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ABSTRACT
Current software attacks often build on exploits that subvert ma-
chine-code execution. The enforcement of a basic safety property,
Control-Flow Integrity (CFI), can prevent such attacks from arbi-
trarily controlling program behavior. CFI enforcement is simple,
and its guarantees can be established formally, even with respect
to powerful adversaries. Moreover, CFI enforcement is practical:
it is compatible with existing software and can be done efficiently
using software rewriting in commodity systems. Finally, CFI pro-
vides a useful foundation for enforcing further security policies, as
we demonstrate with efficient software implementations of a pro-
tected shadow call stack and of access control for memory regions.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors; D.2.4 [Software
Engineering]: Software/Program Verification; D.4.6 [Operating
Systems]: Security and Protection

General Terms
Security, Languages, Verification

Keywords
Binary Rewriting, Control-Flow Graph, Inlined Reference Moni-
tors, Vulnerabilities

1. INTRODUCTION
Computers are often subject to external attacks that aim to con-

trol software behavior. Typically, such attacks arrive as data over
a regular communication channel and, once resident in program
memory, they trigger a pre-existing software flaw. By exploiting
such flaws, the attacks can subvert execution and gain control over
software behavior. For instance, a buffer overflow in an applica-
tion may result in a call to a sensitive system function, possibly a
function that the application was never intended to use. The com-
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bined effects of these attacks make them one of the most pressing
challenges in computer security.
In recent years, many ingenious vulnerability mitigations have

been proposed for defending against these attacks; these include
stack canaries [14], runtime elimination of buffer overflows [46],
randomization and artificial heterogeneity [41, 62], and tainting of
suspect data [55]. Some of these mitigations are widely used, while
others may be impractical, for example because they rely on hard-
ware modifications or impose a high performance penalty. In any
case, their security benefits are open to debate: mitigations are usu-
ally of limited scope, and attackers have found ways to circumvent
each deployed mitigation mechanism [42, 49, 61].
The limitations of these mechanisms stem, in part, from the lack

of a realistic attack model and the reliance on informal reasoning
and hidden assumptions. In order to be trustworthy, mitigation
techniques should—given the ingenuity of would-be attackers and
the wealth of current and undiscovered software vulnerabilities—
be simple to comprehend and to enforce, yet provide strong guar-
antees against powerful adversaries. On the other hand, in order to
be deployable in practice, mitigation techniques should be applica-
ble to existing code (preferably even to legacy binaries) and incur
low overhead.
This paper describes and studies one mitigation technique, the

enforcement of Control-Flow Integrity (CFI), that aims to meet
these standards for trustworthiness and deployability. The paper
introduces CFI enforcement, presents an implementation for Win-
dows on the x86 architecture, gives results from experiments, and
suggests applications.
The CFI security policy dictates that software execution must

follow a path of a Control-Flow Graph (CFG) determined ahead
of time. The CFG in question can be defined by analysis—source-
code analysis, binary analysis, or execution profiling. For our ex-
periments, we focus on CFGs that are derived by a static binary
analysis. CFGs can also be defined by explicit security policies, for
example written as security automata [17].
A security policy is of limited value without an attack model. In

our design, CFI enforcement provides protection even against pow-
erful adversaries that have full control over the entire data memory
of the executing program. This model of adversaries may seem
rather pessimistic. On the other hand, it has a number of virtues.
First, it is clear, and amenable to formal definition and analysis.
It also allows for the real possibility that buffer overflows or other
vulnerabilities (e.g., [26]) would lead to arbitrary changes in data
memory. Finally, it applies even when an attacker is in active con-
trol of a module or thread within the same address space as the
program being protected.
Whereas CFI enforcement can potentially be done in several

ways, we rely on a combination of lightweight static verification



and machine-code rewriting that instruments software with run-
time checks. The runtime checks dynamically ensure that control
flow remains within a given CFG. As we demonstrate, machine-
code rewriting results in a practical implementation of CFI enforce-
ment. This implementation applies to existing user-level programs
on commodity systems, and yields efficient code even on irregular
architectures with variable-length instruction encodings. Although
machine-code rewriting can be rather elaborate, it is simple to ver-
ify the proper use of instrumentation in order to ensure inlined CFI
enforcement.
CFI enforcement is effective against a wide range of common at-

tacks, since abnormal control-flow modification is an essential step
in many exploits—independently of whether buffer overflows and
other vulnerabilities are being exploited [42, 61]. We have exam-
ined many concrete attacks and found that CFI enforcement pre-
vents most of them. These include both classic, stack-based buffer-
overflow attacks and newer, heap-based “jump-to-libc” attacks.
They also include recently described “pointer subterfuge” attacks,
which foil many previous mitigation techniques. Of course, CFI
enforcement is not a panacea: exploits within the bounds of the al-
lowed CFG (e.g., [10]) are not prevented. These include, for exam-
ple, certain exploits that rely on incorrect argument-string parsing
to cause the improper launch of a dangerous executable.
No matter how the CFG is defined or how permissive it is, CFI

can be used as a foundation for the enforcement of more sophis-
ticated security policies, including those that prevent higher-level
attacks. For example, CFI can prevent the circumvention of two
well-known enforcement mechanisms, Inlined Reference Monitors
(IRMs) and Software Fault Isolation (SFI) [16, 17, 60]. In par-
ticular, CFI can help protect security-relevant information such as
a shadow call stack [22, 37, 43], which can be used for placing
tighter restrictions on control flow. Further, CFI can serve as the
basis of a generalized, efficient variant of SFI that we call Software
Memory Access Control (SMAC), which is embodied in an inlined
reference monitor for access to memory regions. SMAC, in turn,
can serve for eliminating some CFI assumptions.
Concretely, we develop fast, scalable implementations of CFI.

We focus on one that provides strong guarantees and applies to
existing x86 Windows binaries. Its performance on popular pro-
grams, including the SPEC benchmark suite, gives evidence of its
efficiency. Building on CFI, we develop an implementation of a
protected user-level shadow call stack. To the best of our knowl-
edge, this implementation is an order-of-magnitude faster than pre-
vious software implementations with the same level of protection.
Since SFI for x86 has been relatively slow and complex, we also
examine the overhead of a simple CFI-based method for enforcing
the standard SFI policy on x86; again, our measurements indicate
an order-of-magnitude overhead reduction.
We have formally proven the correctness of inlined CFI enforce-

ment for an abstract machine with a simplified instruction set. This
formal treatment of inlined CFI enforcement contributes to assur-
ance and served as a guide in our design. We have also analyzed a
combination of CFI and SMAC, similarly.
The next section, Section 2, discusses related work. Section 3

informally explains CFI and its inlined enforcement. Section 4 de-
scribes our main CFI implementation and gives performance re-
sults. It also reports on our security-related experiments. Section 5
shows how additional security enforcement can be built on CFI; it
includes a discussion of IRMs and three important examples: faster
SFI, SMAC, and a protected shadow call stack. Section 6 summa-
rizes our formal work; see [1] for further details. Finally, Section 7
concludes.

2. RELATEDWORK
Our work on CFI is related to many techniques that, either di-

rectly or indirectly, constrain control flow. For the purposes of the
present section, we divide those techniques according to whether
they aim to achieve security or fault-tolerance.

2.1 CFI and Security
Constraining control flow for security purposes is not new. For

example, computer hardware has long been able to prevent execu-
tion of data memory, and the latest x86 processors support this fea-
ture. At the software level, several existing mitigation techniques
constrain control flow in some way, for example by checking stack
integrity and validating function returns [14, 43], by encrypting
function pointers [13, 62], or even by interpreting software using
the techniques of dynamic machine-code translation [29].
Clearly, this a crowded, important research area (e.g., [5, 7, 9, 12,

15, 22, 30, 33, 37, 39, 41, 46, 55, 56]). Next we elaborate on some
of the pieces of work most closely related to ours. In short, we
believe that the distinguishing features of CFI are its simplicity, its
trustworthiness and amenability to formal analysis, its strong guar-
antees even in the presence of a powerful adversary with full con-
trol over data memory, and its deployability, efficiency, and scal-
ability. Like many language-based security techniques, but unlike
certain systems for intrusion detection, CFI enforcement cannot be
subverted or circumvented even though it applies to the inner work-
ings of user-level programs (not just at the system call boundary).

