
Chapter 5

Authentication for People

The challenge is to devise authentication methods that exploit the strengths
yet accommodate the weaknesses of our human minds and bodies. Computers
are great at doing cryptographic calculations and storing keys (arbitrary bit
strings) for later retrieval. Humans are not. So cryptographic protocols, which
work so well for one computer to authenticate another, are impractical when
a computer must authenticate a person or when a person must authenticate a
computer.

Methods to authenticate an identity being claimed by a person are grouped
by security cognoscente into three broad categories.

Something you know. You demonstrate knowledge of a secret or fact(s)
unlikely to become known to impersonators.

Something you have. You demonstrate possession of some distinctive
object that is difficult for an impersonator to obtain or fabricate.

Something you are. You allow certain of your physical attributes to be
measured, believing that corresponding measurements will not be similar
for impersonators.

Moreover, by using multiple authentication methods, our confidence in the
result can be increased beyond what any single method provides. Users of bank
ATMs are likely familiar with two-factor authentication involving “something
you know” (a PIN) and “something you have” (a plastic bank card). Here,
ignorance of the PIN makes it difficult for an attacker to benefit from stealing
the bank card, and without possessing the bank card an attacker cannot benefit
from learning your PIN. The general case is multi-factor authentication, where
multiple independent1 methods are used to authenticate a person.

1Recall from the Defense in Depth discussion (see page 19) that two mechanisms are con-
sidered independent to the extent that an attack to compromise one is unlikely to compromise
the other.

37

Copyright 2009. Fred B. Schneider. All Rights Reserved

38 Chapter 5. Authentication for People

Identity and Enrollment

We define an identity to be a set of attributes. Each attribute is a statement
or property about an individual; an attribute that is associated with exactly
one individual (in some presumed population) is called an identifier. A given
person is likely to have multiple identities (e.g., as a student, as a citizen, as
a credit-worthy consumer), comprising various attributes (e.g., attends classes
CS513 and CS481, is a registered Democrat, always pays bills) some of which
are also identifiers (e.g., Cornell University student id is 140411, social security
number is 78-05-1120).

You might think in terms of having a single identity comprising all of your
attributes, but virtually nobody else views you in this way. Most people will
know only a few of your different identities. And by keeping these various
identities separate, your friends associated with one identity need not know
about your friends associated with another. Anyone who has ever tried to stay
friends with both members of a couple after they have ended their relationship
will know the wisdom in being able to have distinct sets of acquaintances.

Besides authentication, we might be interested in identification—a process
by which the identity of an individual is determined from attributes that have
been claimed or observed for that person. Authentication takes as input both an
identity and a set of attributes (and returns whether they match), whereas iden-
tification requires only the set of attributes as input (and returns an identity).
A border guard who checks whether a passport names the bearer is perform-
ing authentication; a video surveillance system attempting to locate suspected
terrorists in a crowd is performing identification.

An identity is most useful if we can have confidence its constituent attributes
actually hold for any individual authenticated under that identity.2 An enroll-
ment protocol, executed before the identity is added to the system, provides an
initial validatation of these attributes.

• Some attributes can be checked electronically. For example, to create
a new account at a web server, most of us have experienced a captcha

(Completely Automated Public Turing Test to Tell Computers and Humans
Apart), which is a challenge-response test that is easy for a human to solve
but difficult for a computer. One well known captcha displays distorted
images of character sequences that are too complex for state-of-the-art
image recognition software but are easily recognized by humans.

• Other attributes can only be checked by initiating physical action or provd-
ing physical evidence. For example, Alice might demonstrate that some
bank account is under her control by transfering $1.00 from that account
to a specified third party; Bob might validate his name by presenting
a valid driver’s license and passport, where each contains a photograph
matching the presenter’s face.

2For this reason, some authors prefer the term claim to attribute.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.1. Something You Know 39

The design of enrollment protocols is tricky. Documents and other forms of
physical evidence can be forged or altered. Moreover, documents that describe
attributes of their subjects rarely offer proof that can be independently checked.
A birth certificate, for example, contains no proof that the bearer is the one
named in the birth certificate or that the claimed relationship between mother
and child is valid.3 Even the meaning of unaltered and valid official documents is
frequently misconstrued. For example, increased confidence derived by requiring
both a passport and a birth certificate is unfounded when these documents are
not independent, as is frequently the case.4

Vendors of authentication services typically offer a choice of enrollment pro-
tocols. The choices range from protocols for obtaining low-confidence judgments
about the validity of the attributes, perhaps based on credentials submitted by
mail, all the way to protocols that yield high-confidence judgments based on
in-person interviews, physical examinations, or even background investigations.
However, it is not clear how a computer system could leverage judgments about
enrollment confidence, since it is the task that usually dictates the degree of
confidence sought about attribute validity. A system is more likely to benefit
from having a suite of authentication protocols than having a suite of enroll-
ment protocols, since this enables obtaining the appropriate level of confidence
about the identities involved in each different task. For example, banks and
other financial institutions use multi-factor authentication for customers mak-
ing large withdrawals but use a single low-confidence authentication protocol
for customers making deposits.

5.1 Something You Know

Knowledge-Based Authentication. With knowledge-based authentication,
each individual, as part of the enrollment protocol, provides the system with an-
swers to a set of queries; thereafter, to authenticate that individual, the system
poses some subset of those queries and compares the responses it receives with
the answers provided at enrollment. Archetypal queries concern an individual’s
family (e.g., “What is your mother’s maiden name?”), life experiences (e.g., “In
what cities have you lived?”), or current circumstance (e.g., “What is your place
of employment?”).

The best queries have answers that are not widely known and cannot easily
become known to an attacker attempting to impersonate someone.5 Thus, good

3In contrast, DNA provide an independently verifiable proof of a highly probable biological
connection to a person or of a genetic relationship between two people, because new DNA
samples can be collected and checked whenever confirmation of the claim is sought.

4A birth certificate is needed to obtain a U.S. passport, so these documents are not inde-
pendent and there is little basis for increased confidence from having both.

5There is, for example, little benefit in asking violinist Nadja Solerno-Sonnenberg about her
mother’s maiden name, which would likely be “Solerno” given the hyphenated construction of
“Solerno-Sonnenberg”. And should the “correct” answer to a knowledge-based authentication
query for a given individual become known to an attacker, it suffices to invent new queries and
use them. However, such newer queries might be increasingly obscure, ultimately imposing
an unacceptable memory burden on a subject, who must remember those answers.

Copyright 2009. Fred B. Schneider. All Rights Reserved

40 Chapter 5. Authentication for People

queries become difficult to find when there is a wealth of publicly available
information about individuals. And the trends here are not favorable, with the
ever-expanding world wide web and with cultural norms that encourage details
of individuals’ lives to be revealed in blogs and through participation in online
communities. With so much personal information available online, web search
engines place at an attacker’s fingertips the answers to lots of the queries that
knowledge-based authentication systems have tended to use.

Any knowledge-based authentication scheme must have access to “correct”
answers for queries it poses. This leads to a vulnerabilitioes whenever different
systems happen to employ intersecting sets of queries: One system can now
impersonate its users to other systems, and furthermore an attacker who com-
promises one system can impersonate that system’s users to other systems. In
addition, people worried about having personal information aggregated may ob-
ject in principle to storing so much information about them on a single system,
although the information presumably would be stored in some secure way.

In summary, knowledge-based authentication is convenient, since it imposes
little burden on individuals to remember things, carry things, or submit their
bodies to measurement. Moreover, we can increase our confidence in an authen-
tication by requiring multiple queries to be correctly answered. But security of
this scheme ultimately depends on attackers not having access to information
about subjects, which is an assumption that is hard to check and might not
be sound, rendering the approach unsuitable for high-confidence authentica-
tion. Nevertheless, we see it employed today, for example, in web sites where a
user having forgotten his password responds to knowledge-based authentication
queries to establish an identity; the web site then sends email6 containing a
password to an address that is part of that identity.

Secret-Based Authentication. An individual can be authenticated on the
basis of a secret he knows, provided that secret is not known to would-be im-
personators and is difficult to guess or steal. We simply check whether a person
being authenticated as some identity knows the unique secret associated with
that identity. Ideally, the secret is some string selected from a relatively large
space of possibilities and in a manner unprejudiced by knowledge of reality or
beliefs, since this makes guessing difficult.7 Embodiments of such secrets in-
clude personal identification numbers (PINs), which are typically 4 digits long;
passwords, which are likely at least twice as long and involve any characters; and
passphrases, which are significantly longer still and also involve any characters.
We use the term password in this chapter, but what is said applies to PINs,
passphrases, and the other forms of secrets used for authenticating humans.

Secret-based authentication can be surprisingly subtle to implement. People
have difficulty memorizing seemingly random strings. And the ever increas-

6This email is typically not encrypted. Thus, the password would be available to any
passive wiretapper, rendering the approach unsuitable for senstive applications.

7The answers to knowledge-based authentication queries thus have only a superficial resem-
blence to such secrets, because the answers are prejudiced by knowledge of reality or beliefs
and therefore the answers can be guessed by attackers.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.1. Something You Know 41

ing power of computers means automated password guessing becomes feasible
sooner than you would think. These impact how passwords are best stored,
which in turn constrains the methods that can be used for checking whether a
correct password has been provided.

5.1.1 Choosing a Password

One obvious way to generate a password is to choose a string randomly from
some large space of possible choices. Given a set comprising N characters,
there are a total of NL length L strings of characters. For example, with the
52 lower- and uppercase alphabetic characters plus the 10 digits found on a
computer keyboard, the set of strings comprising 8 characters contains (52 +
10)8 or equivalently 218,340,105,584,896 (approximately 2.18× 1014) elements.
Include punctuation symbols and blank spaces, which increasingly are being
permitted in passwords, and the number of password candidates grows still
larger.

A password can be generated by a computer, invented by the person it will be
used to identify, or furnished by the system operator. None of these approaches
is a panacea.

• People are notoriously bad at memorizing random strings, and passwords
generated by a computer will seem random.8 So computer-generated pass-
words are hard to memorize, hence likely to be written down. A password
that is written down can be seen by others and stolen.

• Passwords invented by people are usually devised to be easy to remember—
a word in the dictionary, a loved-one’s name, a telephone number, a key-
board pattern (e.g., “asdf”), or some combination thereof. Passwords
drawn from such a significantly smaller space are known as a weak pass-
words because they are considerably easier to guess.9

• A password furnished by a system operator must be either computer-
generated or selected by some person; one of previous two cases then
applies. Moreover, an operator-selected password is best changed imme-
diately by the recipient, to prevent the operator from subsequently abusing
knowledge of that password. One of the above cases would apply to that
new password, too.

8Some have suggested that the computer employ rules to produce passwords that are
easy to remember because they are pronounceable. For example, every consonant might be
followed by a vowel and two adjacent letters might never both be vowels or consonants. Or, the
computer might generate passwords that are random sequences of existing words. However,
imposing such restrictions is counterproductive, since the amount of work to enumerate the
space of possible password choices is now reduced, making that attacker’s job easier.

9The 20 volume Oxford English Dictionary (second edition) contains on the order of 6.15×
105 words. Compare that with the 146,813,779,479,510 (approximately 1.46 × 1014) strings
having 10 or fewer alphabetic characters, and it becomes clear that there are considerably
more random alphabetic strings than dictionary words.

Copyright 2009. Fred B. Schneider. All Rights Reserved

42 Chapter 5. Authentication for People

For reasons of convenince, most systems allow people to invent their own pass-
words. Additional means must then be used to defend against attackers guessing
those weak passwords.

In on-line guessing attacks, the system itself is used by the attacker to check
password guesses. One defense here is to limit the rate or number of password
guesses allowed, thereby reducing the chances that an attacker will make a
correct guess.

• Make authentication a time-consuming process by requiring that pass-
words be entered manually, that checking a password require an intrini-
cally long computation, and/or that the system’s password checking rou-
tine include a sleep operation or some other delay.

• Impose a limit on unsuccessful guesses and, when that limit is reached,
disconnect from the source and refuse later attempts to authenticate that
identity (until a system operator intercedes).

The second measure also increases the chances an attack will be detected while
it is in progress or soon thereafter. Note, however, that limiting the number
of unsuccessful password guesses for a given identity creates an opportunity for
denial of service attacks; an attacker whose incorrect password guesses exceed
the limit blocks all authentications for that identity, which prevents the bona
fide owner of that identity from accessing the system.

By restricting what information is returned when an authentication attempt
fails, we further impede on-line guessing. Some systems prompt for the iden-
tifier being authenticated and reply with an error indicating if it is not known
to the system. Such replies tell attackers what identifiers could serve as targets
of attack. A better design is for the system to request the identifier and corre-
sponding password together; only after receiving both, does the system reply.
And if either the identifier is unknown or the password is erroneous then a sin-
gle, minimally-informative response is returned (e.g., “Authentication attempt
failed.”).

Covert channels provide another way an attacker might determine an iden-
tifier is valid. For example, if a system does not check the password when the
identifier is invalid, then a longer elapsed time for processing an authentica-
tion request indicates when it is worth trying other password guesses for that
same identifier. This vulnerability is eliminated by adding execution delays to
create either uniform or random response times. Another example of a covert
channel appeared in the TENEX operating system, where a password was a re-
quired argument to the connect system call. The implementation compared the
password argument, character by character, with the correct password; it termi-
nated when the first erroneous password character was found. If the password
argument spanned a page boundary then a page fault occurred whenever the
argument’s characters appearing on the first page were a prefix of the password.
Because the occurrence of a page fault could be sensed by the attacker and the
attacker could control the alignment of a password argument on a page, a covert

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.1. Something You Know 43

channel enabled an N character password to be deduced in 26N guesses instead
of the presumed 26N guesses.10

A system’s response to a successful authentication attempt should give (i)
the times when the last successful authentication for this identifier occurred,
and (ii) the times when authentication was unsuccessfully attempted since. In
reporting the last successful authentication, a user (who presumably will recall
when he last authenticated that identifier) can detect a prior successful on-
line guessing attack; in reporting past unsuccessful authentications, the user
becomes aware that on-line guessing attacks had been attempted.

The strongest defense against attackers guessing weak passwords is to enforce
a prohibition against users choosing them. To implement this, rules such as
those in Figure 5.1 can be employed to prevent users from creating easily guessed
passwords. Some of the rules are obvious (e.g., avoid passwords that appear
in a dictionary); other rules correspond to memory tricks that people use and
attackers know people use (e.g., replacing a letter by a number that looks similar,
such as replacing “e” in by “3” or “l” by “1”). No set of syntactic rules, however,
will completely characterize easy-to-guess passwords, and user laziness about
memorization provides a strong incentive for discovering classes of passwords
that are easy to remember but the rules do not reject. Sooner or later, attackers
too discover these password classes and include such passwords in their on-line
guessing attacks.

5.1.2 Storing Passwords

The obvious scheme for storing passwords is to use a file that contains the
set of pairs 〈uidi , passi 〉, where uidi is an identifier and passi is the associated
password. The file system’s authorization mechanism is then used to restrict
which principals can access this password file, as follows.

• An ordinary user must not be able to read the password file or its backups.
This prevents that user from obtaining the password for any identifier.

• An ordinary user must not be able to write the password file or its backups.
This prevents that user from changing the password for an identifier (to
then know that password).

• The program that authenticates users must be able to read the password
file.

• The program used to add/remove user identifiers and change passwords
must be able to read and write the password file.

