
Notes on Information Flow Control for CS 5430

Elisavet Kozyri

January 5, 2019

Restrictions and Access Control

Data are associated with restrictions. These restrictions are usually expressed
in terms of confidentiality (e.g., who can read data), in terms of integrity (e.g.,
how much trusted data is), or in terms of privacy (e.g., what operations can be
applied on data).

Access control has been widely used to specify and enforce restrictions on
data. However, access control alone is not enough. Consider a document doc as-
sociated with an access control policy P (e.g., only Alice can read doc). Assume
that some computation is applied to doc producing several new documents that
needs to be used later. What should be the access control policy on these new
documents? A human should make this decision and should manually associate
the desired policies to the new documents.

This manual work becomes even harder, when we scale up to a system that
stores multiple pieces of data that are owned by multiple users, and supports
rich interactions between data of different users. So, access control alone does
not seem suitable for the Big Data era. Also, access control alone cannot pre-
vent leaking information through metadata, shared resources, and other covert
channels, which are channel not intended to convey information.

Information Flow Policies

Information Flow (IF) policies are proposed to address the limitations of access
control. An IF policy associated with a piece of data d specifies restrictions on
d, and on all data derived from d. For example, an IF policy for confidentiality
could specify: value v and all its derived values is allowed to be read at most
by Alice. Equivalently, we say that v is allowed to flow only to Alice.

An enforcement mechanism for IF policies automatically deduces the restric-
tions for derived data. For example, if a document doc is allowed to flow only to
Alice, then any document derived from doc is allowed to flow only to Alice, too.
Otherwise, the IF policy on doc would be violated. When documents with dif-
ferent policies are combined to produce a new document, that new document is
associated with a policy that satisfies all policies of the constituent documents.

1

Labels for IF policies

We use labels, which are syntactic objects, to represent IF policies. Classifica-
tions can be used as labels for information flow policies. For example, labels
U , C, S, and TS (i.e., Unclassified, Confidential, Secret, and Top Secret) or
labels L and H (i.e., Low confidentiality, High confidentiality) can be used to
represent IF policies. If some document doc is associated with C, it means that
doc and all documents derived from doc are considered Confidential (i.e., tagged
with C). Sets of principals can also be used as labels. For example, if some
document doc is associated with {Alice}, it means that doc and all documents
derived from doc can be read at most by Alice.

More expressive labels

The labels discussed above represent policies that are more restrictive than
necessary, because they impose the same restrictions to all possible derived
data. However, there are practical cases where restrictions on outputs of some
operations are different (e.g., fewer or more) than the restrictions on inputs of
these operations.

Consider, for example, operation maj that tallies votes for an election:

x := maj (ν1, ν2, . . . , νn).

Input plaintexts are usually considered secret (i.e., of high confidentiality), but
the result x of the election is usually considered public (i.e., of low confiden-
tiality). If each vote νi is tagged with label H (which represents that νi is of
high confidentiality), then the output x, which is derived from all these votes, is
required to be tagged with H, too. But this means that x cannot be considered
public. So, there is a mismatch between the restrictions imposed by the labels
of inputs to the output, and the desired restrictions to the output.

Similarly, for the encryption operation:

x := Enc(y; k).

Input votes are usually considered secret, but the ciphertext x is usually consid-
ered public. However, tagging y and k with H, implies that x is tagged with H.
Again, there is a mismatch between the imposed and the desired restrictions on
x.

Other operations may cause the restrictions imposed on outputs to increase
comparing to restrictions imposed on inputs. For example, the list of students
in CS and the list of addressed in Ithaca may be public, but the mapping of
students to home addresses should not be public. So, here, if the list of students
in CS and the list of addresses in Ithaca are tagged with L, then the resulting
list will be tagged with L. Thus, fewer restrictions than desired will be applied
to the resulting list.

2

So, there is a need for IF policies and labels to express how restrictions on
derived data may change based on applied operations, or based on events that
occur during execution, or based on ownership of this data.

Noninterference

Consider inputs and outputs of a program being tagged with label H or L. In-
puts tagged with H are allowed to flow only to outputs tagged with H. Equiv-
alently, inputs tagged with H are not allowed to flow to outputs tagged with L.
This implies that changing inputs tagged with H should not cause changes on
outputs tagged with L. This requirement is an instantiation of noninterference.
Noninterference is a semantic guarantee that should be offered by the enforce-
ment mechanism of IF policies. Access control does not offer a similar semantic
guarantee.