SFI and Inlined Reference Monitors. IRMs are a general
technique for enforcing fine-grained security policies through in-
lined checks [16, 17]. SFI is an important, special IRM that per-
forms dynamic checks for the purposes of memory protection [17,
34, 50, 60]. SFI and other IRMs operate by adding code for se-
curity checks into the programs whose behavior is the subject of
security enforcement.
IRM implementations must consider that a subject program may

attempt to circumvent the added checks—for example, by jumping
around them. As a result, IRM implementations typically impose
restrictions on control flow. The necessary restrictions are weaker
than CFI.
Those difficulties are compounded on hardware architectures that

use variable-length sequences of opcode bytes for encoding ma-
chine-code instructions. For example, on x86 Linux, the machine
code for a system call is encoded using a two-byte opcode se-
quence, CD 80, in hexadecimal, while the five-byte opcode se-
quence 25 CD 80 00 00 corresponds to the arithmetic operation
and eax, 80CDh. Therefore, on x86 Linux, if this particular and
instruction is present in a program, then jumping to its second op-
code byte is one way of performing a system call. Similarly, other
x86 instructions, such as those that read or write memory, may be
executed through jumps into the middle of opcode byte sequences.
As a result, existing implementations of IRMs for the x86 archi-

tecture restrict control flow so that it can go only to the start of valid
instructions of the subject programs. In particular, control flow to
the middle of checking sequences, or directly to the instructions
that those sequences protect, is prohibited.
The performance of IRMs has been problematic, in large mea-

sure because of the need for control-flow checks, particularly on
the x86 architecture [17, 34, 50]. CFI offers an alternative, attrac-
tive implementation strategy; its guarantees, while stronger than
strictly necessary for IRMs, imply the required control-flow prop-
erties, and thereby CFI can serve as a foundation for efficient IRM
implementation. We elaborate on some of these points in Section 5.



VulnerabilityMitigation Techniques with Secrets. Point-
Guard [13] stores code addresses in an encrypted form in data mem-
ory. The intent is that, even if attackers can change data memory,
they cannot ensure that control flows to a code address of their
choice: for this, they would have to know the corresponding de-
cryption key. Several other techniques [7, 14, 41, 56, 62] also rely
on secret values that influence the semantics of pointer addresses
stored in memory, For instance, PaX ASLR shuffles the virtual-
address-space layout of a process at the time of its creation, using a
random permutation derived from a per-process secret [41]. Some
of these vulnerability mitigation schemes, such as the PaX Linux
kernel patch, may be applied even to unmodified legacy binaries.
Others can be more difficult to adopt, for example when they re-
quire complex source-code analysis.
Unfortunately, the reliance on secret values represents a vulner-

ability, because the values may not remain secret. In practice,
a lucky, knowledgeable, or determined attacker can defeat these
schemes (see [49, 51, 56]).

Secure Machine-Code Interpreters. Program Shepherding
employs an efficient machine-code interpreter for implementing a
security enforcement mechanism [29], as does Strata [47]. The
apparent complexity of these interpreters may affect their trustwor-
thiness and complicate their adoption. Their performance overhead
may be another obstacle to their use (see Section 4.2).
On the other hand, a broad class of security policies can be im-

plemented by a machine-code interpreter. Program Shepherding
has been used, in particular, for enforcing a policy that includes
certain runtime restrictions on control flow. That policy is not CFI,
as we define it, but CFI could be enforced by having the interpreter
implement the new instructions presented below in Section 3.1.

Other Research on IntrusionDetection. CFI is also related
to a line of research on intrusion detection where a security policy
for a program is derived from an inspection of the program itself or
its executions [6, 18, 19, 21, 24, 25, 31, 48, 58, 59]. This security
policy may be enforced at runtime using an isolated operating sys-
tem mechanism, which cannot be circumvented or subverted, and
which disallows invalid behaviors. The behaviors in question are
often limited to sequences of system calls or library calls.
In particular, Dean and Wagner describe an intrusion-detection

technique that relies on a program’s static CFG to achieve “a high
degree of automation, protection against a broad class of attacks
based on corrupted code, and the elimination of false alarms” at the
system-call level [58]. Most recent work in this area aims to make
the security policy more precise, reducing the number of false neg-
atives, both by making use of runtime information about function
calls and returns, and also by operating at the level of library func-
tions as well as that of system calls.
The desired precision poses efficiency and security challenges.

For instance, at the time of a system call, the information contained
in the user-level call stack can enable context-sensitive policies and
therefore can enhance precision, but it is unreliable (as it is under
program control), and maintaining a protected representation of the
stack in the kernel is expensive. In this and other examples, there
is a tension between efficiency and security.
CFI enforcement can be regarded as a fine-grained intrusion-

detection mechanism based on a nondeterministic finite automaton.
When CFI is coupled with a protected shadow call stack, the level
of precision increases [18, 24]. Like previous work, CFI enforce-
ment has difficulty with data-driven impossible paths. CFI preci-
sion is also affected by the degree of fan-in/fan-out at choice points.
(The literature contains several measurements of fan-in/fan-out in

program code, which we do not repeat in this paper.) Unlike previ-
ous work, on the other hand, CFI enforcement restricts the behav-
ior of every machine code instruction in subject programs (cf. [25,
Section 8]).
At the same time, CFI enforcement can be regarded as a basis for

other intrusion-detection machinery. By using CFI and SMAC, that
other intrusion-detection machinery could be implemented without
modifications to the underlying operating system, or the cost of
operating-system interactions, without a substantial loss in the level
of protection or runtime overhead.

Language-Based Security. Virtually all high-level languages
have execution models that imply some properties about the ex-
pected control flows. Even unsafe high-level languages are not
meant to permit jumps into the middle of a machine-code instruc-
tion. Safer high-level languages, such as Java and C#, provide
stronger guarantees. Their type systems, which aim to ensure mem-
ory safety, also constrain what call sequences are possible. Unfor-
tunately, such guarantees hold only at the source level. Language
implementations may not enforce them, and native method imple-
mentations may not respect them.
Similar guarantees can be obtained at the assembly and binary

levels through the use of proof-carrying code (PCC) or typed as-
sembly language (TAL) [36, 38]. Again, while PCC and TAL
primarily aim to provide memory safety, they also impose static
restrictions on control flow. Their properties have often been ana-
lyzed formally. The analyses focus on a model in which data mem-
ory may be modified by the subject program, but they typically do
not give guarantees if another entity or a flaw may corrupt data
memory (e.g., [26]).
In the long term, CFI enforcement may have a narrower set of

possible benefits than the use of PCC and TAL. On the other hand,
in many circumstances, CFI enforcement may be easier to adopt.
CFI enforcement also addresses the need for mitigations to vulner-
abilities in existing code. Finally, CFI enforcement is significantly
simpler (and therefore potentially more trustworthy) than many al-
ternative, language-based techniques, such as TAL typechecking.