10The first character of the password argument is placed as the last character of a page, and
connect is invoked. In at most 26 tries, the correct first character will be identified because a
page fault occurs. The password argument is next aligned so the first two characters appear
as the last characters of a page; another 26 guesses suffice to find that prefix. After N steps,
each requiring at most 26 guesses, the length N password is known.

Copyright 2009. Fred B. Schneider. All Rights Reserved

44 Chapter 5. Authentication for People

1. Strings easily derived from words or sequences of words appearing in an
English or foreign language dictionary, because they appear verbatim or
reversed, perhaps with the following transformations applied:

(a) deleting vowels or spaces,

(b) capitalizing some letters,

(c) adding a suffix and/or prefix,

(d) replacing one or more letters by similar looking non-alphabetic char-
acters (e.g., “0” for “o”) and/or by homophonic letters or clauses
(e.g., “4” for “for”).

2. Strings derived (in the sense of 1) from the user’s identity—name, initials,
login id, or other attributes.

3. Strings derived (in the sense of 1) from acronyms, names of people, or
names of places.

4. Strings shorter than a certain length (e.g., 8 characters).

5. Strings that do not contain a mix of numbers, special symbols, upper- and
lowercase characters.

6. Strings produced by typing simple patterns on the keyboard.

7. Strings comprising only numbers.

8. Strings that mix numbers and characters but resemble license plates, office
numbers, etc.

Figure 5.1: Rules Characterizing Weak Passwords

Security here requires trusting that the file system authorization mechanism has
no vulnerabilities, that the access-authorization policy for the password file is
correctly set whenever that file is edited and stored, that programs authorized to
read the file do not leak its contents, and that traces of file contents are not left
to be read from unallocated memory or unallocated disk pages that previously
stored the password file. Some are troubled by the need for all this trust, but
if the trust is not misplaced then storing passwords in this way leaves only one
avenue to attackers: on-line guessing.

An alternative to using the file system’s authorization mechanism for protect-
ing the confidentiality of passwords is to compute a cryptographic hash function
H(passi) for each each password passi and store the set of pairs 〈uidi ,H(passi)〉
as the password file. Because by assumption H(·) is a one-way function, knowl-
edge of H(passi) will not reveal enough about passi to be useful attackers.

Letting HashPwd denote the set of 〈uidi ,H(passi)〉 pairs stored in the pass-
word file, a person P is deemed to be authenticated if and only if P en-

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.1. Something You Know 45

1. P −→ Sys : uid , pass

2. Sys : if 〈uid ,H(pass)〉 ∈ HashPwd then P deemed authenticated.

Figure 5.2: Hashed Password Authentication Protocol

ters some identifier uid and password pass, and the system determines that
〈uid,H(pass)〉 ∈ HashPwd holds. This depicted in Figure 5.2.

Historically, MD5 or SHA-1 were used for H(·), but cryptoanalyists estab-
lished in 2005 that MD5 or SHA-1 do not satisfy the collision resistance prop-
erties required of cryptographic hash function. Some other cryptographic hash
function should therefore be used. An alternative, albeit slower, is to use a
shared key encryption algorithm configured to encrypt some constant C, using
pass (or something derived from it) as the key; early versions of UNIX imple-
mented H(·) by iterating DES several times with 0 for C. Recall, though, that
faster is not necessarily better when it comes to validating a password—on-line
guessing attacks are hindered by slower password checking, because then fewer
guesses can be attempted in a given interval.

Salt. Unrestricted read access to hased password file HashPwd still enables
off-line guessing attacks, also known as dictionary attacks. The attacker first
obtains a list11 of candidate passwords or, using rules like those in Figure 5.1,
constructs such a list; this list is then used by the attacker in computing a
dictionary, which is a set Dict of pairs 〈w,H(w)〉 for each word w in the list of
candidate passwords. Finally, the attacker reads HashPwd from the system to
be attacked and generates the set of pairs

{〈uid, pass〉 | 〈uid,H(pass)〉 ∈ HashPwd ∧ 〈pass,H(pass)〉 ∈ Dict} (5.1)

by identifying elements having the same H(pass) value in both HashPwd and
Dict . Each 〈uid, pass〉 pair in (5.1) enables the attacker to impersonate identifier
uid.

The computation of Dict and (5.1) constitute an up-front cost to the at-
tacker. However, such an investment often can be justified.

• The work to compute Dict is amortized, because the single Dict suffices
for attacking every system whose password file is computed using cryp-
tographic hash function H(·). All instances of a given operating system
typically use the same hash function, and therefore a single Dict can be
used in attacking any target running that operating system.

• Beyond obtaining a copy of HashPwd , the computation involved in ac-
tually attacking a given system—the construction of (5.1)—need not be
performed on that target system. The chance that an attacker’s prepara-
tions will be discovered, hence the risk to the attacker, is thus reduced.

11In 2007, lists found on attacker web sites contained as many as 40 million entries.

Copyright 2009. Fred B. Schneider. All Rights Reserved

46 Chapter 5. Authentication for People

1. P −→ Sys : uid , pass

2. Sys : 〈uid, n, p〉 := HashSaltPwd [uid]

3. Sys : if H(pass · n) = p then P deemed authenticated.

Figure 5.3: Hashed Password Authentication Protocol with Salt

Moreover, the attacker is now not limited by a target system’s computa-
tional power or deliberately slow implementation of H(·).

• The attack is likely to yield multiple user identifiers with passwords for
the target system, so it provides the attacker with multiple avenues of
compromise. This is ideal for the attacker who does not need to imper-
sonate a specific user, and many attacks require only the initial access that
impersonating any user provides. So the offline guessing attack succeeds
if any user identifier has a weak password.

One defense against off-line guessing attacks is to change the password file
in a way that makes the computation of (5.1) infeasible. To accomplish this, we
might store with each uidi a nonce ni, called salt, and combine that nonce with
passi before computing cryptographic hash function H(·). The password file
now stores a set HashSaltPwd of triples, 〈uidi, ni,H(passi · ni)〉. Early versions
of Unix used 12-bit numbers for salt; the nonce for a given uid was obtained by
reading the real-time system clock when creating the account for uid .

We extend the protocol of Figure 5.2 as shown in Figure 5.3 to accommodate
the per uid salt, where HashSaltPwd [uid] denotes the unique triple having the
form 〈uid, . . .〉 in HashSaltPwd .

With b bit nonces for salt, off-line guessing requires the attacker to compute
in place of Dict the considerably larger set SaltDict of triples 〈w, n,H(w · n)〉
for each candidate password w and each value n satisfying 0 ≤ n ≤ 2b − 1. So
SaltDict is 2b times as large as Dict and thus considerably more expensive to
compute and store. Analogous to (5.1), the attacker now constructs the set of
pairs

{〈uid, pass〉 | 〈uid, n,H(pass · n)〉 ∈ HashSaltPwd
∧ 〈pass, n,H(pass · n)〉 ∈ SaltDict}

(5.2)

and element 〈uid, pass〉 in that set enables the attacker to impersonate corre-
sponding user uid .

Pepper. The cleartext salt in HashSaltPwd does not defend against what we
will call a limited off-line guessing attack, where one particular system is the
target. The attacker here needs to compute only a subset of SaltDict—the
subset containing only those triples 〈w, n,H(w · n)〉 for which salt n appears in
HashSaltPwd on the target system. If HashSaltPwd contains N elements then
this subset of SaltDict is only N times the size of Dict . For b bits for salt,
N � 2b is likely to hold, so the attacker replaces an expensive computation

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.1. Something You Know 47

1. P −→ Sys : uid , pass

2. Sys : if (∃ n : 〈uid,H(pass · n)〉 ∈ HashPepperPwd)
then P deemed authenticated.

Figure 5.4: Hashed Password Authentication Protocol with Pepper

with one that is considerably cheaper. Specifically, the attacker incurs a cost
proportional to N |Dict | for computing a SaltDict that works against the one
target system of interest, instead of incurring a cost proportional to 2b|Dict | for
the SaltDict that would work against all targets.

To defend against limited off-line guessing attacks, we might keep the salt se-
cret by storing a set HashPepperPwd of pairs 〈uidi,H(passi · ni)〉, where nonce
ni, now called the pepper, is not stored elsewhere in the tuple for uidi (as salt
would be). A protocol for authenticating uid given a password pass is given in
Figure 5.4; step 2 deems P authenticated if and only if there is some pepper
n for which 〈uid,H(pass · n)〉 is an element of HashPepperPwd . To determine
whether such an n exists, the system must enumerate and check possible values.
This search is best started each time at a different, randomly selected place in
some standard enumeration of possible pepper values; otherwise, the delay to
authenticate uid conveys information about whether n is early or late in that
standard enumeration of possible pepper values, thereby reducing the size of
the search space, hence the work required of an attacker.

When pepper is used, the amount of work required to build a dictionary
PepperDict for an off-line guessing attack is proportional to the number of pairs
〈w,H(w · n)〉, for w ranging over the candidate passwords and n ranging over
all possible pepper values. For b bits of pepper, this means that PepperDict is
a factor of 2b larger than Dict ; the attacker’s work has been increased expo-
nentially. Moreover, unlike salt, pepper defends against limited off-line guessing
attacks, because the absence of cleartext pepper in HashPepperPwd means an
attacker has no way to generate the target-specific smaller dictionary that en-
ables a limited off-line guessing attack. So b bits of pepper constitutes a better
defense than b bits of salt.

Pepper is not a panacea, though. The number of possible pepper values
affects the time required to perform step 2 of the authentication protocol in
Figure 5.4. If this delay is too large, then users will lose patience. So the number
of bits of pepper must be kept small enough for step 2 to complete within a few
seconds, and the potency of pepper as a defense is limited. Compare this to salt.
The number of possible salt values is virtually unbounded, being constrained
only by the storage required for HashSaltPwd .

Putting it Together. By combining salt and pepper, we obtain a better de-
fense than results when either is used alone. Salt salti and pepper ppri are both
inputs to the cryptographic hash computed for each password passi; passwords
are stored in a set HashSsndPwd of triples 〈uidi, salti,H(passi · salti · ppri)〉;
and the protocol of Figure 5.5 is used for authentication.

Copyright 2009. Fred B. Schneider. All Rights Reserved

48 Chapter 5. Authentication for People

1. P −→ Sys : uid , pass

2. Sys : 〈uid, s〉 := HashSpicedPwd [uid]

3. Sys : if (∃ ppr : 〈uid, s,H(pass · s · ppr)〉 ∈ HashPepperPwd)
then P deemed authenticated.

Figure 5.5: Hashed Password Authentication Protocol with Salt and Pepper

If there are bs bits of salt, bp bits of pepper, and N tuples in HashSsndPwd ,
then a dictionary SsndDict for an off-line guessing attack would be 2bs+bp times
larger than |Dict|, and the subset of SsndDict required for a limited off-line
guessing attack would be 2bpN times larger than |Dict|. Off-line attacks are
made infeasible by choosing bs large enough. Defense against limited off-line
guessing attacks, however, depends on the number (2bp) of possible pepper
values which, unfortunately, is limited by the processing speed of the target
machine and the delay that users are willing to tolerate for step 3 of Figure 5.5.
Even stronger security requires some form of defense in depth, such as using
file system authorization to restrict read access to a password file that stores
cleartext salt or any form (i.e., hashed, salted and/or peppered) of password.12

5.1.3 Authenticating Requests for Passwords

A program that requests your password might be running on behalf of an op-
erating system that is trying to authenticate you. Or, it might be a password
harvester masquerading as the operating system and running on behalf of an
attacker who is attempting to steal your password. Human users thus need some
means to authenticate the source of password requests, and that is the subject
of this section. We shall see that because humans and computers have such
different capabilities, the means by which humans can authenticate computers
are very different from means computers can employ to authenticate humans.

Trusted Path. A trusted path is a trustworthy communications channel be-
tween an I/O device, like a keyboard and display, and a known program, like
an operating system’s authentication routine. One way users can avoid being
spoofed by password requests from an attacker’s program is to open13 such a
trusted path and communicate using it. The components and protocol steps are
given in Figure 5.6.

The security of this scheme depends on trusting the keyboard driver and
OS authentication routine. An attacker who alters either can build a password
harvester that, to a human user, appears to behave like what is outlined in

12For example, the shadow password file /etc/shadow in LINUX and /etc/master.passwd
in BSD Unix systems are read protected, and they store cleartext salt along with hashed,
salted passwords. Both systems continue to support /etc/passwd, which is generally readable
but does not contain any form of the password for each user id.

13In Microsoft’s Windows NT operating system and its successors, for example, typing
Ctrl-Alt-Delete serves this purpose.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.1. Something You Know 49

1. User : Activate the secure attention key (SAK) at the keyboard.

2. OS keyboard driver : Intercept each SAK activation and start the OS au-
thentication routine. Display a password request prompt (perhaps in a
separate window). Then monitor the keyboard for the user’s response.

3. User : Enter a user id and corresponding password.

4. OS keyboard driver : Forward that user id and password to the OS authen-
tication routine.

5. OS authentication routine: Validate the user id and password.

Figure 5.6: Trusted Path Component Authentication Protocol

Figure 5.6. You might think that rebooting the computer from its disk would
defend against such a compromised keyboard driver or OS authentication rou-
tine. However, rebooting from disk does not defend against an attacker who
has corrupted the version of the operating system stored on the disk. Nor does
rebooting from some other (known to be clean) I/O device suffice, if the attacker
has modified the boot loader to read the corrupted boot image on disk no matter
what boot device is specified. Defend the boot loader and an attacker can force
the wrong boot loader to execute by exploiting BIOS vulnerabilities; defend the
BIOS, and an attacker’s ability to modify the hardware remains problematic.

What then is the benefit of providing support for a trusted path? First, phys-
ically limiting access to the hardware does prevent an attacker from modifying
it, so one class of attacks can be ruled out. Second, if we trust the hardware,
thus assume it cannot be compromised, then we can defend against the other at-
tacks outlined above by leveraging a secure co-processor to detect modification
or replacement of system software.14 Finally, repositioning a vulnerability from
a higher layer (e.g., the operating system) down to a lower layer (e.g., the BIOS)
typically increases the security of the system, because exploiting vulnerabilities
at lower system layers usually requires more sophistication hence exceeds the
expertise of some threats.

Visual Secrets. Visual appearance is another way that users can authenticate
the source of password requests. Here, the manner in which the request is
rendered serves as a visual secret that is shared between requester and responder.
The secret might be a formatting convention, some specific text, and/or an
image; or the secret might embody how to access routines that provide the only
way for controlling some discernable aspect of certain outputs.

An executing program demonstrates knowledge of the visual secret by how
or where the password request is rendered. The human responder validates the
password request by inspecting it and ignoring those password requests whose

14This is discussed in §??.

Copyright 2009. Fred B. Schneider. All Rights Reserved

50 Chapter 5. Authentication for People

appearance departs from what is expected.
An attacker’s password request can now succeed only by demonstrating

knowledge of the appropriate visual secret. That can be made difficult in two
ways.

• Share a different visual secret with each user. Here, the protocol for a
password request involves two separate steps: (i) request a user id, and
(ii) request the password for that user id by displaying the appropriate
shared visual secret for the given user id.15 An attacker succeeds only
by obtaining the visual secret for each user id to be spoofed, something
presumed to be just as difficult as obtaining the corresponding password
by means other than a spoofed request.

• Prevent arbitrary programs from rendering certain text or images in cer-
tain regions of a display. By including in a password request some con-
tent that can be rendered only by a program demonstrating knowledge of
a secret, we prevent an attacker’s program from generating a legitimate
password request.

