒ q)⇒ ((q⇒ r)⇒ (p⇒ r))

A2. (((p⇒ q)⇒ p)⇒ p)

A3. p⇒ (q⇒ p)
A4. false⇒ p

Show that every theorem of this new axiomatization is also a theorem of the origi-
nal and vice versa.

2.10. A contradiction in Propositional Logic is a formula that is false in every state.
(a) Prove, using Propositional Logic, that if P is a theorem then P⇒ false is a

contradiction.
(b) Prove, using Propositional Logic, that if P is a theorem then ¬P is a contrad-

iction.

2.11. Suppose we add p⇒ false as an axiom to our axiomatization of Propositional
Logic. Show that whenever P is a theorem of the resulting logic, so is P⇒ false.
What is the consequence of this with respect to the utility of the new logic?

2.12. A formula of Propositional Logic is in conjunctive normal form if it is a conjunction
of formulas, each of which is the disjunction of propositional variables and/or their
negations. Show, using Extended Propositional Logic, that it is always possible to
translate a formula into conjunctive normal form.

2.13. A formula of Propositional Logic is in disjunctive normal form if it is a disjunction
of formulas, each of which is the conjunction of propositional variables and/or their
negations. Show, using Extended Propositional Logic, that it is always possible to
translate a formula into disjunctive normal form.

2.14. Use the equational proof format and simplify the following formulas.
(a) p ∨ (q ∨ p) ∨ ¬ q
(b) p ∧ (q⇒ p) ∧ (p ∨¬ q)
(c) ¬ p ⇒ (¬ p ∧ q)
(d) (p ∧ (q⇒ false)) = ¬ (p⇒¬ p)
(e) p⇒ (q⇒ (p ∧ q))
(f) (p ∧ q ∧ r) ∨ (¬ p) ∨ (¬ q) ∨ (¬ r)
(g) p ∧ q⇒ (¬ p ∧¬ q)
(h) p ∧ q ∧ (p⇒ r)⇒ (r ∨ (q⇒ r))
(i) p ⇒ ((r ∨ s)⇒ p)
(j) q⇒ (r⇒ (q ∧ r))
(k) ((p⇒ q)⇒ p)⇒ ((p⇒ false)⇒ p)

2.15. Show how the effects of inference rules Substitution of Equals (2.34), Transitivity
of Equality (2.38), and Transitivity of Implication (2.39) could be achieved using
only axioms (2.7), (2.8), and (2.9) and inference rules Modus Ponens (2.10) and
Substitution (2.11) of Propositional Logic.

February 15, 1997

Exercises for Chapter 2 51

2.16. Show how it is always possible to prove P a theorem of Propositional Logic when-
ever (P⇒ true)∧ (true⇒P) is a theorem by giving a method to extend a proof for
(P⇒ true)∧ (true⇒P) into one for P.

2.17. Formulate the following as formulas of Predicate Logic, assuming that Obj is the
set of things, Plc is the set of places, and:

yech(t): “thing t is rotten”
loc(t , p): “thing t is located at place p”

(a) Everything is rotten.
(b) Something is rotten.
(c) Nothing is rotten.
(d) Something is rotten in Denmark.
(e) Nothing in Denmark is rotten, but something someplace else is.
(f) Something is rotten someplace and nothing is rotten everywhere.

2.18. Write Predicate Logic formulas for the following statements. Assume that a[1 .. n]
and b[1 .. m] are arrays of integers.
(a) All elements in a are nonzero.
(b) Some element in a is zero.
(c) Array a is sorted in ascending order.
(d) Every element in a is also in b.
(e) No value in a appears two or more times in b.
(f) The sequence of elements a[1], a[2], ..., a[n] forms a palindrome. (A palin-

drome is a sequence of characters that reads the same both forwards and
backwards, e.g., 1234321.)