2.2 CFI and Fault-Tolerance
Our work is also related to research on fault-tolerance of com-

puter systems against soft faults (single-event upsets). Most rele-
vant are methods that attempt to discern program execution devi-
ation from a prescribed static CFG solely through software-based
methods (e.g., [40, 45, 57]). Those methods exhibit many similari-
ties with CFI enforcement, but also significant differences.
The main differences between CFI and these fault-tolerance ap-

proaches stem from the differences between their attack and failure
models. The fault-tolerance work is focused on one-time random
bit-flipping in program state and, in particular, on such bit-flipping
in registers; other memory is assumed to use error-correcting codes.
CFI, on the other hand, is concerned with a persistent, adversarial
attacker that can arbitrarily change data memory (in particular, by
exploiting program vulnerabilities), but makes certain assumptions
on register contents. Most fault-tolerance work provides proba-
bilistic guarantees whereas CFI entails that even a motivated, pow-
erful adversary can never execute even one instruction outside the
legal CFG. On the other hand, CFI does not aim to provide fault
tolerance.
Most similar to CFI is the method of Oh et al. [40] and how it re-

stricts control flow through inlined labels and checks. That method,
like ours, encodes the CFG (or an approximation) by embedding a
set of static, immediate bit patterns in the program code. However,
in that method, the runtime checks are evaluated at the destinations



bool lt(int x, int y) {

return x < y;

}

bool gt(int x, int y) {

return x > y;

}

sort2(int a[ ], int b[ ], int len)

{

sort( a, len, lt );

sort( b, len, gt );

}

lt():

ret 23

label 17
sort2():

call sort

call sort

label 55

sort():

call 17,R

ret 55

label 23

ret …

gt():

ret 23

label 17

label 55

Figure 1: Example program fragment and an outline of its CFG and CFI instrumentation.

of all branches and jumps, not at their sources. These checks are
therefore ill-suited for our purposes. For instance, they fail to pre-
vent jumps into the middle of functions, in particular jumps that
may bypass security checks (such as access control checks). These
details are consistent with the probabilistic failure model, but they
would be unsatisfactory for security enforcement.

3. INLINED CFI ENFORCEMENT
As noted in the introduction, we rely on dynamic checks for en-

forcing CFI, and implement the checks by machine-code rewriting.
We also rely on simple static inspection for verifying the correct-
ness of this rewriting, as well for establishing other CFI properties.
This section describes the basics of inlined CFI enforcement and
some of its details.
Depending on the context, such as the operating system and

software environment, some security enforcement mechanisms that
look attractive may, in practice, be either difficult to adopt or easy
to circumvent. We therefore consider not only the principles but
also practical aspects of CFI enforcement, in this section and the
rest of the paper.

3.1 Enforcing CFI by Instrumentation
CFI requires that, during program execution, whenever a ma-

chine-code instruction transfers control, it targets a valid destina-
tion, as determined by a CFG created ahead of time. Since most
instructions target a constant destination, this requirement can usu-
ally be discharged statically. However, for computed control-flow
transfers (those whose destination is determined at runtime) this
requirement must be discharged with a dynamic check.
Machine-code rewriting presents an apparently straightforward

strategy for implementing dynamic checks. It is however not with-
out technical wrinkles. In particular, a rewritten program no longer
uses the same code memory, and all memory addresses in the pro-
gram must be adjusted accordingly. Furthermore, changes like that
of the memory layout may not be possible without potentially af-
fecting the semantics of some unconventional programs. Modern
tools for binary instrumentation address these and other wrinkles,
often trading generality and simplicity for efficiency [52, 53]. As a
result, machine-code rewriting is practical and dependable.
It remains to design the dynamic checks. Next we explain one

possible set of dynamic checks. Some of the initial explanations
are deliberately simplistic, for the purposes of the exposition; vari-
ants and elaborations appear below. In particular, for these ini-
tial explanations, we rely on new machine-code instructions, with
an immediate operand ID: an effect-free label ID instruction; a
call instruction call ID, DST that transfers control to the code at
the address contained in register DST only if that code starts with
label ID; and a corresponding return instruction ret ID. Such

instructions could perhaps be added to common processors to form
the basis for attractive hardware CFI implementations, and should
deserve further consideration. However, it is unrealistic to expect
the deployment of hardware CFI support in the near future. In the
remainder of the paper, we discuss only software CFI implementa-
tions. As we demonstrate, inlined CFI enforcement can be imple-
mented in software on current processors, in particular on the x86
processor, with only a modest overhead.
CFI instrumentation modifies—according to a given CFG—each

source instruction and each possible destination instruction of com-
puted control-flow transfers. Two destinations are equivalent when
the CFG contains edges to each from the same set of sources. For
the present purposes, let us assume that if the CFG contains edges
to two destinations from a common source, then the destinations
are equivalent; we reconsider this assumption in Section 3.4. At
each destination, instrumentation inserts a bit pattern, or ID, that
identifies an equivalence class of destinations. Instrumentation also
inserts, before each source, a dynamic check, or ID-check, that en-
sures that the runtime destination has the ID of the proper equiva-
lence class.
Figure 1 shows a C program fragment where the function sort2

calls a qsort-like function sort twice, first with lt and then with
gt as the pointer to the comparison function. The right side of
Figure 1 shows an outline of the machine-code blocks for these four
functions and all CFG edges between them. In the figure, edges for
direct calls are drawn as light, dotted arrows; edges from source
instructions are drawn as solid arrows, and return edges as dashed
arrows. In this example, sort can return to two different places
in sort2. Therefore, the CFI instrumentation includes two IDs in
the body of sort2, and an ID-check when returning from sort,
arbitrarily using 55 as the ID bit pattern. (Here, we do not specify
to which of the two callsites sort must return; Section 5 shows
how to guarantee that each return goes to the most recent callsite,
by using a protected shadow call stack.) Similarly, because sort
can call either lt or gt, both comparison functions start with the
ID 17; and the call instruction, which uses a function pointer
in register R, performs an ID-check for 17. Finally, the ID 23
identifies the block that follows the comparison callsite in sort,
so both comparison functions return with an ID-check for 23.
This example exposes patterns that are typical when CFI instru-

mentation is applied to software compiled from higher-level pro-
gramming languages. CFI instrumentation does not affect direct
function calls: only indirect calls require an ID-check, and only
functions called indirectly (such as virtual methods) require the ad-
dition of an ID. Function returns account for many ID-checks, and
an ID must be inserted after each function callsite, whether that
function is called indirectly or not. The remaining computed con-
trol flow is typically a result of switch statements and exceptions



Source
Opcode bytes Instructions

Destination
Opcode bytes Instructions

FF E1 jmp ecx ; computed jump 8B 44 24 04 mov eax, [esp+4] ; dst

...

can be instrumented as (a):

81 39 78 56 34 12 cmp [ecx], 12345678h ; comp ID & dst

75 13 jne error_label ; if != fail

8D 49 04 lea ecx, [ecx+4] ; skip ID at dst

FF E1 jmp ecx ; jump to dst

78 56 34 12 ; data 12345678h ; ID

8B 44 24 04 mov eax, [esp+4] ; dst

...

or, alternatively, instrumented as (b):

B8 77 56 34 12 mov eax, 12345677h ; load ID-1

40 inc eax ; add 1 for ID

39 41 04 cmp [ecx+4], eax ; compare w/dst

75 13 jne error_label ; if != fail

FF E1 jmp ecx ; jump to label

3E 0F 18 05 prefetchnta ; label

78 56 34 12 [12345678h] ; ID

8B 44 24 04 mov eax, [esp+4] ; dst

...

Figure 2: Example CFI instrumentations of a source x86 instruction and one of its destinations.

and, in both cases, an ID is needed at each possible destination and
an ID-check at the point of dispatch.