These schemes work when humans can and do distinguish among various
possible renderings of password requests. Yet humans have a tendency to over-
look minor details when reading text or viewing images. That enables attacks.
For instance, most people will not differentiate between characters output by a
program and an embedded image containing those same characters. Thus, by
embedding images instead of outputting characters, a program might be able
to circumvent defenses where knowledge of the secret is being demonstrated by
printing a character sequence. Experience with web browsers shows that peo-
ple also don’t look at status fields—much less look at them carefully—to see
whether they display expected values. A tamper-proof status field for the name
of a requester is, therefore, unlikely to defend against bogus requesters whose
names are spelled similarly to bona fide requesters.

Our human insensitivity to slight differences in rendering helps enable phish-
ing attacks, where attackers attempt to acquire private information by direct-
ing users to a web site designed to resemble the web site for some legitimate
institution. Users are induced to visit the attacker’s web site by being pre-
sented with a link that closely resembles a link for the site being spoofed16 (e.g.,
www.paypa1.com versus www.paypal.com), they are not careful about checking
this, and they enter private information (a password, perhaps) which then be-
comes known to the attacker.

Humans are quite good at recognizing and distinguishing pictures of dif-
ferent scenes or people. Thus, certain per-user visual secrets—those involving
larger, richer images—seem promising as a means for a human to authenticate
request sources. Moreover, improvements in user interfaces in conjunction with

15To prevent attackers from determining whether a particular user id is valid, the system
must not behave differently in step (ii) when a unknown user id is entered in step (i). One
solution is for the system to create a new visual secret for that invalid user id.

16This is sometimes known as a cousin-name attack.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.1. Something You Know 51

an expanding population of more-experienced users ought to mean that, in the
future, users will be better at detecting differences in how requests are rendered.

5.1.4 Password Pragmatics

A single password is far easier to devise and remember than multiple passwords.
So it is tempting to stick with one password, reusing it for all your various
different identities (e.g., computer accounts on different machines, various web
sites, etc.). However, an attacker now gains great leverage from compromising
that single password. There are two obvious defenses:

• If each password has only a limited lifetime, then a compromised password
sooner or later will become useless to an attacker—even if that compromise
never becomes known.

• If separate passwords are employed for different identities, then an attacker
who compromises one password could impersonate only the one identity.

How might systems support these practices?

Password Expiration. Some systems periodically force users to select new
passwords, either after a fixed interval has elapsed (typically, months) or af-
ter the password has been used some specified number of times. By storing a
user’s expired passwords, the system can prevent new passwords from resem-
bling their predecessors.17 Note the trade-off between security and convenience.
Passwords that must be changed frequently are better for security, but frequent
memorization of new passwords is inconvenient. Moreover, if users finds all this
memorization too burdensome and write-down their current password then they
undermine security by facilitating password theft.

Infrequent users pose a special problem for password expiration schemes.
The infrequent user might well resent having to access the system periodically
solely for the purpose of replacing a password before it expires. Yet to allow
authentication using an expired password—even if the authenticated user must
immediately select a new password—is risky, because an attacker who has com-
promised an old password would now get to pick the new password, thereby
circumventing the defense password expiration was intended to provide.

Password Hashes. An individual can, with a minimum of effort, create
a distinct password passI for each identity I by (i) memorizing a single se-
cret s and (ii) using a function F(·) to combine s and I and derive password

17However, this functionality can be circumvented by resourceful users. For example, if
passwords expire every month, then passwords Mycroft01, Mycroft02, ..., Mycroft12, are easy
for a user to generate once Mycroft has been memorized, and a system might deem each
of these different enough from its predecessor. Unfortunately, passwords forming a sequence
that is easy for a user to generate are probably also easy for an attacker to reconstruct from
a single compromised password in the sequence. An attacker who successfully compromises
Mycroft02 in February, for instance, would be wise to try Mycroft05 in May.

Copyright 2009. Fred B. Schneider. All Rights Reserved

52 Chapter 5. Authentication for People

passI = F(s, I). You might, for example, select Moriarty as your secret, mem-
orize it, and then (as needed) produce password MwowrwieaBratyycom for your
identity at www.eBay.com, MwowrwiCaNrNtcyom for www.CNN.com, and so on.18

However, as noted above, such schemes risk producing weak passwords if a sin-
gle compromised password provides enough information about both secret s and
combining function F(·) so that an attacker can deduce passwords associated
with other identities.

Were F(·) one-way, then even if F(·) were publicly known, an attacker who
compromises one or more passwords would learn nothing useful about the secret
input s to F(·) used to produced those passwords. The attacker would thus be
no better off for deducing passwords for other identities. Cryptographic hash
functions are one-way. Thus, given a cryptographic hash function H(·), a strong
password for each of a principal’s identities can be obtained if the principal
memorizes a single secret s and uses password hash H(s · I) as the password
for identity I . In particular, the preimage resistance of H(·) would make it
infeasible for an attacker to calculate s · I , hence learn s , from knowledge of
password H(s · I).

Few humans will be able to calculate H(s ·I) mentally, nor would very many
be willing to undertake a paper and pencil calculation in order to be authenti-
cated each time. This restricts the applicability of password hashes to settings
where a computer is available to aid in generating passwords: The human prin-
cipal inputs the secret s along with the identity I for which a password is sought;
the computer provides the sought password by evaluating H(s ·I) and then eras-
ing s and H(s · I) from its memory (so that later attacks on the computer can
reveal neither).

Password hashes are the basis of PwdHash, a web browser plug-in to enable
users who memorize only a single secret to authenticate themselves using a dif-
ferent password at each different web site. Password fields in web page forms
are usually delimited by a special HTML tag. This tag allows the PwdHash

plug-in to replace any text pass a user enters into such a password field with
H(pass·url), where url is the url of the web page being visited. The information
sent back to the web site thus contains a site-specific password H(pass · url),
even though the human user has not memorized or entered any site-specific
passwords. Moreover, such automatic generation of site-specific passwords de-
fends against certain kinds of phishing attacks. This is because the phishing
web site and the site being impersonated will have different url’s. Therefore,
the password sent to the phishing web site will be different from the password
that would have been sent to the site being impersonated—phishing sites thus
cannot learn passwords that can be used to impersonate a user on other sites.

Password Hygiene. To focus only on system mechanisms for preventing
password compromise ignores a significant vulnerability: human users who
might reveal their passwords through action or inaction. The defense against
such attacks is twofold: user education about easily exploited behaviors and the

18Here, function F(s, I) interleaves its arguments s and I .

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.1. Something You Know 53

adoption of practices to discourage that behavior. Both are covered in what
follows.

Sharing Passwords. The human penchant for being helpful can sometimes
become a vulnerability. A common attacker’s ploy is to telephone a user and
pretend to be a system operator needing that user’s password in order to fix an
urgent problem. The user, who like most people wants to be helpful, reveals his
password. In a variant, the attacker calls a system operator, pretending to be
a bona fide user with an urgent need to access the system but has forgotten his
password. The operator, trying to be helpful, resets that user’s password and
informs the attacker of the new password. Neither of these attacks could succeed
if system designs never required one user to reveal his password to another and,
therefore, users could know never to reveal their passwords to anyone.

Some users who share their passwords with others are simply confused about
the difference between authorization and authentication. We all have occasion
to leave our house keys with people we trust, so they can take in the mail or
feed Mena the cat. The lock on the front door is an authorization mechanism;
it grants access to those who possess our house key. So a password, because it
unlocks access to a computer, is equated (erroneously) with a house key; sharing
the password is then presumed (erroneously) to be a way others can be granted
computer access. In fact, a computer’s login authorization mechanism grants
computer access to users having certain identities, and sharing your password
is tantamount to granting your identity to somebody else. The real problem is
user ignorance.

Recording Passwords. Few people are able to memorize even a modest num-
ber of strong passwords. The rest of us choose between two options:

1. reuse a few strong passwords (because memorizing those is a manageable
prospect) rather than having a separate password for each identity, or

2. record passwords in some written or electronic form, so there is no need
to memorize them.

Each option brings vulnerabilities that enable a password-based authentication
to be compromised.

Option 1 sacrifices a form of defense in depth. When the same password
is used for multiple identities, then after compromising the password for one
identity, an attacker can be authenticated under the other identities as well. If
different identities have access to different resources, then this undermines the
Principle of Least Privilege. Yet there are contexts where having the same pass-
word for multiple identities is perfectly reasonable—notably, situations where
having multiple, distinct identities was not the user’s choice. For example, many
newspapers and other web-based information providers create a distinct identity
for every user they serve, and these sites typically employ password authenti-
cation; no harm is done if a user who would have been satisfied with having a

Copyright 2009. Fred B. Schneider. All Rights Reserved

54 Chapter 5. Authentication for People

single identity to access some set of sites chooses the same password for all of
them.

With option 2, our concern should be defending against attackers accessing
the recorded password list. One classic example is the handwritten note so
often found affixed to a system console in a computer room, giving passwords
for system operator accounts. Anyone who gains entry to that computer room
(say, by convincing the janitor to unlock the door) can use these passwords to
become a system operator. Another example is the printed list of passwords
that is carefully locked away until it is discarded (without first being shredded),
so the list becomes available to any attacker willing to rummage through the
trash.19 Defense in depth suggests that both encryption and physical means
(i.e., physical lock and key) be used to protect recorded password lists.

Observing Passwords. Even a password that has not been written down is
potentially vulnerable to theft by attackers who can observe or monitor emana-
tions from a system. Some of these attacks are straightforward; others require
considerable expertise in signal-processing.

• An attacker might peer over the user’s shoulder and watch the password
being typed or might use a telescope to watch from a distance. This is
known as shoulder surfing. The obvious defense is to shield from view
the keyboard being used to enter a password. Keyboards on ATMs, for
example, are often positioned so they cannot be seen by others when
somebody is using the ATM.

• Instead of watching the keyboard, an attacker might instead observe the
system’s display as a password is typed. Direct visual observation is not
required. Researchers have been able to recover the contents of a CRT
display by monitoring the diffuse reflections from walls, and they have
been able to recover the contents of an LCD display by monitoring RF
radiation from the video cable connecting the LCD to the computer. Here,
the obvious defense is not to echo the typed characters on the display when
a password is entered.

• Each key on a keyboard will have a slightly different sound when pressed,
and programs exist to perform the signal processing needed recover a user’s
keyboard inputs from recordings of such acoustic emanations. Background
noise (or music) is easily filtered out, so it is not an effective defense.
Physical security to prevent an adversary from planting a microphone or
other listening device seems to be the best defense against such attacks.

19The practice of combing through commercial or residential trash in search of confidential
information is referred to as dumpster diving.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.2. Something You Have 55

5.2 Something You Have

An artifact can be used for authenticating someone if it cannot be counterfeited
by threats of concern. Give an authentication token AP to a person having
identity P (but to nobody else) and, thereafter, anyone able to prove possession
of AP can be authenticated as having identity P . Something you have speaks
for you and, therefore, can be used to authenticate you.

This does mean that an attacker who steals AP is able to impersonate P .
And arguably, it is easier to steal an artifact than to steal a secret (which is
materialized only when it is being input). Theft of a secret, however, might not
be noticed, whereas P is likely to notice if AP is missing; and once the theft is
noticed, P can foil would-be impersonators by informing a system administrator
that AP no longer speaks for P .

We defend against attackers using stolen authentication tokens by employing
multi-factor authentication. Typically, knowledge of a PIN and possession of
the authentication token are both required, yielding 2-factor authentication.
In some systems, users choose two secrets—a normal PIN and a duress PIN.
Entering the duress PIN instead of the normal PIN causes authentication to
proceed but (i) alerts system operators that an attacker is forcing the user to
authenticate, and (ii) authenticates the user to a version of the system that gives
the appearance of operating on real data but really isn’t, rendering ineffectual
attacker-coerced operations that follow.

Authentication tokens (also known as security tokens, hardware tokens, or
cryptographic tokens) come in various shapes and sizes, including printed pages
of values, plastic credit cards with magnetic stripes, radio-frequency identi-
fication (RFID) chips, fobs containing small LCD displays, dongles with USB
connectors, and calculator-like devices having keypads and displays. What all of
these have in common is the ability to store a value; this value is associated with
the identity the token authenticates. How this value is sensed by a computer
doing authentication depends on the token’s physical form. Sometimes special
hardware is required: authentication tokens having magnetic stripes must be
swiped through a special reader, and RFID chips are interrogated using a radio
transceiver tuned to the appropriate frequency. But for other types of authen-
tication tokens, special hardware is not needed. Authentication tokens having
LCD readouts, for example, can display a value which a user reads and then con-
veys to the authenticating computer using that computer’s keyboard; dongles
that plug into USB connectors become I/O devices the computer’s operating
system reads directly.

The value an authentication token stores might well exceed what a human
can reasonably be expected to memorize. The authentication token, in effect,
augments the human’s memory. Some types of authentication tokens go even
further in compensating for human limitations. An authentication token might
perform cryptographic operations, thereby enabling cryptography to be used
for authenticating the token holder, and it might read and store information
from the computer to which it connects, so the the problem of a computer
authenticating a person is now transformed into the problem of one computer

Copyright 2009. Fred B. Schneider. All Rights Reserved

56 Chapter 5. Authentication for People

authenticating another.
Authentication tokens employing digital circuits require electric power. Bat-

teries are an obvious power source, but they are relatively large and, because
they have finite lifetimes, must be replaced or recharged periodically. Alter-
natively, the channel that connects an authentication token to the computer
authenticating it could provide power. Tokens with USB connectors can get
power from the USB; so-called passive RFID tokens get their power from the
radio signal that interrogates them.20 Such intermittent power sources, however,
cannot be used for digital circuits that require power to store values between
authentications.

Magnetic stripes can be used to store information, and they make no power
demands on the authentication token.21 But a disadvantage of magnetic stripes
is their low storage density. The magnetic stripe on a typical credit card, for
example, is able to store only a few hundred characters. Moreover, magnetic
stripes cannot be used to perform calculations.

The design of an authentication token invariably involves trade-offs. Under-
standing interactions among the various dimensions of the design space is thus
instructive, whether you are selecting among existing authentication tokens or
designing from scratch.

• Form Factor. Users are primarily interested in convenience. Smaller and
lighter tokens are preferred. The way information is transferred between
the token and the computer also influences convenience: radio is the most
convenient, physical connections less so, and least convenient would be
when users must manually transfer information by typing into the key-
board on one device what they see on another device’s display. Finally,
periodic maintenance operations, for example to load new secrets or deal
with dead batteries, are seen as a burden.

• Computational Capabilities. System designers are concerned with what
computations the token can perform and how it communicates. Stronger
authentication methods require cryptographic operations. Also of inter-
est is the channel between the authentication token and the authenticat-
ing computer: Is that channel secure against passive wiretappers? What
about active wiretappers?

• Economics. Cost differences become significant when large numbers of au-
thentication tokens need to be procured. However, less expensive tokens—
e.g., RFID chips and cards having magnetic stripes—require more expen-
sive, specialized hardware at the authenticating computers, so the ratio
of authentication tokens to authenticating computers becomes relevant.
Less expensive tokens typically are easier to counterfeit, creating a ten-
sion between cost and security.