Consider, for example, the program below

h′ := h+ l; l′ := l + 1

where variables h, h′ are tagged with H and variables l, l′ are tagged with
L. Here, l and h model inputs, while l′ and h′ model outputs. This program
satisfies noninterference because changing values in h does not cause values in
l′ to change. However, program

l′ := h ∗ 2

does not satisfy noninterference because changing h causes l′ to change. So,
here h is leaked to l′.

More carefully, noninterference states that if two initial (or input) memories
M1, M2 agree on variables tagged with L (i.e., M1 =L M2), and if program
C is executed on M1 and M2 to termination, then the corresponding outputs
C(M1) and C(M2) should also agree on variables tagged with L (i.e., C(M1) =L

C(M2)). Specifically:

if M1 =L M2, then C(M1) =L C(M2).

The above statement of noninterference handles only programs that termi-
nate. What if a program does not terminate depending on inputs tagged with
H? Consider the following example:

while h > 5 do {skip};
l′ := 4

(1)

where command skip does nothing. If h > 5 is false, then l′ becomes 4. If h > 5
is true, then no value is assigned to l′. Principals observing l′ either observe 4
being assigned to l′, or no value being assigned to l′, depending on h > 5. So,
h > 5 is leaked to principals observing l′.

3

Termination sensitive noninterference strengthens noninterference by requir-
ing the termination behavior of the problem to not depend on secret values:

If M1 =L M2, then

C terminates on M1 iff C terminates on M2 and

C(M1) =L C(M2).

Program (1) does not satisfy termination sensitive noninterference, but the
following program satisfies termination sensitive noninterference:

while l > 5 do {skip};
l′ := 4

When information flow policies relax restrictions on derived data, and thus
allow leaking information to the output of a certain operation, the previous
statements of noninterference do not hold. Consider, for example, an informa-
tion flow policy that allows an input h tagged with H to flow to an output
l′ tagged with L only through the operation mod 2. According to that policy
principals observing l′ are allowed to learn whether h is even or not, but they
are not allowed to learn anything else about h. So, program

l′ := h mod 2 (2)

satisfies this policy, but program

l′ := h mod 2 + h (3)

does not, because this last program leaks more information to l′ than just
h mod 2. For this particular policy, noninterference should be restated as:

If M1 =L M2 and M1(h) mod 2 = M2(h) mod 2, then C(M1) =L C(M2).

Notice that this statement of noninterference is satisfied by program (2), but it
is not satisfied by (3).

Enforcing Information Flow Policies

The goal of information flow control is to enforce IF policies associated with
variables in a program. Assume there is a mapping Γ from variables to labels,
which represent desired IF policies. The enforcement mechanism should ensure
that a program and the accompanied mapping Γ satisfy noninterference.

For these notes, we consider the following definition of noninterference for
confidentiality:

if M1 =L M2, then C(M1) =L C(M2).

where label L tags public variables (i.e., their values are allowed to flow to
everyone) and H tags secret variables (i.e., their values are allowed to flow only
to some principals). According to the above statement of noninterference, when
executing program C twice, by keeping the same initial values of public variables
and possibly changing the initial values of secret variables, the values stored in
public variables at termination should not change.

4

Fixed versus Flow-sensitive Γ

An enforcement mechanism for IF policies may use a fixed or a flow-sensitive
mapping Γ for the analysis of a program. Using a fixed Γ means that labels on
variables remain always the same during analysis. The enforcement mechanism
checks whether the program and the particular Γ satisfy noninterference. For
example, consider Γ(y) = H, Γ(x) = L and assignment

x := y. (4)

The mechanism would check whether the particular Γ and the particular as-
signment satisfies noninterference. The mechanism would deduce that nonin-
terference is actually not satisfied, and thus the assignment would be rejected.
If, instead, Γ(y) = L and Γ(x) = H, then the assignment would be accepted by
the mechanism, because now noninterference is satisfied.

If an enforcement mechanism uses a flow-sensitive mapping Γ, then Γ may
change during the analysis of a program. This means that labels on variables
may change during analysis. Here, the enforcement mechanism deduces labels
on variables, such that the program and mapping Γ satisfy noninterference.
Consider again assignment (4). At the beginning of the analysis we may have
Γ(x) = H and Γ(y) = L, but after analyzing this assignment, the mechanism
would set Γ(y) to be H. Thus, noninterference is satisfied.