3.2 CFI Instrumentation Code
Refining the basic scheme for CFI instrumentation, we should

choose specific machine-code sequences for ID-checks and IDs.
The choice is far from trivial. Those code sequences should use
instructions of the architecture of interest, and ideally they should
be both correct and efficient.
Figure 2 shows example x86 CFI instrumentation with two al-

ternative forms of IDs and ID-checks, along with their actual x86
opcode bytes. The figure uses as the ID the 32-bit hexadecimal
value 12345678. The source (on the left) is a computed jump
instruction jmp ecx, whose destination (on the right) may be a
mov from the stack. Here, the destination is already in ecx so the
ID-checks do not have to move it to a register—although, in gen-
eral, ID-checks must do this to avoid a time-of-check-to-time-of-
use race condition [8]. The code sequences for ID-checks overwrite
the x86 processor flags and, in (b), a register is assumed available
for use; Section 4 explains why this behavior is reasonable.
In alternative (a), the ID is inserted as data before the destination

mov instruction, and the ID-check modifies the computed destina-
tion using a lea instruction to skip over the four ID bytes. The ID-
check directly compares the original destination with the ID value.
Thus, the ID bit pattern is embedded within the ID-check cmp op-
code bytes. As a result, in (a), an attacker that can somehow affect
the value of the ecx register might be able to cause a jump to the
jne instruction instead of the intended destination.
Alternative (b) avoids the subtlety of (a), by using ID�1 as the

constant in the ID-check and incrementing it to compute the ID at
runtime. Also, alternative (b) does not modify the computed jump
destination but, instead, inserts an effective label ID at the start
of the destination—using a side-effect-free x86 prefetch instruction
to synthesize the label ID instruction.
Section 4 describes machine-code sequences that build on these

two alternatives.

3.3 Assumptions
In our design, CFI enforcement provides protection even against

powerful adversaries that control the data memory of the executing
program. The machine-code instruction sequences that implement
ID-checks and IDs do not rely on the integrity of data memory. It is
however critical that three assumptions hold. These three assump-
tions are:

UNQ Unique IDs: After CFI instrumentation, the bit patterns cho-
sen as IDs must not be present anywhere in the code memory
except in IDs and ID-checks. This property is easily achieved
by making the space of IDs large enough (say 32-bit, for soft-
ware of reasonable size) and by choosing IDs so that they do
not conflict with the opcode bytes in the rest of the software.

NWC Non-Writable Code: It must not be possible for the pro-
gram to modify code memory at runtime. Otherwise, an at-
tacker might be able to circumvent CFI, for example by caus-
ing the overwriting of an ID-check. NWC is already true on
most current systems, except during the loading of dynamic
libraries and runtime code-generation.

NXD Non-Executable Data: It must not be possible for the pro-
gram to execute data as if it were code. Otherwise, an at-
tacker could cause the execution of data that is labeled with
the expected ID. NXD is supported in hardware on the lat-
est x86 processors, and Windows XP SP2 uses this support
to enforce the separation of code and data [35]. NXD can
also be implemented in software [41]. By itself (without
CFI), NXD thwarts some attacks, but not those that exploit
pre-existing code, such as “jump-to-libc” attacks (see Sec-
tion 4.3).

Somewhat weaker assumptions may sometimes do. In particu-
lar, even without NXD, inlined CFI enforcement may be successful
as long as the IDs are randomly chosen from a sufficiently large
set; then, if attackers do not know the particular IDs chosen, ID-
checks will probably fail whenever data execution is attempted.
This “probabilistic” defense is similar to that provided by Stack-
Guard and other mitigation mechanisms based on secrets [13, 14,
62]. Since a lucky, persistent, or knowledgeable attacker will still
succeed [49, 51, 56], we do not favor this CFI variant and do not
discuss it further. We believe that CFI should be supported by ei-
ther hardware or software NXD; Section 5 shows how CFI enforce-
ment can be integrated with one particular software implementation
of NXD.
The assumptions can be somewhat problematic in the presence

of self-modifying code, runtime code generation, and the unantici-
pated dynamic loading of code. Fortunately, most software is rather
static—either statically linked or with a statically declared set of
dynamic libraries. For example, although the Apache web server
is a complex, extensible software system, configuration files bound



the set of its loadable modules prior to the start of execution. Simi-
larly, for the Outlook email client, the Windows registry bounds the
set of loadable components. Nevertheless, we are working on ex-
panding inlined CFI enforcement with the goal of handling runtime
code generation and other dynamic additions of code.
The implementation of IDs and ID-checks relies on a few regis-

ters, and requires that the values contained in those registers are not
subject to tampering. This requirement is compatible with kernel-
based multi-threading, since one program thread cannot affect the
registers of other program threads. Furthermore, this requirement
is straightforwardly met, as long as preemptive user-level context
switching does not read those register values from data memory,
and as long as the program in question cannot make system calls
that arbitrarily change system state. This restriction on system
calls is necessary for excluding system calls that make data mem-
ory executable—in contradiction with NXD—and that change code
memory—in contradiction with NWC and possibly also in viola-
tion of UNQ.1
In general, assumptions are often vulnerabilities. When assump-

tions are invalidated somehow, security guarantees are diminished
or void. It is therefore important to justify assumptions (as we do
for NXD, for instance) or at the very least to make them explicit,
to the extent possible. Of course, we recognize that, in security,
any set of assumptions is likely to be incomplete. We focus on the
assumptions that we consider most relevant on the basis of analy-
sis and past experience, but for example neglect the possibility that
transient hardware faults might affect instruction semantics in arbi-
trary ways (e.g., [40, 45, 57]).

3.4 On Destination Equivalence
Preferably, control-flow enforcement should be as precise as pos-

sible. Without some care, schemes based on IDs and ID-checks
may be more permissive than necessary.
Section 3.1 assumes that if the CFG contains edges to two des-

tinations from a common source, then the destinations are equiv-
alent. This assumption need not always hold. For instance, in
a program compiled from a language with subtyping, one may
have a type T and a supertype T 0 that both implement a method
toString; a toString invocation on T may have a single des-
tination m while a toString invocation on T 0 may have the
destination m but also a second destination m0. In this case, m
andm0 are not equivalent, but an imprecise CFI enforcement tech-
nique may allow control to flow from a toString invocation on
T tom0.
One strategy for increasing precision is code duplication. For in-

stance, two separate copies of the function strcpy can target two
different destination sets when they return. In general, code du-
plication can be used for eliminating the possibility of overlapping
but different destination sets. (Specifically, we can prove that a sim-
ple construction that splits CFG nodes into multiple nodes always
yields graphs in which overlapping destination sets are identical.)
This approach, in the limit, amounts to complete function inlining,
apart from recursive calls; it has been used in several intrusion de-
tection implementations (e.g., [25]).
1Most software security enforcement mechanisms adopt restric-
tions of this sort even for single-threaded programs, since system
calls that arbitrarily change system state invalidate many assump-
tions of those mechanisms, and can even turn off those mecha-
nisms. Nevertheless, the restrictions are usually left unstated be-
cause, in practice, they are difficult to satisfy without support from
the operating system. CFI makes it easier to enforce the restric-
tions, by allowing system calls and their arguments to be con-
strained without any operating system modification (as discussed
further in Section 5).

Alternatively, refining the instrumentation is also a good option
for increasing precision. For example, more than one ID can be in-
serted at certain destinations, or ID-checks can sometimes compare
against only certain bits of the destination IDs.
Of course, the assumption of Section 3.1 can also be made true

by adding edges to the CFG, thus losing precision. In practice, this
alternative can often be satisfactory: even a coarse CFI instrumen-
tation with only one ID value—or with one ID value for the start of
functions and another ID value for valid destinations for function
returns—will yield significant guarantees. For instance, that instru-
mentation will prevent jumps into the middle of functions, which
are necessary for some exploits.

3.5 Phases of Inlined CFI Enforcement
Inlined CFI enforcement can proceed in several distinct phases.

The bulk of the CFI instrumentation, along with its register liveness
analysis and other optimizations, can be separated from the CFG
analysis on which it depends, and from install-time adjustments
and verifications.
The first phase, the construction of the CFGs used for CFI en-

forcement, may give rise to tasks that can range from program
analysis to the specification of security policies. Fortunately, a
practical implementation may use standard control-flow analysis
techniques (e.g., [2, 4, 58]), for instance at compile time. Section 4
describes how our x86 implementation applies these techniques by
analyzing binaries (rather than source code).
After CFI instrumentation (perhaps at installation time), another

mechanism can establish the UNQ assumption. Whenever software
is installed or modified, IDs can be updated to remain unique, as is
done with pre-binding information in some operating systems [3].
Finally (for example, when a program is loaded into memory

and assembled from components and libraries), a CFI verification
phase can statically validate direct jumps and similar instructions,
the proper insertion of IDs and ID-checks, and the UNQ property.
This last verification step has the significant benefit of making the
trustworthiness of inlined CFI enforcement be independent of the
complexity of the previous processing phases.