20Other active RFID tokens have batteries.
21With magnetic stripe memory, power is required by the I/O device used to read and

update the magnetic stripe. This I/O device is typically connected to and powered by the
authenticating computer.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.2. Something You Have 57

Finally, authentication tokens can be used for authenticating arbitrary ob-
jects, but the design trade-offs are typically quite different. For instance, an
authentication token can be incorporated into an object, hence difficult for an
attacker to detach and deploy elsewhere, so multi-factor authentication (with
its need for additional input mechanisms) would not be necessary. RFID chips
seem the preferred technology for authenticating objects because of the low per-
object cost and because communication with an RFID chip does not require a
physical connection. Example applications include attaching RFID tags to items
in warehouses and stores for inventory management, to trans-modal shipping
containers for customs clearance and homeland security, and to airline luggage
tags for bag routing and recovering lost bags.

5.2.1 Tokens that Generate One-Time Passwords

Many authentication tokens are simply devices for generating a sequence of
one-time passwords.

Properties of One-Time Passwords.
– A one-time password may be deemed valid only once—the first time

it is used.

– Attackers cannot predict future one-time passwords, even with com-
plete knowledge of what passwords have already been used.

Periodically changing an (ordinary) password bounds the interval during which
an attacker who learns that password could be authenticated as you, and a one-
time password can be seen as the limit-case of this defense. Replay attacks, for
example, are impossible with one-time passwords, since replays reuse passwords.
One-time passwords are thus attractive when the channel from the principal
being authenticated could be monitored by an adversary. Man-in-the-middle
attacks do remain possible, however.

One-time passwords can be generated on-the-fly as needed or they can be
precomputed and stored for later use. In either case, two operations must be
implemented: an operation for providing fresh one-time passwords to users (but
not attackers), and an operation for checking the validity of a one-time password
when it is used. Humans, with our poor memories and limited calculational
abilities, are not likely to be good at either operation. Authentication tokens
could be. So one-time passwords can be used to authenticate a human P by
virtue of something that P has—an authentication token AP . We now explore
various instances of this general approach.

One-Time Passwords from Challenge-Response

The underlying basic challenge-response protocol for one computer A authenti-
cating another B (see §??) can be seen as implementing a one-time password
scheme, where the response B generates in reply to A’s challenge is the next
valid one-time password for B. Moreover, an authentication token AP endowed

Copyright 2009. Fred B. Schneider. All Rights Reserved

58 Chapter 5. Authentication for People

1. Sys −→ AP : r where r is unpredictable

2. AP −→ P : “Enter PIN on keypad”

3. P −→ AP : PINP

4. AP : if H(PINP) 6= hpinP

then AP −→ P : “Entered invalid PIN”
else AP −→ Sys: 〈P, respr〉 where respr = H(r · sP)

5. Sys : s := tokenSec[P]
if respr = H(r · s) then AP deemed authenticated

Figure 5.7: Authentication Token Using Challenge-Response

with modest computational capabilities and a keypad can play the role of B in
this challenge-response protocol.

Figure 5.7 depicts such a scheme. AP stores two values in some tamper-
proof manner: a unique secret sP and the hash hpinP of a PIN. Authenticating
computer Sys also stores a copy of AP ’s unique secret sP (in tokenSec[P]). An
unpredictable challenge r issued by Sys and secret sP are used by AP as inputs
to a cryptographic hash function H(·); the output forms the kernel of AP ’s
response. Thus, attackers, lacking knowledge of sP , are unable to compute such
responses and impersonate AP . And an attacker cannot steal and use AP to
be authenticated, because a PIN is requested and checked against hpinP before
AP responds to a challenge from Sys .

A variant of this approach is sometimes used by web sites where passwords
are being employed to authenticate users. Users forget passwords, so some
means is usually provided for a user to get another password for the web site.
One common scheme works as follows.

• At enrollment, the user provides an email address which becomes part of
that user’s identity. The presumption is that (i) this user must successfully
be authenticated on some computer in order to read email sent to that
address, and (ii) that is the only way to read such email.

• The web site provides a form whereby a user can request a new password
for authentication under a given identity. Submitting that form causes
a password to be generated for that identity and sends email containing
that password to the address stored with the identity.

In terms of the challenge-response authentication protocol sketched above, the
web site takes the role of Sys , and the computer on which the user reads email
takes the role of AP . The web site generates the response (namely, the new
password) for the user rather than requiring that the user compute the response
from a challenge, so there is no need for AP to know a secret. And the means

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.2. Something You Have 59

by which the user authenticates to the email reader replaces the use of a PIN
for authenticating the user to AP .

One-Time Passwords from Synchronized Clocks

Explicit challenges are not the only way AP might demonstrate to Sys knowl-
edge of secrets sP and PINP . This subsection explores another that has been
implemented in authentication tokens: transforming the current time instead of
a challenge.

The basic idea is simple. To generate a one-time password, AP reads a local
clock and transforms the value it obtains in a way that demonstrates knowledge
of sP and PINP . Sys validates that one-time password by checking it against a
value it computes by reading its local clock and estimating what time AP could
have read. Clock drift and message delivery delay assumptions are what enable
Sys to estimate the clock value read by AP .

Figure 5.8 sketches a protocol based on these ideas. We denote the clock
at a device D as a non-decreasing, positive function CD(·) of the real time
(unknowable by mortals or machines) to whatever value the clock reads at that
real time. Execution time of program statements is assumed to be negligible
(but message delivery delay is not), and t̂ denotes the current real time at each
protocol step. So CP (t̂) in step 3 returns the current local clock time at AP

when resp is constructed, and CSys(t̂) in step 4 returns the local clock time at
Sys when it receives the message sent by AP in step 3. The condition in the
if statement of step 4 checks to see whether there is some candidate22 clock
time V that (i) could have been used by AP in step 3 to construct a resp that
demonstrates knowledge of sP and PINP , and (ii) is larger than any clock time
AP already used in a valid one-time password. Together, these two conditions
foil an attacker who intercepts and replays earlier valid responses from AP .

The amount of work required in step 4 for checking whether a response pur-
portedly from AP is valid depends on the cardinality of Psbl(P, CSys (t̂)). This,
in turn, depends on two things: clock granularity, since that defines the uni-
verse of values Psbl(P, CSys (t̂)) can contain, and imprecision in the estimate
Sys has for the local clock at AP . Both are somewhat under our control.
Clock granularity can be made coarser—for example, counting seconds instead
of microseconds—although a coarser clock is not without drawbacks because,
due to the V > LastP condition in step 4, only a single one-time password from
AP is deemed valid per tick of CP . And precision in the estimate that Sys has
for CP depends on the frequency of communication between AP and Sys.

*Clock Estimation Details. Clocks run at different rates, and therefore
they can drift apart. We assume the drift rate is bounded23 by some constant

22The calculation of set Psbl(P, CSys(t̂)) of possible clock times used by AP to construct a

message received by Sys at local clock time CSys(t̂)) is detailed below.
23For clocks found in digital electronics, this value will be on the order of 10−6 seconds per

second.

Copyright 2009. Fred B. Schneider. All Rights Reserved

60 Chapter 5. Authentication for People

1. AP −→ P : “Enter PIN on keypad”

2. P −→ AP : PINP

3. AP −→ Sys: 〈P, resp〉 where resp = H(CP (t̂) · sP · PINP)

4. Sys : s := tokenSec[P]
pin := userPIN [P]
if exists V where V ∈ Psbl (P, CSys (t̂)) such that

resp = H(V · s · pin) ∧ V > LastP
then

LastP := V ;
AP deemed authenticated

Figure 5.8: Sketch of Time-Based Authentication Token Protocol

ρ. Thus, if for devices D and E and some real time t, we have that CD(t) = CE(t)
holds, then at a later real time t′ we will have

|CD(t′) − CE(t′)| ≤ 2ρ(t′ − t). (5.3)

The worst divergence occurs when one clock is running ρ seconds per second
fast and the other ρ slow, causing them to drift apart 2ρ seconds per second.

We use intervals and some elementary interval arithmetic in the calculations
that follow. For integers A and B, where A ≤ B holds, the notation Ψ = [A, B]
defines an interval Ψ comprising values v from some universe U of interest and
satisfying A ≤ v ≤ B. When useful, we regard intervals as defining subsets
of universe U . For example, if v ∈ U holds then v ∈ [A, B] holds if and only
if A ≤ v ≤ B holds. Given Ψ = [A, B] and Φ = [A′, B′], define Ψ + Φ =
[A+A′, B +B′] and Ψ−Φ = [A−B′, B−A′]. A scalar C can be regarded as an
interval [C, C], and we write expressions that involve both scalars and intervals
with that interpretation in mind. Thus, C + [A, B] = [C + A, C + B] holds.

To construct Psbl(P, CSys (t̂)), we need a way for an authenticating computer
Sys to use its local clock CSys and estimate local clock CP at authentication token
AP . To start, suppose Sys is given base correction interval ΞP satisfying

CP (t0) ∈ (CSys(t0) + ΞP) (5.4)

for some real time t0. Thus, ΞP is a correction to clock time CSys (t0) for ob-
taining a set of clock times that includes the clock time CP (t0) that AP reads
at real time t0.

ΞP does not account for clock drift, so for real times t where t0 ≤ t holds,
ΞP is no longer an appropriate correction. We can account for clock drift by
widening ΞP according to (5.3):

ΞP + [−2ρ(t − t0), 2ρ(t − t0)] (5.5)

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.2. Something You Have 61

But without knowing real times t0 and t, Sys cannot compute (5.5). Sys does
know CSys(t0) and CSys (t), so it can calculate CSys(t) − CSys(t0) as an approxi-
mation for t − t0 and obtain drift correction interval ∆P (CSys(t)) given by the
following.

∆P (CSys (t)) = ΞP + [−2ρ(CSys(t) − CSys(t0)), 2ρ(CSys (t) − CSys(t0)] (5.6)

The error in ∆P (CSys (t)) compared to the interval defined by (5.5) is ±ρ(t− t0),
because we must account for CSys (·) advancing as much as ρ faster or ρ slower
than real time.

Knowledge of message delivery delays is also needed for Sys to calculate the
set of local time values that AP could have read from CP . These delays will
typically vary, depending on the network and its load. We assume the maximum
delay is known, and therefore the delay incurred by messages can be represented
by an interval Λ = [0, L] where L is the maximum clock time that can elapse on
any clock while a message is in transit. Thus, a message mT constructed and
sent by AP at local clock time T according to CP will be received by Sys when
CP has some value in the interval T + Λ.

Suppose mT is the message received by Sys in step 4 at real time t̂. Message
mT , by the definition of Λ, would have been sent when CP had some value in
CP (t̂) − Λ. Sys can estimate CP (t̂) because, for t0 ≤ t,

CP (t) ∈ (CSys(t) + ∆P (CSys (t)))

holds due to (5.6). So Sys can calculate set Psbl(P, CSys (t̂)) of values AP could
have read when constructing message mT :

Psbl (P, CSys (t̂)) : CSys (t̂) + ∆P (CSys (t̂)) − Λ (5.7)

The cardinality of Psbl(P, CSys (t̂)) depends on the widths of intervals Λ and
∆P (CSys (t̂)). Unlike Λ, which has fixed width, ∆P (CSys(t̂)) grows ever wider due
to (5.6) as time increases; left unchecked, this growth will eventually dominate.
And this growth is problematic because the amount of work required by the if
in step 4 of Figure 5.8 is proportional to the cardinality of Psbl (P, CSys (t̂)).

The ever increasing width of ∆P (CSys(t̂)) accounts for possible divergence of
CSys and CP due to drift. However, message mT received by Sys at clock time
CSys(t̂) and containing a valid one-time password can enable Sys to refine its
estimate of CP and reduce the width of ∆P (CSys (t̂)) accordingly. In particular,
we above argued that CP (t̂) equals some value in the interval T +Λ at real time
t̂ that mT is received by Sys , so we can define a revised base correction interval

ΞP = CSys (t̂) − (T + Λ) (5.8)

which captures the difference CSys (t̂) − T between the clocks at Sys and AP at
the time mT is sent24 in addition to uncertainty Λ in message delivery delay.
The width of ΞP is now the width of Λ. Moreover, ΞP defined by (5.8) satisfies

CP (t̂) ∈ (CSys (t̂) + ΞP),

24This assumes an inconsequential relative clock drift over the period mT is in transit.

Copyright 2009. Fred B. Schneider. All Rights Reserved

62 Chapter 5. Authentication for People

which is (5.4) with t0 replaced by the time t̂ that mT is received by Sys . This
means that by using revised base correction interval ΞP in (5.6), we can re-
place t0 there by t̂ and reduce the width of interval ∆P (CSys (t̂)) to Λ, thereby
eliminating accumulated unnecessary compensation for clock drift.

We have thus established that the calculation of Psbl(P, CSys (t̂)) in the pro-
tocol of Figure 5.8 should be done according to (5.7), where ∆P is defined by
(5.6) in terms of a revised base correction interval ΞP , which is calculated ac-
cording to (i) the clock time used by AP in computing the last valid password
Sys received from AP , (ii) the local clock time at Sys when that message was
received, and (iii) the variance in delivery delay. This calculation can be per-
formed by employing an interval-valued program variable ΞP and recording in
another new variable LastPSys the local time at Sys used in calculating ΞP . We
augment Figure 5.8 by inserting assignment statements

LastPSys := CSys(t̂);

ΞP := LastPSys − (LastP + Λ)

just after the assignment to LastP in step 4, and use the following definition of
∆P (CSys (t)):

∆P (CSys (t)) = ΞP + [−2ρ(CSys(t) − LastPSys), 2ρ(CSys(t) − LastPSys)]

New program variable ΞP must also be initialized. This can be done by
bringing AP and Sys in close proximity. CP can now be adjusted so that it
reads approximately the same value as CSys ; ΞP is then set equal to [0, ε], where
ε is an upper bound on the error in this clock synchronization procedure.

RSA SecurID. SecurID, developed by RSA Security, is an authentication
token that implements one-time password generation using a protocol similar
to that just outlined. It enjoys wide-spread acceptance in the market as a
way for people at remote computers to authenticate themselves to some central
computing facility.

The SecurID token itself is sized to fit on a key ring. It has an LCD display
but no keyboard. And it is built to be tamper-resistant, so an attacker who
steals a SecurID token is unlikely to be able to physically open it and learn the
secret it stores. Inside each SecurID token is a clock, circuits for computing
a proprietary cryptographic hash function, and storage for a unique 128 bit
secret installed at the factory. The electronics are battery powered, with the
expectation that the entire token will be replaced every 3 years.

The most significant difference between the protocol given in Figure 5.8 and
what SecurID implements comes from the absence of a keypad on the SecurID
token. The keypad on the user’s computer is used instead, and the computation
of H(CP (t̂) ·sP ·PINP) in step 3 of Figure 5.8 is split between the SecurID token
and software installed on the user’s (remote) computer. Specifically, a SecurID
token AP constantly displays H1(CP (t̂), sP) on its LCD, where H1(·) is a pro-
prietary cryptographic hash function. A user P , wishing to be authenticated

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.2. Something You Have 63

1. AP −→ Sys : P requests authentication

2. Sys −→ AP : iSysP where iSysP = iPSys

3. AP : iP := max(iP , iSysP) + 1
if iP > N then halt(Password list exhausted!)

elseAP −→ Sys: 〈P, iP , resp〉
where iP = iP , resp = MP [iP]

4. Sys : if iPSys < iP ∧ MP
Sys [iP] = resp then

iPSys := iP
AP deemed authenticated

Figure 5.9: One-time Password List Authentication

at his computer, starts running an application on that machine; it prompts the
user for a PIN PINP and for the value being displayed on AP ’s LCD. The appli-
cation combines these using a second hash function H2 and obtains the kernel of
its response resp = H2(PINP ,H1(CP (t̂), sP)), which is then sent to the central
computing facility. The first conjunct of Step 4 in Figure 5.8 must be revised
to accomodate this slightly different construction of resp.