2.19. Where possible, perform the indicated substitutions into:
E : x <y ∧ (∀i: 0≤ i <n : b[i]<y)

(a) Ez
x (b) Ex+y

x (c) Ej
i (d) (Ew*z

y)a+uy

(e) Ew*z,a+u
y,y (f) (Ew*z

y)a+uz (g) Ew*z,a+u
y,z

2.20. Use Propositional Logic, informal meaning (2.78) of a universally quantified
expression, and informal meaning (2.79) of an existentially quantified expression to
justify the following equivalences.
(a) Conjunction Law (2.81)
(b) Disjunction Law (2.82)
(c) Empty-Range Law (2.83a)
(d) Empty-Range Law (2.83b)
(e) Range Law (2.84a)
(f) Range Law (2.84b)
(g) Range Partitioning Law (2.85a)

February 15, 1997

52 Chapter 2 Formal Logic

(h) Range Partitioning Law (2.85b)
(i) Range Narrowing Law (2.86)
(j) Range Widening Law (2.87)
(k) Quantification Weakening Law (2.88a)
(l) Quantification Weakening Law (2.88b)

2.21. Simplify the following formulas.
(a) (∀i: 1≤ i <n : r <A[i]) ∧ r <A[n]
(b) (∀i: 1≤ i ≤100: 1≤ i ≤100⇒ A[i]>7)
(c) (∀k : false: k ≠k)⇒ k =k
(d) (∃k : false: k ≠k)⇒ k =k
(e) (∀x : R : P)⇒ (∃x : R : P)
(f) (∀x : R : P)⇒ (∃i: P : R)

2.22. Prove the following theorems of Predicate Logic.
(a) x =e ⇒ P =Pe

x

(b) (∀x : R : Q)⇒ (R ∧ Q)ex

(c) (∃x : R : P) ∨ (∃x : R : ¬P)
(d) ¬ ((∀x : R : P) ∧ (∀x : R: P))
(e) (∀x : P)⇒ (∃x : x =22: P)
(f) (∀x : R : Q)⇒ (∀x : R : P⇒Q)

2.23. Show that Equals in Quantified Expressions (2.97a)− (2.97d) can be replaced by a
single rule:

(∀x : P) = (∀x : Q)
P = Q

2.24. Under what conditions does (Eu
x)xu = E hold?

2.25. Give either a proof or a counterexample for each of the following claims.
(a) The intersection of two safety properties is always a safety property.
(b) The union of two safety properties is always a safety property.
(c) The complement of a safety property is always a safety property.
(d) The intersection of two liveness properties is always a liveness property.
(e) The union of two liveness properties is always a liveness property.
(f) The complement of a liveness property is always a liveness property.
(g) The union of any nonempty property and a liveness property is a liveness

property.
(h) Every nontrivial property is the intersection of two nontrivial liveness pro-

perties.

2.26. Consider the following formal definition for a safety property P

February 15, 1997

Exercises for Chapter 2 53

(2.109) Safety Property: (∀α∈ΣS∞:
α∈P = (∀ (β, j)∈ΣS+ : (β, j)≤α: (β, j)(β[|β | −1]ω , k))∈P))

where β[|β | −1]ω denotes an infinite sequence of β[|β | −1]’s.
(a) Give an example of a property that satisfies Safety Property (2.105) but not

Safety Property (2.109).
(b) A property P is invariant under stuttering iff γ∈P then δ∈P and vice versa,

where δ is γ with every state repeated zero or more times. Prove that Safety
Property (2.109) is the same as Safety Property (2.105) for properties that are
invariant under stuttering.

2.27. Prove the following:
(a) P is a safety property iff P =Safe(P) holds.
(b) P is a liveness property iff P =Live(P) holds.

2.28. Suppose that properties are sets of finite and infinite sequences of states (rather than
sets of anchored sequences).
(a) What would the formal definition be for safety properties?
(b) What would the formal definition be for liveness properties?
(c) Give definitions for Safe(P) and Live(P) and prove that for a property P :

Safe(P) is a safety property.
Live(P) is a liveness property.
P = Safe(P) ∩ Live(P).

February 15, 1997

54 Chapter 2 Formal Logic