4. A PRACTICALCFI IMPLEMENTATION
This section reports on our implementation of inlined CFI en-

forcement, and on measurements and experiments.

4.1 The Implementation
We have implemented inlined CFI enforcement for Windows on

the x86 architecture. Our implementation relies on Vulcan [52], a
mature, state-of-the art instrumentation system for x86 binaries that
requires neither recompilation nor source-code access. This system
addresses the challenges of machine-code rewriting in a practical
fashion—as evidenced by its regular application to software pro-
duced by Microsoft. Thereby, despite being only a prototype, our
implementation of inlined CFI enforcement is both practical and
realistic.
Our implementation uses Vulcan for building a CFG of the pro-

gram being instrumented. This CFG construction correctly han-
dles x86 instructions that perform computed control transfers—
including function returns, calls through function pointers, and in-
structions emitted for switch statements and other dynamic dis-
patch (like C++ vtables). Our CFG is conservative in that each
computed call instruction may go to any function whose address
is taken; we discover those functions with a flow-insensitive analy-
sis of relocation entries in the binary. Our implementation is simpli-
fied by certain Windows particulars: there are no signals like those
of Unix, and Windows binaries provide a “SafeSEH” static list of



Function Call
Opcode bytes Instructions

Function Return
Opcode bytes Instructions

FF 53 08 call [ebx+8] ; call fptr C2 10 00 ret 10h ; return

are instrumented using prefetchnta destination IDs, to become

8B 43 08 mov eax, [ebx+8] ; load fptr

3E 81 78 04 78 56 34 12 cmp [eax+4], 12345678h ; comp w/ID

75 13 jne error_label ; if != fail

FF D0 call eax ; call fptr

3E 0F 18 05 DD CC BB AA prefetchnta [AABBCCDDh] ; label ID

8B 0C 24 mov ecx, [esp] ; load ret

83 C4 14 add esp, 14h ; pop 20

3E 81 79 04 cmp [ecx+4], ; compare

DD CC BB AA AABBCCDDh ; w/ID

75 13 jne error_label ; if!=fail

FF E1 jmp ecx ; jump ret

Figure 3: The CFI instrumentation of x86 call and ret used in our implementation.
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Figure 4: Execution overhead of inlined CFI enforcement on SPEC2000 benchmarks.

all possible runtime exception handlers. Other CFG intricacies,
such as setjmp and longjmp, are addressed using techniques
from the programming-languages and the intrusion-detection liter-
atures [4, 19, 25, 58].
Figure 3 shows how our CFI implementation rewrites the x86

machine code for an indirect function call and a corresponding
function return. The destination of the call instruction is stored
in memory at address ebx+8; the argument 10h makes the ret
instruction also pop 16 bytes of parameters off the stack. Next we
explain some of the details of the rewritten code. On x86, CFI
instrumentation can implement IDs in various ways (e.g., by suc-
cessive opcodes that add and subtract the same constant). Our pro-
totype, like alternative (b) of Section 3.2, uses prefetch instructions
for IDs. Our ID-checks, however, take after the other alternative of
Section 3.2: a cmp instruction directly compares against the desti-
nation ID bit pattern—and, hence, an infinite loop of the ID-check
opcode bytes 3E...D0 is possible. (We do not regard such loops
as a serious failure of CFI, since an attacker that controls all of
memory probably has many ways of causing infinite loops.) To
avoid a race condition, source instructions where the destination
address resides in data memory (such as ret) are changed to a jmp
to an address in a register. If an ID-check fails, our implementation
immediately aborts execution by using a Windows mechanism for
reporting security violations.
Our CFI instrumentation is crafted to allow low enforcement

overheads for most programs. Because the IDs and ID-checks
have the same locality properties as executing code, they are not
penalized by high memory latency. (They may however increase
pressure on caches, especially when instruction and data caches are
separate.) On the x86, the ID-check instrumentation can make use
of the standard calling conventions for further performance gain:
in almost all cases, the eax and ecx registers can be used di-
rectly at function calls and returns, respectively, and the x86 flags
do not have to be saved. During our experiments, we discovered
only about a dozen functions—mostly handwritten code in standard
libraries—where state (such as the x86 flags) needs to be preserved.

All CFI optimization, like the above, must be done carefully,
since it can lead to a change in program semantics or to invalid CFI
instrumentation. Fortunately, the use of a final verification phase
can ensure that the CFI guarantees will hold during execution de-
spite any errors in optimizations.

4.2 Measurements
We measured the overhead of our inlined CFI enforcement on

some of the common SPEC computation benchmarks [54]. We
performed all the experiments in this paper on Windows XP SP2
in “Safe Mode,” where most daemons and kernel modules are dis-
abled. Our hardware was a Pentium 4 x86 processor at 1.8GHz
with 512MB of RAM. The target programs were compiled with
Microsoft Visual C++ 7.1 using full optimizations. For SPEC, the
inputs were the complete reference datasets and the output was val-
idated as the correct result. We report the average of three runs;
measurement variance was negligible, with standard deviation of
less than one percent.
The CFG construction and CFI instrumentation of each binary

took about 10 seconds, with the size of the binary increasing by
an average 8%. Figure 4 gives the normalized overhead of CFI
enforcement, shown as increase in the running time of each CFI-
instrumented benchmark relative to the running time of the original
benchmark binaries. The measured overhead ranged from zero to
45%, and the benchmarks took 16% longer to execute, on average.
As shown by Figure 4, our prototype inlined CFI enforcement

hardly affects the performance of some programs, but it can cause
a substantial slowdown of other programs. Overall, the measured
performance overhead seems tolerable, even though we have not
yet explored most of the optimizations possible in x86 CFI in-
strumentation. Because of CFI verification, such further optimiza-
tion should reduce overhead without making CFI enforcement less
trustworthy.



Moreover, the performance overhead of CFI enforcement is com-
petitive with—or even better than—the cost of most comparable
techniques that aim to mitigate security vulnerabilities (e.g., [13,
29, 46]). For instance, the overhead of Program Shepherding is
more than 100% for the benchmark program crafty on Win-
dows; the corresponding CFI enforcement overhead is 45%, and
this is our highest measured overhead. Similarly, the overhead of
Program Shepherding is more than 660% for gcc onWindows, and
can be brought down to 35% only by exposing the security mecha-
nism itself to attack; the corresponding CFI enforcement overhead
is under 10%.
Note that the SPEC benchmarks focus on CPU-intensive pro-

grams with integer arithmetic. CFI will cause relatively less over-
head for I/O-driven server workloads. For example, one might ex-
pect to see an even smaller performance impact on FTP than on
SPEC (as in [63]).