One-Time Passwords from Hash Chains

In the schemes discussed so far, the sequence of one-time passwords is not
pre-computed by an authentication token; rather, it depends on a sequence
unpredictable challenges (Figure 5.7) or depends on the times that the one-time
passwords are generated (Figure 5.8). In this section, we explore a scheme where
the sequence of one-time passwords can be pre-computed. The scheme admits
manual and electronic implementations, ranging from lists recorded on paper to
cryptographic calculators to full-blown processors having long-term storage.

To start, we suppose AP stores an array MP [1..N] containing N one-time
passwords m1, m2, ..., mN , and a counter iP (initially 0). Authenticating
computer Sys stores its own copy MP

Sys of MP , and a counter iPSys (initially 0).
These variables will satisfy the following:

For 1 ≤ i ≤ N : MP [i] = MP
Sys [i] = mi. (5.9)

For iP < i ≤ N : mi has not been sent by AP to Sys . (5.10)

For iPSys < i ≤ N : mi has not been received by Sys from AP . (5.11)

If max(iP , iPSys) < i holds and the list of one-time passwords is initially secret
from attackers then MP [i] can serve as a one-time password without fear that
it has been seen by a wiretapper. The protocol is given in Figure 5.9.

Condition iPSys < iP in step 4 prevents replay attacks from succeeding.

Moreover, by requiring that iPSys < iP hold rather than stronger condition

Copyright 2009. Fred B. Schneider. All Rights Reserved

64 Chapter 5. Authentication for People

iPSys + 1 = iP , the protocol is able to tolerate lost messages between AP and
Sys . Retransmission is not a suitable remedy for lost messages sent by AP in
step 3, because Sys has no way to distinguish duplicate messages sent by AP

from replay attacks.

Notice that AP can be implemented with an ordinary page of paper contain-
ing numbered lines, with MP [i] appearing on the line numbered i. Whenever a
password is sent to Sys , the corresponding line is crossed out, effectively storing
the current value of iP on the page.

The assumption that password list MP is finite has a price. Any finite-length
list of one-time passwords will be exhausted sooner or later. Some protocol is
then needed to refresh the one-time password list by storing new values in
MP and MP

Sys . The obvious protocol requires authenticated and confidential
communication between AP and Sys . Such communication is easily supported
if AP and Sys are in close physical proximity. A person P who is in the office
even for brief periods could, just before leaving, print a new page of passwords
or could refresh AP by connecting it to the corporate intranet. The person
who is away for long periods might not have such opportunities often enough,
though.

Lamport’s Hash Chain Scheme. Instead of precomputing and storing the
sequence of one-time passwords, each element can be calculated on demand.
Let H(·) be a cryptographic hash function. The sequence obtained by defining
mi+1 = H(mi) does not work because it allows attackers to compute unused
one-time passwords from used ones. But that vulnerability does not exist if we
build the chain in the other direction, defining mi = H(mi+1). So we choose
a random (secret) value sP , set mN = H(sP), and set mi = H(mi+1) for
1 ≤ i < N . The resulting one-time password sequence is25

HN (sP), HN−1(sP), ... H2(sP), H1(sP)
m1, m2, ... mN−1, mN

(5.12)

which we can succinctly characterize by:

For 1 ≤ i ≤ N : mi = HN−i+1(sP) (5.13)

Moreover, from collision resistence of cryptographic hash functions, we have for
H(·) and all i and j satisfying i ≤ j :

Hj−i(x) = mi ⇒ x = mj (5.14)

Sys decides if a one-time password resp received from AP is valid by deter-
mining whether

(∃ i > iPSys : mi = resp) (5.15)

25Superscripts on function names denote nested function application: F i+1(x) = F (F i(x))
and F 0(x) = x.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.2. Something You Have 65

1. AP −→ Sys : P requests authentication

2. Sys −→ AP : iSysP where iSysP = iPSys

3. AP : iP := max(iP , iSysP) + 1
if iP > N then halt(Password list exhausted!)

elseAP −→ Sys: 〈P, iP , resp〉
where iP = iP , resp = HN−iP +1(sP)

4. Sys : if iPSys < iP ∧ HiP −iP

Sys (resp) = lastP then

iPSys := iP
lastP := resp
AP deemed authenticated

Figure 5.10: Hash Chain Authentication Protocol

holds, since (5.11) implies that mi is fresh, hence valid, if i > iPSys holds. And

Sys can determine that (5.15) holds by storing lastP satisfying26 lastP = miP

Sys

and checking whether

iP > iPSys ∧ HiP−iP

Sys (resp) = lastP (5.16)

holds, based on the following reasoning:

iP > iPSys ∧ HiP−iP

Sys (resp) = lastP

= iP > iPSys ∧ HiP−iP

Sys (resp) = miP

Sys

⇒ iP > iPSys ∧ miP = resp

⇒ (∃ i > iPSys : mi = resp)

Notice that with this freshness test, there is no need for Sys to store sP or
anything from which sP can be derived, nor is there any need for Sys to store
the sequence of one-time passwords.

After replacing references to MP and MP
Sys in Figure 5.9 with correspond-

ing expressions in terms of H(·), we obtain the protocol of Figure 5.10. In
step 3, resp could be obtained by calculating HN−iP +1(sP) but the alterna-
tive (discussed above) of AP using the correct value from a stored list HN (sP),
HN−1(sP), ..., H1(sP) would also work. Calculation of HN−iP +1(sP) is straight-
forward if AP is a digital device; simply copying the the appropriate element
would be the more sensible course when AP is implemented by a piece of paper.

Use of a hash chain for generating a list of one-time passwords does introduce
a vulnerability, however. Since H(·) is public, an attacker who learns a valid
but not yet used one-time password (say) mF is able to compute all earlier

26Define m0 = HN+1(sP) so that lastP can be initialized (since initially iP
Sys

= 0).

Copyright 2009. Fred B. Schneider. All Rights Reserved

66 Chapter 5. Authentication for People

passwords mF−i for 1 ≤ i < F by using:

For 1 ≤ j < i ≤ N : mi−j = Hj(mi)

And among those, the mk satisfying iPSys < k ≤ F are valid one-time passwords
because they have not yet been accepted by Sys . So the mk could be used by
an attacker to impersonate AP .

Moreover, there are circumstances that could allow an attacker to learn mF .
If AP is not authenticating the source of the challenge (of step 2) that engenders
the response it sends in step 3 of Figure 5.10, then an attacker could impersonate
Sys and send F − 1 to AP as challenge iSysP . AP would then respond to the
attacker with 〈P, F, mF 〉. There are two defenses against this so-called “large
challenge attack”. One is for AP to authenticate the source of a challenge before
responding to it. The second, which does not require authenticating the source
of a challenge, is for AP to retain the last challenge it receives and to ignore any
subsequent challenge that is much larger, hence potentially constitutes a “large
challenge attack”.27

S/KEY Implementation. The protocol of Figure 5.10 is the basis for the
S/KEY one-time password authentication scheme, which allows remote users to
be authenticated by a central server. S/KEY one-time passwords are 64 bits
long. They are generated using a hash chain built with MD4, where each 128
bit MD4 output (i.e., 16 bytes) is transformed into the 64 bits desired password
by XORing byte 1 with byte 2, byte 3 with byte 4, ..., and byte 7 with byte 8.

The secret sP being repeatedly hashed in S/KEY is the concatenation of
a secret passphrase user P chooses and a per-user seed the central server in-
cludes with each challenge. Thus instead of storing sP , authetication token AP

prompts the user for the passphrase and then uses the per-user seed to calcu-
late sP . Per-user seeds are different for different users and different servers. So
three things, none of which needs to be kept secret, are being stored for each
user P by a server: the per-user seed, lastP , and iPSys . Per-user seed values
that differ on the different servers enable a user to employ the same passphrase
for authenticating to different systems, since different hash chains will now be
generated for each different system. With the per-user seed a part of sP , we
also get a simple way for switching to a new sequence of one-time passwords
once the old sequence has been exhausted—the server increments the per-user
seed and both iP and iPSys are reset to 1.

Sympathetic to the problems of transcribing 64 bit numbers by hand, S/KEY’s
designers provided a dictionary of 2048 short English words and a fixed corre-
spondence between dictionary entries and bit strings. Each 64 bit S/KEY one-
time password thus corresponds to a sequence of these dictionary words. Users
who manually perform the authentication token’s protocol for S/KEY (perhaps

27Significantly larger challenges are not necessarily symptoms of an attack. They also arise
if the communication link between Sys and AP is unreliable. Even in that case, though,
system administrators ought to be alerted since there is a problem.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.3. Something You Are 67

with the help of a page that lists the hash chain) interact with S/KEY using one-
time passwords represented in this easier-to-manipulate encoded form; software
implementations use raw 64 bit values.

5.3 Something You Are

Humans virtually never authenticate each other based on what we know or
have. Instead, we use biometrics—physical or behavioral traits—exhibited by
the person being authenticated. We recognize acquaintances by their faces or
voices, and police use fingerprints or DNA to place suspects at a crime scene.
Something you are is the essence of this approach to authentication.

Biometric authentication is seen as attractive for a variety of reasons. There
is nothing to forget, nothing to lose, nothing to protect against theft, and noth-
ing that can be shared. Moreover, certain biometrics (e.g., face recognition) offer
the promise of identifying individuals without their knowledge, which would be
useful for screening crowds in public places.

Not all biometrics are suitable for authentication, though. For authenticat-
ing individuals in some population, a biometric must satisfy certain require-
ments.

Biometrics for Authentication. The biometric must be distinct and
invariant over time for each member of the population. It must be difficult
to spoof, yet relatively easy to measure. And individuals must be willing
to subject themselves to the measurement process.

These requirements imply that biometric authentication almost certainly will
need to be augmented with an alternative. Some people are afraid of sensors
that require peering into an eyepiece or placing a finger into a measurement de-
vice; others are hesitant to touch any sensor that, because others touch it, might
harbor bacteria. Missing or deformed body parts mean that specific biometrics
might not be available for everyone, while environmental and occupational ex-
posure can render biometrics difficult to sense reliably. And various religions
prohibit their followers from having certain biometrics measured.28

A biometric authentication system can admit two kinds of errors. It can
fail to authenticate an individual it should, or it can mistakenly authenticate
an individual it shouldn’t. The false reject rate (FRR) gives the likelihood of
committing the first kind of error, and the false accept rate (FAR) gives the like-
lihood of committing the second kind.29 False rejects typically arise from errors

28For example, old order Amish and Mennonites hold that the second commandment (“You
shall not make for yourself a graven image, or any likeness of anything that is in heaven above,
or that is in the earth beneath, or that is in the water under the earth...” Exodus 20:3-6)
prohibits making images of their followers. Muslims too are enjoined from making images of
animate beings. And certain Orthodox Jews interpret the Shulchan Aruch (chapter 11) as
prohibiting the creation of a person’s image except for purposes of study, though the more
pervasive view in Judaism is that only images that could be the object of worship (i.e., idols)
are prohibited.

29False rejects are sometimes called type I errors and false accepts are called type II errors,

Copyright 2009. Fred B. Schneider. All Rights Reserved

68 Chapter 5. Authentication for People

0.05 0.07 0.09 0.20 0.30 0.40 0.60

0.05

0.07

0.09

0.20

0.30

0.40

0.50

False Accept Rate (FAR)

F
a
ls

e
R

ej
ec

t
R

a
te

(F
R

R
)

Figure 5.11: Example DET Curve

in sensing a biometric. Such errors are inevitable when measuring an analog
physical property in an uncontrolled and dynamic environment, especially since
physiological characteristics that vary over time (from stress, illness, or other
natural phenomena) might affect what is being measured.

False rejects can be reduced by allowing inexact matches between what is
sensed when authentication is attempted and what was sensed at enrollment.
But false accepts will increase as the tolerance for these inexact matches becomes
more lax. Thus, decreases in FRR are typically accompanied by increases in
FAR. The trade-off between FRR and FAR is summarized as a detection er-
ror trade-off (DET) curve, where the x axis is the FAR and the y axis is the
corresponding FRR. DET curves are typically non-linear, as illustrated in Fig-
ure 5.11.

The designer of a biometric authentication system must select some operat-
ing point on the DET curve. One strategy is to choose a point that is close to
the origin, arguing that this best approximates a system where both FRR and
FAR equal 0. However, this strategy presumes that the penalty for false rejects
is the same as the penalty for false accepts. It rarely is. So the more sensible
course is to decide which of false rejects or false accepts is the more problematic,
and then choose an acceptable rate for that kind of error (ignoring the other
kind). As an example, we would want to minimize false accepts for authenticat-
ing people who access a top-secret government facility and, therefore, we would

thereby taking “the human being authenticated has the identity being claimed” as the null
hypothesis.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.3. Something You Are 69

choose a small value for FAR.30 But minimizing false rejects is probably the
better course for admittance to a members-only health club, because turning
away a member causes embarrassment, hence is bad for business, even though
implementing a low FRR occasionally allows non-members entry.

5.3.1 Implementing Biometric Authentication

A typical biometric authentication system involves

• a front-end subsystem that senses a biometric and converts it to some
digital form, and

• a back-end system that processes this digital data and compares it against
a template stored for the individual being authenticated.

Templates are designed to facilitate inexact matching, and therefore they typi-
clly record only an approximation of a subject’s biometric. For example, rather
than storing the image of a fingerprint, a template might contain only certain
essential characteristics, such as the (relative) locations of the start, end, or
crossings of a few prominent ridges in that fingerprint. The front-end system
would sense the surface contours of a finger; the back-end system would use
signal processing algorithms to identify ridges from the surface contours and
determine whether these features are consistent with a given template.

Users must enroll before being eligible for authentication. At enrollment, the
system administrator gives a unique identifier to the user; the user then enters
that unique identifier and allows the front-end subsystem’s sensors to sample the
biometric. A template for that user’s identifier is synthesized from the samples.
Thereafter, to be authenticated, a user enters an identifier and the front-end
subsystem’s sensors samples the user’s biometric. That biometric data is then
checked for a sufficiently good match with the template for the identifier just
entered.31

A front-end subsystem must defend against spoofing, where one person pro-
vides bogus data to the biometric sensor in an attempt to be authenticated as
another. These attacks often involve physical artifacts that replicate features of
the person being impersonated.32 The defense against such attacks is to ascer-
tain that part of a live human is measured by the front-end system. To test for
liveness, the front-end system might check for involuntary signals generated by a
living body (e.g., pulse, body temperature, brain waves) or measure a response
to a stimulus (such as pupil dilation when light intensity is increased). But a

30The system might accommodate the corresponding large number of false rejects by having
some additional means of authentication. Human guards at the gate could implement that.

31For identification based on a biometric, no identifier is provided, and the back-end sub-
system searches all of the templates for (inexact) matches.

32In the case of fingerprints, for example, at attacker might attempt to masquerade as a
person P by (i) inserting a facsimile of P ’s finger into the fingerprint reader, (ii) wearing thin
rubber gloves (or applying rubber pads) molded to have P ’s fingerprints, or even (iii) cutting-
off P ’s finger or hand and using that. Moreover, attacks (i) and (ii) are not only theoretical
possibilities but have been successfully demonstrated.

Copyright 2009. Fred B. Schneider. All Rights Reserved

70 Chapter 5. Authentication for People

simple and effective defense against most kinds of spoofing is simply to have a
human guard supervise data capture by the biometric sensor.

A biometric authentication system, like any other authentication system
having a component that matches a response with some stored data, must also
defend against attacks that attempt to replace one or both inputs to the match-
ing algorithm. The channel that links the front-end system with the back-end
system must be secure, because an attacker who can alter data enroute can
impersonate an individual by putting that person’s biometric sensor values into
the message the back-end system receives. And the integrity of stored templates
must be protected, to prevent replacing a bona fide user’s biometric character-
istics with those of an attacker.

5.3.2 A Catalog of Biometrics

We catalog below various biometrics in use today to authenticate humans. The
biometrics differ not only in how well they discriminate between subjects but
also in other ways that, depending on the application, could be important: cost,
how much cooperation by a subject is required for sensing the biometric, and
whether subjects are even aware the biometric is being measured.

Fingerprints. These are characterized by what are called minutiae—features
of the raised ridges that appear in the skin on human fingertips. Beginnings,
endings, and bifurcations of ridges are what is usually matched, where a match
involves checking the parameters that give the feature’s relative location in the
plane and its angle of orientation to the ridge.

The existence today of reliable, low-cost fingerprint readers means that bio-
metric fingerprint sensors are increasingly found on systems, such as laptops
and point of sale terminals, where cost matters and an alternative to passwords
is sought. Fingerprint sensors on laptops are typically not supervised and do
not implement liveness tests, so these are vulnerable to spoofing. Customer use
of point of sale terminals is likely supervised by a sales clerk but a clerk’s use
might not be, so spoofing by clerks could be a concern. Over 2% of human
subjects do not have fingerprints that can be reliably measured.

Faces. Absolute dimensions as well as the proportions of a face and its features
are the match criteria here.33 Video cameras enable measurement to be done
at a distance and without the cooperation or knowledge of subjects. Some
systems work by finding specific facial features (often by first locating the eyes)
and determining matches by comparing the relative location, size, and general
shape of each feature (e.g., nose, mouth, and jaw edges) to what is recorded
in a template. Other systems use neural networks or other statistical learning
techniques that have been trained to match faces. A third family of systems is

33Facial tomography, which images body heat distribution over the subject’s face, has also
been proposed. Such images, however, are not invariant, being affected by alcohol, stress, and
the subject’s overall medical condition.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.3. Something You Are 71

based on decomposing a face into a weighted sum of elements from a relatively
small set of archetypal face images called eigenfaces ; a template stores only
the weights, and a face is deemed to match the template if its decomposition
involves similar weights for each component eigenface.

Commercial face recognition systems that use frontal images to authen-
ticate cooperating subjects work reasonably well. But face recognition for
surveillance—identification without a subject’s cooperation—do not yet work
well because field of view, background, lighting, and the subject’s pose make it
difficult to locate and separate a face from the rest of a scene. Facial expres-
sion, aging, and disguises (including facial hair, glasses, or cosmetics) create
additional challenges for establishing a match.

Eyes. The iris and the retina in human eyes have each been used for biometric
authentication.

Iris recognition is based on the pattern of pigments in the ring of colored
tissue that surrounds the pupil. This pattern is believed to be unique for each
eye and person; it stabilizes once a person has reached adolescence. Sensors can
image an iris from as far as 2 feet away without subject-positioning devices (such
as an eye piece or chin rest), so few are uncomfortable with the measurement
process. Either hippus34 or the pupil’s reaction to changes in illumination can
serve as a liveness test. Iris recognition systems have been used in airports—
domestically and abroad—to streamline flight boarding by frequent flyers and
for immigration.

The retina is the back surface of the eyeball. By projecting a low-intensity
beam of light, the unique pattern of veins beneath the retinal surface can be
recorded and used for authentication. This process requires the subject to focus
on a point while looking through an eyepiece. Although some find that mea-
surement process off-putting, FAR and FRR are considerably better than what
iris recognition achieves (and the performance of iris recognition dominates all
other biometrics in our catalog). Inconvenience limits the deployment of retina
scanning to high-security settings, where compromise in favor of greater security
is accepted because it is part of the culture.

Hands. A sensor here images a silhouette of the hand; measurements of the
palm as well as length, width, and thickness of the four fingers are then used as
a basis for matching. This biometric is largely unaffected by scars, ridges and
tattoos on the hand, but large rings, bandages, and gloves can lead to errors.

Even though the approach is not very discriminating (with scant data pub-
lished about the FAR and FRR for deployed systems), hand-recognition systems
today enjoy success in at least one niche market: Disney World in Orlando,
Florida. Here, hand recognition is employed for authenticating users of sea-
son passes. This prevents tour operators or local residents from purchasing a
season pass and loaning it to a succession of different visitors who would oth-
erwise have bought more-expensive short-term passes. Enrollment is performed

34Hippus is the normal .5 Hz oscillation of the pupil in a human eye.

Copyright 2009. Fred B. Schneider. All Rights Reserved

72 Chapter 5. Authentication for People

the first time the season pass is used; subsequent uses of the pass require the
subject’s hand to match the template created at enrollment.35

Impracticable Prospects

Absent from the above catalog are those biometrics believed unlikely to be
deployable in the foreseeable future. In some cases, suitable sensor and matching
technology does not yet exist; in others, the requirements of distinctness or
invariance are not likely to be met. These impracticable biometrics include:

• Handwritten signatures, whether measured by final appearance or by cap-
turing the series of accelerations (or forces) that produced the signature.
Variation in the signatures produced by an individual is too high.

• Voice verification, where tone, pitch, and resonance are measured for a hu-
man’s vocalization of some system-provided challenge phrase (as compared
to always uttering the same phrase, which would be vulnerable to spoofing
using “playback” attacks). Sufficient discrimination cannot be achieved
because matching must account for variations due to the speaker’s health
(colds and sore throats) and the environment (including the exact micro-
phone, ambient noise, and room acoustics).

• Body odor, because although dogs successfully use this to identify peo-
ple (or drugs and other contraband), good sensors do not yet exist to
convert odors into electronic signals—especially taking into account the
ways human odor is affected by diet, emotional state, and is masked by
deodorants.

• Brain wave measurements of how a subject reacts to seeing familiar images
as compared with an unfamiliar images, thereby implementing a form of
knowledge-based authentication. The problem here is that an attacker
can spoof by becoming familiar with images that should be known to the
subject being impersonated.

5.4 Privacy Pitfalls of Authentication

Authentication, when undertaken injudiciously, can lead to privacy violations.
First, in authenticating somebody, you learn an identity and thus, by definition,
you learn an associated set of attributes. Some of these attributes might be con-
sidered personal information. So authentication can cause personal information
to be revealed.

A second threat to privacy arises when authentication is used to validate
who participates in some action. If such participation is deemed private (as, for

35Disney also sells sets of linked season passes, where a subject is deemed authenticated if
his hand matches the template associated with any season pass in the set. This means season
passes in a linked set are interchangeable, which enables a family to purchase a set of season
passes without requiring them to keep track of who was the first to use each pass in that set.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.4. Privacy Pitfalls of Authentication 73

example, certain purchases or medical procedures could be), then a side effect
of authentication is to associate personal information with an identity. This
problem is compounded when the same identifier is authenticated in connection
with multiple actions. For example, the use of social security numbers as a
quasi-universal identifier in the U.S. eroded privacy by allowing third parties to
connect seemingly unrelated actions with a single individual and then to make
inferences that associated additional attributes with that individual.

Requiring authentication can also have a chilling effect. The prospect of
undergoing authentication inhibits people from engaging in activities they fear
could be misconstrued, deemed inappropriate, or lead to retribution. So in
requiring authentication, we institute a de facto form of authorization. Of
concern (here) is not that basic freedoms might be eroded when authentication
is required but that this erosion is inadvertent. The concern is that policy—
not side-effects of a system’s construction—should be what dictates who may
engage in what activities, and authorization—not authentication—mechanisms
should be what implements such policy.

Finally, it is worth noting that information not collected cannot be abused.
Authentication collects information and possibly even stores it for subsequent
use. Widespread deployment of authentication mechanisms thus increases the
chances for privacy violations in three ways. First, personal information could
be abused by the agency collecting it. Second, stored personal information could
be stolen. And finally, having the personal information further increases the risk
of inferences by linking shared identities or other shared attributes.

5.4.1 Guidelines for Deploying Authentication

The above privacy pitfalls can be avoided by following four simple guidelines
concerning the use and implementation of authentication mechanisms:

Seek Consent. Authenticate people only with their consent, and inform
them if information about an identity will be saved. People using a sys-
tem thus become aware that they are relinquishing some control over the
confidentiality of personal information in that identity.

Select Minimal Identity. Authenticate only against identities that em-
body the smallest set of attributes needed for the task at hand. Personal
information is thus not disclosed unnecessarily.

Limit Storage. Do not save information about authenticated identities
unless there is a clear need, and delete that information once it is no
longer needed. This reduces the chances that saved identity information
can subsequently be re-targeted for uses not implied by the consent of the
user that allowed its collection.

Avoid Linking. Eschew including the same unique attribute (e.g., iden-
tifier) in different identities. A single, shared attribute allows linking the
identities that contain this attribute, and that could violate privacy by

Copyright 2009. Fred B. Schneider. All Rights Reserved

74 Chapter 5. Authentication for People

revealing attributes comprising one identity to those who learn the other
identity.

To see these guidelines in action, consider a magnetic-card scheme for lim-
iting off-hours building-access to members of a community. With the system
implemented at Cornell, each student and staff member is issued a Cornell Uni-
versity id card. A unique id number, which serves as an identifier for the card
owner, is encoded on the card’s magnetic stripe. Magnetic-card readers situated
outside building doors are connected to computers, which in turn are connected
to actuators that control the door locks. Some of these computing systems log
all building-access attempts. So revisiting the above guidelines, we have:

Seek Consent. Since one must take an action—place a card in a reader—
to enter a building, authentication is being done with consent. However,
no notice is being given about whether access attempts are being logged
by the computers.

Select Minimal Identity. We might debate whether the appropriate iden-
tity is being used for the authentication. Membership in the Cornell com-
munity is the sole attribute needed to enter most university buildings, so
an id card stating only that attribute should suffice there. Since the id card
in use encodes a unique id number for the card holder, more information
is being disclosed than necessary.

Limit Storage. Should the system log the unique id number and time of
day whenever a card holder enters a building? Such information might be
useful if a crime is committed in that building, because the log identifies
people that law enforcement officers might want to interview for clues
of unusual activity. However, this benefit must be weighed against the
errosion of privacy and the potential for abuse that become possible once
a building-entry log exists, since an individual’s comings and goings can
now be tracked.

Avoid Linking. Cornell University id cards are used in connection with a
wide range of activities, such as borrowing books from the library, park-
ing a car in the university garage, and charging food at university-run
cafeterias. The unique id number on each id card thus enables linking an
individual’s actions, unnecessarily eroding that person’s privacy.

5.4.2 Privacy Pitfalls for Specific Technologies

Authentication methods based on “something you have” or “something you are”
are particularly insidious. First, many of them can proceed without a subject’s
knowledge or involvement; they not only violate the Seek Consent guideline
but (as we show below) can be leveraged to reveal personal information. Sec-
ond, some of the biometrics that uniquely characterize subjects are inextricably
linked to personal information; the Select Minimal Identity guideline is then
violated.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.4. Privacy Pitfalls of Authentication 75

RFID Chips. Today’s RFID chips, for the most part, are indiscriminate
about responding to interrogation signals. This functionality is invaluable for
identifying and inventorying objects in a store or warehouse; and Seek Con-
sent is not being violated, because that guideline does not apply to inanimate
objects. But Seek Consent does apply to people, so indiscriminate responses
become problematic when RFID chips are used for authenticating humans. The
obvious solution is to provide human subjects with some way to inhibit an RFID
chip’s response to an interrogation signal. For example, newer United States
passports have an embedded RFID chip, and the passport cover incorporates
a layer of foil which implements a Faraday cage. The passport cover must be
open before the RFID chip can receive an interrogation signal; opening your
passport cover signifies your consent to be authenticated.

Even when RFID chips are limited to authenticating inanimate objects, pri-
vacy problems can still arise. Consider an inanimate object O that is known
(with high probability) to be carried by a specific individual S. By interrogating
O, a system then (with high probability) authenticates S. But S received no
indication of being authenticated and had no opportunity to give consent. The
problem here is a form of linking—linking based on physical proximity rather
than common attributes that could be deleted from the identity of S or O.
Such proximity linking can be prevented if S or some other responsible party is
able to deactivate any RFID chips embedded in objects S carries. For example,
a store that monitors its inventory and implements item-pricing by having an
RFID chip embedded in each item it sells arguably should deactivate that chip
at the check-out counter when taking the customer’s payment.36

One final kind of privacy violation becomes possible when (i) the very pos-
session of an object O is considered personal information by S and (ii) O con-
tains an RFID chip that indiscriminately responds to interrogation signals. For
example, O might be a book about a subject considered subversive; and the
embedded RFID chip response might contain the title or other particulars of
the book. But even when RFID chips are embedded in mundane objects, new
vulnerabilities can be created. An attacker could determine the contents of a
house from the street simply by broadcasting interrogation signals and then in-
terpreting the responses; a business could assess your taste and spending levels
by interrogating the RFID chips in your clothing as you enter. All of these are
instances of proximity linking and, as before, the solution is to know about and
be able to deactivate RFID chips in objects. In short, a safe strategy is for
loquacious RFID chips to be silenced.

36Deactivation does deprive the customer of any benefits embedded RFID chips can provide.
For example, by embedding an RFID chip in the packaging for a perishable food, we can
provide a purchaser with the history of temperatures to which that food has exposed; an
RFID in the shipping container for a fragile object could log exposure to shocks, which would
be useful in resolving disputes with shippers about breakage. Instructions for use or details
about an item’s pedigree, components, or warranty, which are useful later in an object’s life,
become virtually impossible to misplace if they are stored by an RFID embedded in the object
itself.

Copyright 2009. Fred B. Schneider. All Rights Reserved

76 Chapter 5. Authentication for People

Biometrics. Beyond giving a basis for recognition, a biometric necessarily
conveys something about the physical attributes of the individual being recog-
nized. Such attributes might well be considered personal; if they are, then using
the biometric can violate an individual’s privacy. The challenge when deciding
whether or not to use some candidate biometric for authentication, then, is to
ascertain (i) what attributes can be deduced from the candidate biometric and
(ii) whether they will be considered personal.

Deoxyribonucleic acid (DNA) is perhaps the extreme. Your DNA not only
distinguishes you, but it contains a genetic code that reveals information about
medical conditions you could develop and, because it incorporates the DNA from
your progenitors, reveals information about your “blood” relatives too. Most
people would regard such information as highly personal. For instance, a higher
susceptibility to cancer is something you wouldn’t want a potential employer to
know, because it portends increased absence from work and perhaps increased
medical costs, which make you a less attractive candidate.

Biometrics in common use today are nowhere near as revealing as DNA,
but nevertheless today’s biometrics can violate privacy. Voice pitch and many
body features are predicted by gender; fingerprints reveal information about
occupation; and certain facial characteristics are correlated with race. You
might not know with certainty whether an individual is a white caucasian male,
but certain biometrics could suggest it likely—and in some settings, having that
knowledge would be inappropriate.

5.4.3 Identity Fraud and Identity Theft

In identity fraud, a criminal obtains information about a victim and uses this
information to impersonate and charge purchases to that victim’s accounts; with
identity theft, the criminal initiates new business relationships (unknown to the
victim) and uses them for purchases or other actions attributed to the victim.
Both forms of identity crime benefit from the deployment of weak methods
to authenticate customers, so attackers are able to spoof the authentication
mechanism and thereafter engage in transactions that will be (mis)attributed
to bona fide customers.