4.3 Security-Related Experiments
It is difficult to quantify the security benefits of any given mitiga-

tion technology: the effects of unexploited vulnerabilities cannot be
predicted, and real-world attacks—which tend to depend on partic-
ular system details—can be thwarted, without any security benefits,
by trivial changes to those details.
Even so, in order to assess the effectiveness of CFI, we exam-

ined by hand some well-known security exploits (such as those
of the Blaster and Slammer worms) as well as several recently
reported vulnerabilities (such as the Windows ASN.1 and GDI+
JPEG flaws). CFI would not have prevented Nimda and some sim-
ilar exploits that rely on the incorrect parsing of input strings, such
as URLs, to cause the improper launch of the cmd.exe shell or
some other dangerous executable (see also [10]). On the other
hand, CFI would have prevented all the other exploits that we stud-
ied because, in one way or another, they all endeavored to deviate
from the expected control flow. Many exploits performed a “jump-
to-libc” control transfer from a program point where this jump
was not expected. Often this invalid control transfer was attempted
through heap overflows or some form of pointer subterfuge (of the
kind recently described by Pincus and Baker [42]).
Pointer subterfuge relies on modifications to data memory, and

can result in possibly arbitrary further modifications to data mem-
ory. Hence, thwarting pointer subterfuge calls for techniques that—
like ours—afford protection even when attackers are in full control
of data memory.
As a concrete example, let us consider the published attack on the

GDI+ JPEG flaw in Windows [20]. This attack starts by causing
a memory corruption, overwriting a global variable that holds a
C++ object pointer. When this pointer is later used for calling a
virtual destructor, the attacker has the possibility of executing code
of their choice. A CFI ID-check at this callsite can prevent this
exploit, for instance by restricting valid destinations to the C++
virtual destructor methods of the GDI+ library.
As another concrete example that illustrates the benefits of CFI,

we discuss the following C function, which is intended to return the
median value of an array of integers:
int median( int* data, int len, void* cmp )
{

// must have 0 < len <= MAX_LEN
int tmp[MAX_LEN];
memcpy( tmp, data, len*sizeof(int) );
qsort( tmp, len, sizeof(int), cmp );
return tmp[len/2];

}

This code is vulnerable—and can be exploited by an attacker that
controls the inputs—even on systems that use deployed mitigation

techniques such as stack canaries and hardware NXD support. We
have constructed actual exploits for this vulnerability; they work
even on Windows XP SP2 with x86 hardware NXD support. One
exploit is based on a traditional stack-based buffer overflow; oth-
ers work via C++ vtables and the heap. The exploits overwrite the
qsort comparison function pointer, pointing it to a sequence of
four machine-code opcode bytes (found in the middle of an exist-
ing function) which reposition the stack pointer esp in a particu-
lar way. Subsequently, when cmp is called, the exploit proceeds
through the unwinding of the stack; as each frame is popped, the
exploit executes a particular piece of existing code. Eventually, the
attacker has full control over the system.
With CFI, on the other hand, the vulnerability in the median

function cannot be exploited in this manner. CFI forbids invalid
control transfers into the middle of functions (as well as returns
to the start of functions), and it therefore prevents the necessary
first step of the exploits (and would also prevent subsequent steps).
This protection is not dependent on how closely the CFI runtime
guarantees correspond to a precise CFG of the program; even a
coarse CFG has the desired effect.
For a final set of experiments, we ported to Windows a suite of

18 tests for dynamic buffer-overflow prevention developed by Wi-
lander and Kamkar [61]. (Wilander and Kamkar were unable to
provide us with the source code for two of the 20 tests from their
study.) The tests in the original suite concern whether attackers
could directly execute shellcode of their choosing. We extended
the tests to consider also “jump-to-libc” and pointer subterfuge
attacks. We computed CFGs for these tests, and applied our CFI
instrumentation. With CFI enforcement, none of the exploits in
this test suite were successful, because they attempted to deviate
from the corresponding CFGs. This result is encouraging, espe-
cially since other mitigation techniques have failed these tests [61].

5. BUILDING ON CFI
CFI ensures that runtime execution proceeds along a given CFG,

guaranteeing, for instance, that the execution of a typical func-
tion always starts at the beginning and proceeds from beginning
to end. Thereby, CFI can increase the reliability of any CFG-based
technique (for example, strengthening previous techniques against
buffer overflows and for intrusion detection [32, 58]).
This section describes other applications of CFI, as a founda-

tion for Inlined Reference Monitors (IRMs), for SFI in particular,
and for Software Memory Access Control (SMAC), which we in-
troduce here. It also shows how to tighten CFI enforcement by
relying on either SMAC or standard x86 hardware support.

5.1 CFI as a Foundation for IRMs
IRMs enforce security policies by inserting into subject programs

the code for validity checks and also any additional state that is
needed for enforcement [16]. IRMs require that the subject pro-
gram can neither circumvent the inserted validity checks nor sub-
vert the added state. By constraining the CFG enforced by CFI, the
first of these requirements is easily satisfied. Further, SMAC (dis-
cussed below) supports isolated data memory regions in which the
added IRM state can be safely kept. Thus, CFI and SMAC greatly
facilitate the implementation of IRMs.
In particular, CFI can contribute to the IRM enforcement of se-

curity policies that restrict a program’s use of the underlying op-
erating system (for instance, preventing files with some filenames
from being written) [44]. Such policies are often necessary; many
of their existing implementations modify operating systems, some-
thing that CFI enables us to avoid. With CFI, it is easy to enumerate
those points in a program where system calls can be made. At each



int compute_sum( int a[], int len )

{

int sum = 0;

for(int i = 0; i < len; ++i) {

sum += a[i];

}

return sum;

}

...

mov ecx, 0h ; int i = 0

mov esi, [esp+8] ; a[] base ptr

and esi, 20FFFFFFh ; SFI masking

LOOP: add eax, [esi+ecx*4] ; sum += a[i]

inc ecx ; ++i

cmp ecx, edx ; i < len

jl LOOP

Figure 5: Leveraging CFI for optimizations: hoisting an SFI check out of a loop.

such point, an IRM validity check can be inserted, and CFI can
ensure that the check cannot be circumvented.

5.2 Faster SFI
Software Fault Isolation (SFI) is one particular type of IRM de-

signed to emulate traditional memory protection. In SFI, code
is inserted at each machine-code instruction that accesses mem-
ory to ensure that the target memory address lies within a certain
range [17, 34, 50, 60].
Much as in Section 5.1, CFI makes SFI instrumentation non-

circumventable. CFI can also reduce SFI overhead. For instance,
the guarantees about control flow remove the need to check mem-
ory addresses in local variables repeatedly. Figure 5 demonstrates
one such optimization. The figure shows a C function that sums the
contents of an array, and the first two basic blocks of the x86 ma-
chine code that a compiler might emit for this function. (The start
of the first basic block is elided.) The machine code includes an
and instruction that masks off the top bits from the base address
of the array, constraining the array to reside at an address whose
top eight bits are either 00h or 20h. As long as the low mem-
ory (whose addresses start with 00h) is inaccessible, this use of
an and instruction can establish several disjoint, isolated memory
regions as demonstrated in PittSFIeld, a recent, efficient x86 SFI
implementation [34].
The SFI literature is full of other optimizations that simplify the

inserted checks. For example, checks can often be eliminated when
memory is accessed through a register plus a small constant offset,
as long as inaccessible “guard pages” are placed before and after
permitted memory ranges. This optimization is especially useful
for accesses to local, stack variables, such as reading the value at
esp+8 in Figure 5. However, the weak control-flow guarantees of
past SFI implementations make it difficult to reason about program
behavior and, partly as a result, past optimizations have sometimes
led to vulnerabilities [17, 34].
CFI makes optimizations more robust and enables many new

ones. For the code in Figure 5, CFI allows the and instruction to
be hoisted out of the loop; thus, at runtime, a single masking opera-
tion suffices for checking all memory accesses due to the array. Past
implementations of SFI require a masking operation to accompany
each execution of the add instruction, because a computed jump
might result in that instruction executing with arbitrary values in
registers esi and ecx. CFI precludes such computed jumps, and
with CFI it is easy see that loop execution does not change esi
and increments ecx from a base of zero.
These optimization can result in a striking overhead reduction.

The SFI literature includes measurements of three systems for x86:
Vino’s MiSFIT, x86 SASI, and PittSFIeld [17, 34, 50]. For compar-
ison, we applied CFI and SFI, with the optimizations of Figure 5,
to two benchmark programs, hotlist and the C reference imple-
mentation of MD5. The hotlist benchmark searches a linked
list of integers for a particular value [50]. For hotlist, MiSFIT
and SASI produce 140% and 260% overheads, respectively, when
both memory reads and writes are restricted. Our corresponding

measurement shows only 22% overhead. For MD5, the reported
performance overheads for PittSFIeld and MiSFIT range from 23%
to 50% [34, 50]. Our corresponding measurement shows only 4.7%
overhead.
For this preliminary investigation of SFI, we performed some of

the machine-code rewriting by hand on the two benchmark pro-
grams. As is common in previous work on SFI, we also made sev-
eral simplifying assumptions about memory layouts, for example
that low memory is inaccessible. In many existing systems, those
assumptions cannot be fully satisfied. For useful, realistic memory
protection, the rewriting process should be fully automated, and
those assumptions should be removed. The SFI policy should also
be revisited. We are currently developing a system that addresses
these concerns, in collaboration with Michael Vrable.

5.3 SMAC: Generalized SFI
SMAC is an extension of SFI that allows different access checks

to be inserted at different instructions in the program being con-
strained. Therefore, SMAC can enforce policies other than those
of traditional memory protection. In particular, SMAC can create
isolated data memory regions that are accessible from only specific
pieces of program code, for instance, from a library function or
even individual instructions. Thus, SMAC can be used to imple-
ment security-relevant state for IRMs that cannot be subverted. For
instance, the names of files about to be opened can first be copied
to memory only accessible from the “FileOpen” function, and then
checked against a security policy.
CFI can help with SMAC optimizations, much as it does for SFI

optimizations; conversely, SMAC can help in eliminating CFI as-
sumptions. SMAC can remove the need for NWC, by disallowing
writes to certain memory addresses, and for NXD, by preventing
control flow outside those addresses. (This synergy between CFI
and SMAC is not a circular-reasoning fallacy, as we demonstrate in
the formal treatment of CFI with SMAC [1].)
Figure 6 shows SMAC instrumentation that can guarantee that

only code is executed. As in Figure 5, an and instruction masks off
the top bits of the destination addresses of computed x86 function
calls and returns. Thus, code memory is restricted to addresses
whose top eight bits are 40h (provided that addresses that start with
00h are invalid). To ensure NWC and NXD for simple regions of
code, stack, and data, the SMAC checks can be as straightforward
as this single and instruction.
Alternatively, the SMAC checks might embody elaborate poli-

cies, and allow arbitrary layouts of data and code memory regions,
although the code for such checks is likely to be more complex and
less efficient than that of Figure 6. In this paper, since it suffices for
our immediate purposes, we follow the SFI literature and focus on
coarser-grained memory protection.

5.4 A Protected Shadow Call Stack
Because CFI concerns a finite, static CFG, it cannot ensure that

a function call returns to the callsite most recently used for invok-
ing the function. Complementing CFI with the runtime call stack



call eax ; call func ptr ret ; return

with CFI, and SMAC discharging the NXD requirement, can become:
and eax, 40FFFFFFh ; mask func ptr

cmp [eax+4], ID ; compare dst w/ID

jne error_label ; if != fail

call eax ; call func ptr

prefetchnta ID ; label ID

mov ecx, [esp] ; load return dst

and ecx, 40FFFFFFh ; mask return dst

cmp [ecx+4], ID ; comp dst w/ID

jne error_label ; if != fail

add esp, 4h ; pop 4

jmp ecx ; jump return dst

Figure 6: Instrumentation of x86 call and ret, with CFI and SMAC.

call eax ; call func ptr ret ; return

with a CFI-based implementation of a protected shadow call stack using hardware segments, can become:
add gs:[0h], 4h ; inc stack by 4

mov ecx, gs:[0h] ; get top offset

mov gs:[ecx], LRET ; push ret dst

cmp [eax+4], ID ; comp fptr w/ID

jne error_label ; if != fail

call eax ; call func ptr

LRET: ...

mov ecx, gs:[0h] ; get top offset

mov ecx, gs:[ecx] ; pop return dst

sub gs:[0h], 4h ; dec stack by 4

add esp, 4h ; skip extra ret

jmp ecx ; jump return dst

Figure 7: Instrumentation of x86 call and ret, with CFI and a protected shadow call stack.

(see [11, 22, 23, 24, 37, 43]) can guarantee this property and in-
crease the precision of CFI enforcement. However, if CFI is to rely
on runtime information such as a call stack, the information should
not be maintained in unprotected memory, as the ordinary call stack
usually is, since the attacker may corrupt or control unprotected
memory. Therefore, a protected shadow call stack is required. The
assumption that attackers cannot modify this stack directly is nec-
essary, but not sufficient. It is also crucial to guard the stack against
corruption that may result from program execution.
One possible strategy for implementing a protected shadow call

stack employs CFI and SMAC. Specifically, the shadow call stack
may be maintained in a memory region whose addresses start with
a specific prefix (e.g., 10h), and protected by SMAC checks such
as those of Section 5.3. Static verification can then ensure that
only SMAC instrumentation code at call and return instructions can
modify this memory region, and only by correctly pushing and pop-
ping the correct values.
In this section we focus on an alternative implementation strat-

egy. The resulting implementation is even simpler and more effi-
cient than one that employs SMAC. It leverages the CFI guarantees
and standard x86 hardware support. Specifically, we maintain the
shadow call stack in an isolated x86 segment2. With CFI, static ver-
ification can ensure that a particular segment register, or segment
selector, is used properly by the instrumentation code for call and
return instructions, and that only this instrumentation code accesses
the corresponding segment. Without CFI, on the other hand, it is
extremely difficult to trust the use of segments in an x86 machine-
code sequence of non-trivial size. For instance, the opcodes for
loading an improper segment selector might be found within basic

2The x86 architecture allows multiple segments to exist simulta-
neously within an application. A segment is a specified region of
memory, named using an ordinal selector. A segment is adopted
by loading its ordinal into a segment register; there are six such
registers, of which some are rarely, if ever, used in modern ap-
plication code. All memory accesses are performed relative to a
segment specified by a segment register; the instructions determine
which segment register is to be used, either implicitly or explicitly.
On most popular operating systems, user-level code can specify
memory regions for its own local segments, which are then context-
switched with the application.

blocks in system library code, or even within the opcodes of a long,
multi-byte instruction; without CFI, an attacker might be able to
direct execution to those places.
Figure 7 shows how we use segments in our instrumentation.

The segment register gs always points to the memory segment
that holds the shadow call stack and which has been created to
be isolated and disjoint from other accessible memory segments.
On Windows, gs is unused in application code; therefore, without
limitation, CFI verification can statically preclude its use outside
this instrumentation code. As shown in the figure, the instrumenta-
tion code maintains (in memory location gs:[0h]) an offset into
this segment that always points to the top of the stack. The use of
the protected shadow call stack implies that each return goes to the
correct destination, so no ID-checks are required on returns in this
instrumentation code.
The isolated memory segment for the shadow call stack can be

created by user-mode application code, as long as this activity hap-
pens before all other code executes, and only this code loads new
selectors into segment registers. For each thread of execution, this
initial code can truncate the existing code and data segments and
specify that the new, isolated segment lies within the freed-up ad-
dress region. CFI can guarantee that the machine code for this setup
activity will remain inaccessible once it has executed.
Alternatively, the isolated memory segment might be created by

the operating system. Support from the operating system could
provide other benefits, such as reduced resource consumption by
fast detection of overflows in the shadow call stack (for example,
using “guard pages”) and dynamic increases in the segment size.
We do not assume this support from the operating system, as it
is not standard at present. We depend only on current Windows
features.
We have implemented a protected shadow call stack for Win-

dows on the x86 architecture, relying on segments and CFI, as out-
lined above. Figure 8 shows detailed performance measurements
for the SPEC benchmarks. We observed only a modest perfor-
mance overhead for our CFI-protected shadow call stack instru-
mentation: on average 21%, with 5% for gzip and 11% for gcc.
The overhead includes that of CFI enforcement without the un-
necessary ID-checks on returns. These measurements are consis-
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Figure 8: Enforcement overhead for CFI with a protected shadow call stack on SPEC2000 benchmarks.