The current epidemic of identity crime can be directly attributed to the
widespread use of knowledge-based authentication employing queries with well-
known answers. This approach to authentication minimizes any inconvenience
experienced by customers, who are now not burdened with memorizing a secret
or carrying an authentication token. But now anyone who learns an individual’s
identifiers (e.g., social security number, credit-card number, etc.) and a few other
widely known attributes (e.g., home phone number or mother’s maiden name)
can impersonate that individual with ease.

An obvious solution is to adopt stronger authentication methods. Unfor-
tunately, businesses have little incentive to do so. Defrauded sellers typically
roll their losses due to identity crime into the cost of doing business, in effect
recovering these costs from honest customers. Thus, the added costs of strong
authentication methods would not be offset either by a reduction in losses or

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.5. Federation and Single Sign-On 77

an increase in profits. We might hope that stronger authentication methods
would be attractive to customers, thereby creating a competitive advantage for
any institution that deploys such authentication methods, since dealing with
the loss of reputation and tarnished credit ratings is both time consuming and
frustrating for victims of identity crimes. However, historically customers have
been unwilling to trade convenience or incur higher costs for security.

Governments usually step in when incentives are needed to compel behav-
iors required for the greater good of our society. Legislation to require strong
authentication for certain transactions would go a long way to eliminating iden-
tity crime but would be unpopular with business (because of the costs) and
with individuals (because of the inconvenience). So instead consumers are ad-
monished to keep secret their social security numbers, credit-card numbers, and
bank account numbers. And legislation is being passed that incentivizes busi-
ness to better protect files containing such identifiers; data breaches are then
less likely to give criminals access to this information.37 These measures can
be seen as an attempt to change the culture, creating an environment where
criminals no longer have easy access to the identifiers they require to spoof to-
day’s (weak) authentication mechanisms. But identifiers are, by their nature,
not secrets; therefore, secrecy of identifiers can be a temporary stop gap, at
best. Widespread acceptance and deployment of strong forms of authentication
is what’s needed.

5.5 Federation and Single Sign-On

Whatever privacy benefits accrue from having multiple identities, managing all
those identities can be burdensome. You must keep track of what attributes are
included in each identity, and you must keep track of what identity you are using
for each service provider (also known as a relying party) with which you interact.
In particular, a new identity must be created or an existing identity selected
whenever a new service provider is contacted, where that identity complies with
the Select Minimal Identity and Avoid Linking guidelines of §5.4.1.

Some of this burden can be eliminated by using an identity provider to man-
age identities and store their attributes. The identity provider would authenti-
cate a user once and thereafter serve as that user’s proxy, choosing a suitable
identity for each of that user’s interactions with various service providers. Con-
tinuity of a relationship is supported by choosing the same identity for related
interactions; linking is avoided by choosing a different identity or creating a new
identity for an interaction.

Service providers that were designed to authenticate a human user directly
must typically undergo provisioning before they are able to operate in an envi-
ronment where interposed identity providers speak for human users:

37However, numerous data sources beyond stolen laptops and electronic databases help
criminals commit identity theft, and we have little understanding of where criminals are
getting the credentials they use.

Copyright 2009. Fred B. Schneider. All Rights Reserved

78 Chapter 5. Authentication for People

• A trust relationship between the service provider and the identity provider
might have to be established if one does not already exist. This typically
involves legal negotiations, culminating in a contract to spell out respon-
sibilities (e.g., about providing notice and safeguarding for personal in-
formation) and define liability limits for the service provider and identity
provider.

• Service provider programming might have to be modified. A web server,
for example, in responding to a user’s request might employ a temporary
redirect command38 in order to force the user’s web browser to invoke an
identity provider and obtain credentials, which are then included in a new,
augmented request to the web server.

• An exchange of cryptographic keys might be necessary, so the identity
provider and service provider can authenticate each other.

The simplicity of having a single, system-wide identity provider is attractive
but is impractical. Business, personal, and/or political alliances inevitably bias
users and service providers against all sharing the same identity provider. Also,
a user’s different identities might warrant different levels of protection, in which
case no single identity provider would be well suited to handle all.

Federation can hide much of the complexity that having multiple identity
providers brings. The goal of federating is to give the appearance of a single,
monolithic, identity provider. Federation administrators define (i) a single set
of meanings for attributes used in identities, (ii) accuracy standards for what
attributes store, (iii) acceptable ways for storing and exchanging sensitive in-
formation, (iv) characteristics required (or prohibited) of federation members,
and (v) a single legal instrument governing accountability and obligations be-
tween federation members and with service providers. Agreement on all these
points then makes it possible for identity providers in a federation to implement
a common suite of protocols, including protocols a user (or user-agent soft-
ware) employs to authenticate with identity providers and protocols an identity
provider employs for a user (or user-agent software) to authenticate under a
given identity to a specific service provider.

Metaphors for Identity

Without some sort of higher-level metaphor as the basis for the identity provider’s
user interface, human users are unlikely to reap the privacy benefits that having
multiple identities affords. We sketch two such metaphors below—one based
on access control, and a second based on identity cards. Both are intended to
foster usability by making it easier for users to anticipate the consequences of
their actions.

38HTTP command 302.

Copyright 2009. Fred B. Schneider. All Rights Reserved

5.5. Federation and Single Sign-On 79

Access Control Metaphor. Users concerned with privacy are apt to feel
particularly comfortable with a metaphor that focuses on their specifying

• which attributes are allowed and not allowed to be seen by each specific
service provider, and

• under what circumstances and how may attributes be used, including
whether and where they may be stored, for how long, and for what pur-
poses.

This metaphor views identity management as an access control problem.

A user, by specifying a policy about whether a given service provider can be
sent each of that user’s attributes, implicitly constrains which identities may be
used for interacting with that service provider. And by specifying what requests
are part of a given long-term relationship with some set of service providers ver-
sus requests that should be seen as uncorrelated, a user defines when an existing
identity can be reused or a new one must be created. Other constraints could be
added automatically by user-agent software, to incorporate knowledge about at-
tributes involving personally identifiable information, hence governed by privacy
legislation, and knowledge about information that was expected to remain se-
cret but nevertheless could be inferred from information the user’s policies allow
to be revealed. Notice, an identity provider can extract constraints on identity
usage automatically from these policies about attributes and requests, freeing
users from having to select identities for interactions with service providers.

For example, a user U might interact with an on-line retailer OLR, a shipper
SHP , and the bank BNK that issued U ’s credit card. If U asserts that all book
purchases at OLR be seen as correlated, then this should cause U ’s identity
provider to employ the same identity in accessing OLR for all book purchases
but to use a different identity for U ’s purchases of other kinds of articles. U
might also stipulate that shipper SHP learn the delivery address for a purchase
but not the contents of any package it delivers for U , that OLR not learn the
delivery address for each purchase, and that BNK not know the particulars of
items being charged to the credit card BNK issues. Given these constraints,
U ’s identity provider would deduce that three separate identities must be used
for interacting with OLR, SHP , and BNK , because different sets of attributes
must be omitted in each.

There is considerable flexibility, though, in how OLR, SHP , and BNK com-
municate for this purchase transaction. One obvious (but high-latency and un-
necessarily centralized) implementation has OLR forward a separate request to
U ’s identity provider when SHP and BNK each need to be engaged; the identity
provider then interacts directly with SHP and BNK . A more attractive imple-
mentation has U ’s identity provider encrypting the three attribute bundles for
the three identities being used, and doing so in a way that allows each bundle to
be decrypted only by the corresponding service provider. The three bundles are
then forwarded to OLR and conveyed to/by SHP and/or BNK as the purchase
transaction proceeds.

Copyright 2009. Fred B. Schneider. All Rights Reserved

80 Chapter 5. Authentication for People

Identity Card Metaphor. A second metaphor, which should appeal to tech-
nologically unsophisticated users, is based on the various identity cards that
can be found in a person’s wallet: driver’s license, university id, various credit
cards, etc. In the physical world, each of these identity cards represents a dif-
ferent identity, and by selecting among the identity cards, different identities
can be utilized for different transactions. We might therefore portray identity
management in familiar terms simply by positing a virtual identity card for each
identity, associating a set of attributes with each virtual identity card, and al-
lowing users to store and manipulate these virtual identity cards. As before,
users would somehow specify:

• which identity cards may be seen and must not be seen by each specific
service provider, and

• under what circumstances and how may an identity card be used, includ-
ing whether and where they may be stored, for how long, and for what
purposes.

What makes virtual identity cards an attractive metaphor is that most acts
involving real identity cards have natural parallels as actions involving virtual
identity cards. Consider a user interface that represents each virtual identity
card by using an icon depicting an identity card. Then dragging that icon onto
a graphical representation of some service provider S will be seen by many
as an intuitive way to indicate an identity for interacting with S. Moreover,
the metaphor leverages everyday experience that linking is possible when the
same identity card is used repeatedly and that all identity cards are not equally
appropriate for all uses—both of which are truths about virtual identity cards
and user identities, as well.

Exercises for Chapter 5

5.1 In Western culture, a hyphenated surname often indicates the surnames
of a person’s parents. Other conventions exist in other cultures. Describe the
schemes used in Iceland and in India.

5.2 Given a set comprising N characters, there are NL sequences of length L.
Give a formula for the number of sequences having length less than or equal to
L.

5.3 You have been asked to determine the feasibility of conducting a brute-force
attack on a well-chosen password. How long would it take a 2 GHz processor to
enumerate all strings comprising 10 or fewer characters, assuming a character
set of 52 lower and upper-case characters plus the 10 digits found on a computer
keyboard?

5.4 Linguists claim that English has 1.3 bits of information per character.

Copyright 2009. Fred B. Schneider. All Rights Reserved

Exercises for Chapter 5 81

(a) Explain the reason for the discrepancy between this claim and a naive
information-theoretic analysis, which would assert that English has log2 26
bits of information per character.

(b) Suppose passwords constructed entirely from English words are desired.
If a password is intended to be as strong as a 64 bit random string, how
many total characters must the password be?

5.5 An alternative to storing sets of pairs 〈uidi ,H(passi)〉 is to protect the
confidentiality of passwords by storing a set of hashed pairs H(〈uidi , passi 〉).
Give the process for checking whether a correct password pass has been entered
for a given user identifier uid . What are the advantages and/or disadvantages
of this alternative?

5.6 In Microsoft’s Windows NT operating system, two password hashes are
used. One is called the LM or LAN Manager hash, and it is present for backward
compatibility with Windows 95/98. Here’s how the LM hash is computed for a
14 character input:

(i) All characters in the input are transformed into upper case, and
the result C = c1c2 . . . c14 is split into two 7 character halves C ′ =
c1c2 . . . c7 and C ′′ = c8c9 . . . c14.

(ii) C ′ and C ′′ are separately “hashed” by converting each into a DES
key and encrypting the ASCII string KGS!@#$% to produce two 8
byte values H ′ and H ′′.

(iii) Concatenating H ′ ·H ′′ yields the 16 byte hash H of the original input.

Compare the work required for a brute-force attack against a 14 character pass-
word whose LM hash is being stored with the work required if a single hash of
the entire 14 character input were used.

5.7 Consider the following alternatives to storing set HashSsndPwd of tuples
〈uidi, salti,H(passi · salti · ppri)〉, where salti is salt and ppri is pepper. For
each alternative:

(i) Exhibit the protocol for checking whether a password is valid for a
given user identifier.

(ii) Compare the alternative to the use of HashSsndPwd , discussing whether
(and how) it is better or worse.

(a) Store a set of pairs 〈uidi, E
DES
pass

i
(uidi · pad(uidi))〉 where EDES

pass
i
(·) is the

DES encryption function with a key derived from passi , and pad (uidi) is
a well known function to generate padding given the length of uidi.

(b) Store a set of triples 〈uidi, E
DES
pass

i
(ni),H(passi · ni)〉 where EDES

pass
i
(·) is the

DES encryption function with a key derived from passi , and H(·) is a hash
function.

Copyright 2009. Fred B. Schneider. All Rights Reserved

82 Chapter 5. Authentication for People

5.8 Describe an on-line guessing attack that is possible when passwords are
stored in a set HashPwd of pairs 〈uidi ,H(passi)〉 but that no longer works if
passwords are stored in a set HashSaltPwd of triples 〈uidi, ni,H(passi · ni)〉.

5.9 One-time passwords are an effective defense against shoulder surfing and
other forms of passive wire-tapping. But people are not good at memorizing
long lists, so other means must be employed to generate the one-time passwords.
Here is a somewhat unconventional proposal, based on a scheme suggested by
Weinshall [35].

Choose security parameters m and n, where m < n holds. Each user mem-
orizes a secret, which is a set of m indices, and shares this secret with the au-
thenticating computer. The indices identify m Boolean variables from a larger
set of n Boolean variables.

To be authenticated, the user is shown a random collection of k Boolean
formulas over the n Boolean variables. This collection of formulas is constructed
so that at least one formula evaluates to true when all of the user’s m variables
equal true and the other n − m variables equal false .

The user responds by entering the value (true or false) for each of the for-
mulas. The system authenticates the user if and only if that user’s responses
demonstrate knowledge of the m secret indices.

(a) How many guesses must an attacker make, on average, to be authenticated
after watching the user successfully be authenticated r times?

(b) How does the answer to (a) change if the every collection of formulas
presented to the user has exactly one formula that equals true (as opposed
to at least one formula)?

5.10 The protocol of Figure 5.7 requires authentication token AP to store PIN
PINP . Modify the protocol so this PIN per se is not be stored anywhere, but
nevertheless a PIN must be entered into AP in order for an authentication to
succeed.

5.11 With the protocol of Figure 5.7, an attacker that compromises authen-
ticating computer Sys learns all of the secrets in tokenSec, which would then
allow that attacker to impersonate authentication token AP for any user P .
Modify the protocol of Figure 5.7 and use public key cryptography in a way
that defends against such attacks.

5.12 In the protocol of Figure 5.7, authenticating computer Sys stores its chal-
lenge r for later reference in step 5. An alternative to storing r locally has Sys
encrypt r and include this ciphertext along with r in the original challenge of
step 1; AP would then return this ciphertext as part of its response in step 4.
The result is a stateless protocol, which is preferable. What, if any, vulnerabil-
ities does the protocol modification create?

5.13 The time-based authentication token protocol of Figure 5.8 involves a set
Psbl , which is defined in terms of the maximum message transmission delay L

Copyright 2009. Fred B. Schneider. All Rights Reserved

Exercises for Chapter 5 83

that could be measured by any clock. Derive an alternative definition for Psbl
that instead uses a real-time bound l on delivery delay.

5.14 Using the definitions mN = H(sP), and mi = H(mi+1) for 1 ≤ i < N ,
give a proof of (5.13):

For 1 ≤ i ≤ N : mi = HN−i+1(sP)

5.15 Can test (5.16) be replaced by the following?

iP > iPSys ∧ HiP

Sys−iP (lastP) = resp (5.17)

If so, give a proof that (5.17) implies (5.16); if not explain why the alternative
test cannot be used.

5.16 Instead of using hash chain (5.12), we might instead define mi = H(i ·sp).
Discuss the merits and vulnerabilities of this alternative relative to using the
hash chain. In short, what (if anything) does the hash chain bring to solving
this authentication problem?