tent with the overhead reported in the literature for unprotected
shadow call stacks (whose integrity could be subverted by attack-
ers) [43]. In contrast, the overhead reported in the literature for pro-
tected shadow call stacks ranges from 729% (for gzip) to 1900%
(for gcc) [11, 23]. While the dramatic improvement that we obtain
is partly due to the use of segments, this use of segments is possible
only because of CFI.
Once we have a protected shadow call stack, further restrictions

on control flow become possible. For example, the control-flow
policy could require that every call from a certain function g to an-
other function h be immediately preceded by a call from a third
function f to g. (Analogous restrictions often appear in the lit-
erature on intrusion detection.) Even further restrictions become
possible if we keep a protected computation history that records all
control transfers. For example, the control-flow policy could then
require that a certain function f is called at most as often as another
function g. Such restrictions may sometimes be desirable; for in-
stance, they might prevent some “confused deputy” attacks [28].
On the other hand, we believe that even the simplest kind of CFI
enforcement is quite effective at thwarting external attacks that aim
to control software behavior.

6. FORMAL STUDY (SUMMARY)
In this section we summarize our formal study of CFI. Another

paper contains further details [1]. We view this study as central to
our work, as a major difference with literature on previous miti-
gation tools, and as an important similarity with research on type-
safe languages. We have found it helpful for clarifying hypotheses
and guarantees. We have also found it helpful as a guide: in our
research, we rejected several techniques that were based on un-
clear assumptions or that would have provided hard-to-define pro-
tections.
More specifically, this study includes a semantics for programs,

definitions for program instrumentation, and results about the be-
havior of instrumented programs. The semantics allows for the
possibility that an attacker controls data memory. The program
instrumentation has two variants, with and without SMAC; the lat-
ter addresses a machine model with weaker assumptions. In what
follows, we focus on the variant without SMAC, except where oth-
erwise noted. Our main theorems establish that CFI holds for in-
strumented programs.
The machine model and the programs that we employ are typi-

cal of research in programming-language theory. They enable us to
consider CFI but exclude virtual memory, dynamic linking, thread-
ing, and other sophisticated features found in actual systems. In the
machine model, an execution state consists of a code memoryMc,
a data memory Md, an assignment of values to registers R, and a
program counter pc. Here, Mc and Md map addresses to words,

R maps register numbers to words, and pc is a word. Essentially,
our language is a minor variant of that of Hamid et al. [27]. We add
only an instruction in which an immediate value can be embedded,
as a label, and which behaves like a nop. It is directly analogous to
the label ID instruction of Section 3.1.
We give a formal operational semantics for the instructions of

our language. For each of the instructions, the semantics says how
the instruction affects memory, the machine registers, and the pro-
gram counter. For example, for the instruction add rd , rs , rt , the
semantics says:

IfMc(pc) contains the encoding of add rd , rs , rt , and
the current state has code memory Mc, data memory
Md, program counter value pc, and register values R,
and if pc + 1 is within the domain of Mc, then in the
next state the code memory and data memory are still
Mc andMd, respectively, pc is incremented, and R is
updated so that it maps rd to R(rs) + R(rt).

We consider SMAC with a variant of this semantics that includes
fewer built-in checks. In the example of the add rd , rs , rt instruc-
tion, the variant does not include the precondition that pc + 1 is
within the domain of Mc. In other words, the machine model al-
lows the possibility that pc points outside code memory, and the
instrumentation aims to ensure that this possibility is harmless.
We depart significantly from the work of Hamid et al. and other

previous work by including a representation of the attacker in our
model. Despite its simplicity, we regard this departure as one of
our main formal contributions. Since the attacker that we have in
mind is quite powerful, one might imagine that it could be difficult
to capture all its capabilities. Fortunately, we can adopt an eco-
nomical representation of the attacker. This representation consists
in introducing one more rule into our operational semantics. The
new rule expresses attacker steps, and says that at any time the at-
tacker may modify data memory and most registers. It excludes the
small number of distinguished registers on which the instrumen-
tation relies; it also excludes code memory, consistently with our
assumption NWC.
As usual in programming-language theory, the operational se-

mantics describes state transitions by precise rules. For the instruc-
tion add rd , rs , rt , for example, we have that:

(Mc |Md ,R, pc)
!n

(Mc |Md ,R{rd 7! R(rs) + R(rt)}, pc + 1)

when Mc(pc) holds add rd , rs , rt and pc + 1 is in the domain
ofMc . The relation!n is a binary relation on states that expresses
normal execution steps. For the attacker, we have a rule that enables



the following transitions, for allMc ,Md ,Md
0, R, and pc:

(Mc |Md ,R, pc)
!a

(Mc |Md
0,R, pc)

The relation!a is a binary relation on states, andMd
0 is the arbi-

trary new value of the data memory. We do not show the modifica-
tions to registers, for simplicity—our actual rule is more general in
this respect. The next-state relation! is the union of!n and!a.
In our formal study, instrumentation is treated as a series of pre-

cise checks on programs. The checks capture the conditions that
well-instrumented code should satisfy, and do not address how the
instrumentation happens. Only the former concern is directly rele-
vant to security. We write I(Mc) when code memory Mc is well-
instrumented according to our criteria. These criteria include, for
example, that every computed jump instruction is preceded by a
particular sequence of instructions, which depends on a given CFG.
When we consider SMAC, we also require that every memory op-
eration is preceded by a particular sequence of instructions. Those
sequences are analogous to the ones used in our actual implemen-
tation and described in detail in this paper. There are however dif-
ferences in specifics, largely because of the differences between the
simple machine model of our formal study and the x86 architecture.
With these definitions, we obtain formal results about our instru-

mentation methods. Those results express the integrity of control
flow despite memory modifications by an attacker. Our main the-
orems say that every execution step of an instrumented program is
either an attack step in which the program counter does not change,
or a normal step to a state with a valid successor program counter.
That is:

Let S0 be a state with code memory Mc such that
I(Mc) and pc = 0, and let S1, . . . , Sn be states such
that S0 ! S1 ! ... ! Sn. Then, for all i 2
0..(n � 1), either Si !a Si+1 or the pc at Si+1 is
one of the allowed successors for the pc at Si accord-
ing to the given CFG.

Thus, despite attack steps, the program counter always follows the
CFG. The proof of these theorems consist in fairly conventional but
long inductions on executions.
We have yet to pursue a similar formal study for the x86 archi-

tecture. Such a study may well be viable (as suggested by recent
work [34]), but it may produce diminishing returns, and it would
be arduous, not least because of the current absence of a complete
formal specification for the x86 architecture.

7. CONCLUSION
The use of high-level programming languages has, for a long

time, implied that only certain control flow should be expected dur-
ing software execution. Even so, at the machine-code level, rela-
tively little effort has been spent on guaranteeing that control actu-
ally flows as expected. The absence of runtime control-flow guar-
antees has a pervasive impact on all software analysis, processing,
and optimization—and it also enables many of today’s exploits.
CFI instrumentation aims to change this situation by embedding

within software executables both a control-flow policy to be en-
forced at runtime and the mechanism for that enforcement. Inlined
CFI enforcement is practical on modern processors, is compati-
ble with most existing software, and has little performance over-
head. CFI can also enable substantial performance improvements
for other security mechanisms. Finally, CFI is simple, verifiable,
and amenable to formal analysis, yielding strong guarantees even
in the presence of a powerful adversary.
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[16] Ú. Erlingsson and F. Schneider. IRM enforcement of java
stack inspection. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 246–255, 2000.
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