5.17 Suppose a poor hash function were used in the protocol of Figure 5.10
and, therefore, a value is likely to recur in the sequence H1(sp), H2(sp), ...,
H1000(sp). Does this lead to a vulnerability? If so, describe an attack to exploit
that vulnerability; if not, explain why no new vulnerability is introduced.

5.18 What is the effect of replacing step 4 of Figure 5.10 with the following?

4. AP −→ Sys : 〈P, r + 10, resp〉 where resp = HN−(iP +10)+1(sP)

Are any vulnerabilities introduced? Will the protocol continue to function as
before?

5.19 The true match rate (TMR) for a biometric sensor is defined to be 1−FRR,
where FRR is the false reject rate; and the true non-match rate (TNMR) is
defined to be 1 − FAR, where FAR is the false accept rate.

An individual is granted access whenever there is a match with somebody
whose biometric is stored. If the TMR and TNMR for a biometric sensor both
are 99.9% then how often will an impostor be granted access?

5.20 Consider the following scheme for preventing attackers who succeed in
reading the biometric templates stored on Sys from learning enough to create a
bogus sensor value valU for impersonating a user U .

Hash Template Storage. Sys stores a hash H(tU) instead of the tem-
plate tU for each user U . And rather than checking whether match(tU , vU)
holds for measured sensor value vU , Sys checks match(H(tU),H(vU)).

Is this scheme feasilble? Explain why.

5.21 To what extent is the Select Minimal Identity guideline given on page 73
a corollary of the Principle of Least Privilege given on page ??.

Copyright 2009. Fred B. Schneider. All Rights Reserved

84 Chapter 5. Authentication for People

5.22 Inspired by the new U.S. passports, Cornell has decided to upgrade its id
cards to use RFID chips instead of magnetic stripes. (Magnetic stripes wear out;
passive RFID chips don’t.) Magnetic-card readers outside building doors will
be replaced by radio transceivers that can interrogate the new RFID-enabled id
cards up to a distance of ten feet, even while the card remains safely ensconced
in a pocket. The new scheme is clearly more convenient. Discuss the extent
to which the new scheme complies with the guidelines in §5.4.1 for deploying
authentication.

Notes and Reading

The idea that methods for authenticating people could be divided into three
basic approaches—something you know, something you have, or something you
are—is discussed in a 1970 IBM technical report [11]. But only recently have
computer scientists turned their attention to studying identity, its characteri-
zation as a set of attributes, and its connection with authentication. Drivers
for this line of inquiry include the growing sensitivity about both privacy and
the inconveniences of interacting with ever larger numbers of distinct systems.
Much has been written on the subject; our treatment of the topic is based on
the 2003 National Academy report Who Goes There? Authentication Through
the Lens of Privacy [21].

The term captcha first appeared in 2000 [32], and captcha’s are widely
used by web sites to defend against bots and other programs misappropriating
services that were intended for use only by humans. However, the idea of posing
certain kinds of challenges as a way to distinguish people from computers dates
back to a 1996 technical report by Naor [28], where various visual-recognition
tasks (gender recognition, facial expression understanding, naming body parts,
deciding nudity) illustrate the approach.

Passwords have been the canonical approach for authenticating people since
the advent of time-sharing. MIT’s Compatible Time Sharing System (CTSS) [10]
by summer 1964 had passwords to authenticate users.39 Wilkes, in connection
with his work on the Cambridge Titan system [38], was the first to discuss
storing passwords in encrypted form (crediting Needham for the idea) Salt was
introduced in UNIX as a defense against off-line dictionary attacks [27]. And
pepper was independently proposed by Manber [26] and by Abadi et al. [2]; it
is not widely used.

A good deal has been written about good choices of passwords. The rules
of Figure 5.1 are based on rules given in Bishop [5], which were derived from
a 1990 study conducted by Klein [22], who analyzed password files comprising
some 15,000 entries.

Other aspects of password security came to be recognized only as password-
based authentication was deployed. Password expiration, for example, was not
implemented by CTSS and was only added to Multics (MIT’s successor to
CTSS) as part of Project Guardian, a USAF-funded effort from 1972 through

39CTSS first became operational, however, three years earlier in 1961.

Copyright 2009. Fred B. Schneider. All Rights Reserved

Notes and Reading 85

1974 to make Multics more secure. And even in the mid-1970’s, Multics did not
have a trusted path40 although users accessing the system over dial-up telephone
lines were advised to disconnect and re-dial at the start of each session to ensure
their terminal was not communicating with a password harvester that had been
left running. With time, however, the wisdom of a system-supported trusted
path became clear, and by August 1983 the United States DoD standard for
evaluating computer security [8]—known as the “Orange Book” from the color
of its cover—was unequivocal about requiring operating system support for a
trusted path.

Attacks to steal passwords (and other information) that humans enter using a
keyboard and/or are displayed on monitors have coevolved with new technology
(which open new vulnerabilities) and defenses (which close old vulnerabilities).
Low-cost computers with the power to execute signal processing algorithms
made it feasible to reconstruct what a user types by sensing and analyzing key-
board acoustic emanations [4, 40] and what is being displayed from reflections
of a CRT screen on the walls of a room [23] or from electromagnetic signals that
flat-panel displays radiate [24]. Remote access to computers over public net-
works meant passwords sent in the clear could be intercepted in transit, which
in turn led to defenses based on one-time passwords. Lamport’s 1979 hash chain
scheme [25] was the first; it is the basis for the S/KEY software developed at
Bellcore in the late 1980’s by Haller, Karn, and Walden [18, 17] and the Dig-
ital Pathways SNK calculator. The use of synchronized clocks for generating
one-time passwords is described in a series of patents [36, 37].

Willie Sutton is frequently misquoted as saying that he robbed banks “be-
cause that’s where the money is,” and the growth of phishing attacks instantiates
that observation for online banking and commerce using the web. One of the
more influential early papers about phishing was written by Felten et al. [13]; it
credits Cohen [9] with the basic attack technique. Password hashes were devel-
oped independently by Abadi et al. [1] and Gabber et al. [15] to block phishing,
since a password sent to one web site would then be useless for authenticating
at other sites. See the description of PwdHash [29] for solutions to the engi-
neering and user-interface issues associated with integrating password hashes
into a modern web browser. A use of pictures to prevent phishing is described
by Dhamija and Tygar [12]. Here, a picture is provided by a web site that
requests a password so the site can be authenticated by whomever must supply
the password, but subsequent experiments [20] suggest humans are easily fooled
when authentication of a web site (or determining that a secure communications
protocol like https is in use) requires recognizing some visual secret.

Of the various technologies suggested for use in authentication tokens, RFID
tags have attracted the most attention. The idea of transmitting information
by modulating radio signal reflections was first employed by Luftwaffe pilots
during World War II, the first war where radar was in use. German radar op-
erators found that the radar reflections from an airplane being rolled in flight
were distinguishable from what would be displayed for a plane being flown nor-

40The Multics ATTN key was delivered to a user process, not the system’s login agent.

Copyright 2009. Fred B. Schneider. All Rights Reserved

86 BIBLIOGRAPHY

mally. So Luftwaffe pilots returning to base in Germany would roll their planes
to signal that they were friendly. Stockman [31] published the first mathemati-
cal account of this phenomon in 1948, validating his theory with experimental
results for various modulation methods. But not until the 1970’s were pas-
sive transponders for radio signals developed and fielded—for controlling access
to doors, for tracking trucks carrying nuclear material, and ultimately as the
basis for automatic highway toll collection (now quite common in U.S. cities).
The volume [16] of short papers representing various stakeholders’ opinions is
a good starting place for those seeking a more in depth treatment of modern
RFID technology and its implications.

The literature on biometrics is enormous, with interest in the subject pre-
dating computers by centuries. Fingerprinting, for example, traces its roots to
9th century China, where it was used to authenticate merchants participating
in transactions; the first use of fingerprints for identifying criminals occurred in
India, late in the 19th century. The tutorial on biometrics in §5.3 is based on
two books [39, 33], but the survey by Wayman [34] is also a good resource.

With scientific papers about federated identity and single sign-on relatively
scarce, descriptions of extant systems is a good way to learn about the design
space. Cameron’s Identity Weblog [6] is also a useful resource. Kerberos [30],
designed and fielded long before the web, is still widely used for providing single
sign-on to services in an enterprise network. Microsoft Passport, a single sign-on
system for users to access many web sites without having to login to each, is
generally regarded as a failure (and worth studying for that reason). Notable
successors to these earlier efforts include: Cardspace [7], Liberty Alliance [3],
OpenID [14], and Shibbolith [19].

Bibliography

[1] Martin Abadi, Krishna Bharat, and Johannes Marais. System and method
for generating unique passwords. U.S. Patent 6,141,760. Filed October
1997, issued October 2000.

[2] Mart́ın Abadi, T. Mark A. Lomas, and Roger Needham. Strengthening
passwords. Technical Report 1997–033, Digital Equipment Corporation,
1997.

[3] Liberty Alliance. http : //www.projectliberty.org/.

[4] Dmitri Asonov and Rakesh Agrawal. Keyboard acoustic emanations. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 3–11,
Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[5] Matt Bishop. Computer Security: Art and Science. Pearson Education
Inc., Boston, MA, 2002.

[6] Kim Cameron. Identity weblog. http : //www.identityblog.com/home.php/.

Copyright 2009. Fred B. Schneider. All Rights Reserved

BIBLIOGRAPHY 87

[7] Kim Cameron and Michael B. Jones. Design rationale behind the iden-
tity metasystem architecture. In Norbert Pohlmann, Helmut Reimer,
and Wolfgang Schneider, editors, ISSE/SECURE 2007 Securing Electronic
Business Processes Highlights of the Information Security Solutions Eu-
rope/SECURE 2007 Conference, pages 117–129. Vieweg, 2007.

[8] National Computer Security Center. Trusted computer system evaluation
criteria. Technical Report CSC-STD-001-83, Department of Defense, Au-
gust 1983.

[9] Fred Cohen. 50 ways to attack your world wide web system. In Computer
Security Industry Annual Conference, October 1995.

[10] Fernando J. Corbató, Marjorie Merwin-Daggett, and Robert C. Daley. An
experimental time-sharing system, pages 117–137. Springer-Verlag New
York, Inc., New York, NY, USA, 2000.

[11] IBM Corporation. The consideration of data security in a computer envi-
ronment. Technical Report G520-2169, IBM Corporation, 1970.

[12] Rachna Dhamija and J. D. Tygar. The battle against phishing: Dynamic
security skins. In SOUPS ’05: Proceedings of the 2005 Symposium on
Usable Privacy and Security, pages 77–88, New York, NY, USA, 2005.
ACM Press.

[13] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web
spoofing: An internet con game. In Proceedings of 20th National Informa-
tion Systems Security Conference, October 1997.

[14] OpenID Foundation. http : //openid.net/.

[15] Eran Gabber, Phillip B. Gibbons, Yossi Matias, and Alain J. Mayer. How to
make personalized web browsing simple, secure, and anonymous. In Rafael
Hirschfeld, editor, Proceedings of First International Conference Financial
Cryptography FC’97, volume 1318/1997 of Lecture Notes in Computer Sci-
ence, pages 17–32. Springer, 1997.

[16] Simson Garfinkel and Beth Rosenberg, editors. RFID Applications, Secu-
rity, and Privacy. Addison-Wesley, 2005.

[17] N. Haller. The S/KEY One-Time Password System. RFC 1760 (Informa-
tional), February 1995.

[18] Neil M. Haller. The S/KEY one-time password system. In Proceedings of
the ISOC Symposium on Network and Distributed System Security, pages
151–157, 1994.

[19] Internet2 Middleware Initiative. http : //shibboleth.internet2.edu/.

Copyright 2009. Fred B. Schneider. All Rights Reserved

88 BIBLIOGRAPHY

[20] Collin Jackson, Daniel R. Simon, Desney S. Tan, and Adam Barth. An eval-
uation of extended validation and picture-in-picture phishing attacks. In
Sven Dietrich and Rachna Dhamija, editors, Financial Cryptography, vol-
ume 4886 of Lecture Notes in Computer Science, pages 281–293. Springer,
2007.

[21] Stephen T. Kent and Lynette I. Millet, editors. Who Goes There? Authen-
tication Through the Lens of Privacy. National Academies Press, 2003.

[22] Daniel V. Klein. Foiling the cracker—A survey of, and improvements to,
password security. In Proceedings of the Second USENIX Workshop on
Security, pages 5–14, Summer 1990.

[23] Markus G. Kuhn. Optical time-domain eavesdropping risks of CRT dis-
plays. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 3–18, Washington, DC, USA, 2002. IEEE Computer Society.

[24] Markus G. Kuhn. Electromagnetic eavesdropping risks of flat-panel dis-
plays. In David Martin and Andrei Serjantov, editors, Proceedings 4th
Workshop on Privacy Enhancing Technologies, volume 3424 of Lecture
Notes in Computer Science, pages 23–25. Springer, May 2004.

[25] Leslie Lamport. Password authentication with insecure communication.
Communications of the ACM, 24(11):770–772, 1981.

[26] Udi Manber. A simple scheme to make passwords based on one-way func-
tions much harder to crack. Computers and Security, 15(2):171–176, 1996.

[27] Robert Morris and Ken Thompson. Password security: A case history.
Communications of the ACM, 22(11):594–597, 1979.

[28] Moni Naor. Verification of a human in the loop or identification via the
turing test, 1996.

[29] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C. Mitchell.
Stronger password authentication using browser extensions. In SSYM’05:
Proceedings of the 14th Conference on USENIX Security Symposium, pages
17–31, Berkeley, CA, USA, 2005. USENIX Association.

[30] Jennifer G. Steiner, B. Clifford Neuman, and Jeffrey I. Schiller. Kerberos:
An authentication service for open network systems. In Proceedings of the
USENIX Winter 1988 Technical Conference, pages 191–202, Berkeley, CA,
1988. USENIX Association.

[31] Harry Stockman. Communication by means of reflected power. Proceedings
of the IRE, 36(10):1196–1204, October 1948.

[32] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langfort.
CAPTCHA: Using hard AI problems for security. In Proceedings of Euro-
crypt, pages 294–311. Springer-Verlag, 2003.

Copyright 2009. Fred B. Schneider. All Rights Reserved

BIBLIOGRAPHY 89

[33] James Wayman, Anil Jain, Davide Maltoni, and Dario Maio, editors. Bio-
metric Systems: Technology, Design, and Performance. Springer, 2005.

[34] James L. Wayman. Biometrics in identity management systems. IEEE
Security and Privacy, 6(2):30–37, March/April 2008.

[35] Daphna Weinshall. Cognitive authentication schemes safe against spyware
(short paper). In Proceedings of the IEEE Symposium on Security and
Privacy, pages 295–300, Washington, DC, USA, 2006. IEEE Computer
Society.

[36] Kenneth P. Weiss. Method and apparatus for positively identifying an
individual. U.S. Patent 4,720,860. Filed November 1984, issued January
1988.

[37] Kenneth P. Weiss. Method and apparatus for synchronizing generation of
separate, free running, time dependent equipment. U.S. Patent 4,885,778.
Filed November 1985, issued December 1989.

[38] M. V. Wilkes. Time Sharing Computer Systems. Elsevier Science Inc., New
York, NY, USA, 1968.

[39] John D. Woordward, Jr., Nicholas M. Orlans, and Peter T. Higgens. Bio-
metrics. McGraw-Hill/Osborne, 2003.

[40] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard acoustic emanations
revisited. In CCS ’05: Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, pages 373–382, New York, NY, USA,
2005. ACM Press.

Copyright 2009. Fred B. Schneider. All Rights Reserved