Static versus Dynamic mechanisms

The enforcement mechanism for information flow control may be applied to
programs before or after execution. A static mechanism performs checking
and/or deduction of labels before execution. A dynamic mechanism performs
checking and/or deduction of labels during execution. There are also hybrid
mechanisms that combine techniques from static and dynamic mechanism to
achieve the best of both worlds.

A static mechanism with fixed Γ

We examine a static mechanism for information flow control, which uses a fixed
mapping Γ. So, the mechanism only needs to check whether a given program
and a given mapping Γ satisfies noninterference.

Programs are written in a simple imperative language, whose syntax is pre-
sented in Figure 1. According to this syntax, an expression e is either a constant
n, or a variable x, or the application of an operator to expressions e1 + e2. A
command c is either a skip, which has no effect, or an assignment, or a sequence
of commands, or an “if”-statement, or a “while”-statement. Next, we examine
how the enforcement mechanism decides whether a command and a mapping Γ
satisfy noninterference.

5

(Expressions) e ::= n | x | e1 + e2
(Commands) c ::= skip | x := e | c1; c2 |

if e then c1 else c2 end |
while e do c end

Figure 1: Syntax

Consider first the assignment below:

x := y. (5)

Here the value in y explicitly flows to x. Whoever learns the value of x, they
also learn the value of y. So, the restrictions imposed by Γ(x) on where x is
allowed to flow had better be at least as many as those imposed by Γ(y).

According to noninterference, label H imposes more restrictions than L,
because variables tagged with H are allowed to flow only to variables tagged
with H, however variables tagged with L are allowed to flow to any variable. So,
the mechanism accepts assignment (5) if Γ(x) = H and Γ(y) = L, or if Γ(x) = H
and Γ(y) = H, or if Γ(x) = L and Γ(y) = L. However, the assignment is rejected
if Γ(x) = L and Γ(y) = H.

We assume there is a restrictiveness relation v that compares labels in terms
of the restrictions they impose. We write ` v `′ to denote that `′ is at least as
restrictive as `. Relation v should be: reflexive, transitive, and antisymmetric.
There is a bottom label ⊥ that is less restrictive than all other labels, and a top
label > that is more restrictive than all other labels.

Restrictiveness relation v essentially define allowed flows between labels. If
` v `′, then values in variables tagged with ` are allowed to flow to variables
tagged with `′. For the set {L,H} of confidentiality labels, relation v is defined
to be:

L v L, L v H, H v H. (6)

Notice that L v H is in accordance with the confidentiality policies represented
by labels L and H, because values in public variables (i.e., tagged with L) may
flow to secret variables (i.e., tagged with H). According to (6), L is the bottom
label ⊥ and H is the top label >.

The static mechanism accepts assignment (5), if Γ(y) v Γ(x) holds. Consider
now assignment x := y+z that causes both y and z to explicitly flow to x. This
assignment is accepted if Γ(y) v Γ(x) and Γ(z) v Γ(x) hold. So, Γ(x) should
be at least as restrictive as both Γ(y) and Γ(z).

For each pair of labels ` and `′, there should exist label ` t `′, such that:

• ` t `′ is at least as restrictive as both ` and `′ (i.e., ` v ` t `′, `′ v ` t `′),
and

• there is no other such label `′′ that is less restrictive than ` t `′ (i.e., if
` v `′′ and `′ v `′′, then ` t `′ v `′′).

6

Label ` t `′ is then called the join of ` and `′. Operator t is associative and
commutative. The set of labels and relation v define a lattice, with join operator
t.

For example, the set {L,H} of confidentiality labels and relation v is a
lattice, where the join operator t is defined as:

L t L = L, L tH = H, H tH = H.

Notice that equality LtH = H is in accordance with the confidentiality policies
represented by labels L and H, because the combination of a public (i.e., tagged
with L) and a secret value (i.e., tagged with H) can be safely considered as a
secret value.

So, assignment x := y+z is accepted if Γ(y)tΓ(z) v Γ(x). Defining Γ(y+z)
to be Γ(y) t Γ(z), we can simply write Γ(y + z) v Γ(x).

Consider, now, the if -statement below:

if z > 0 then

if y > 0 then x := 1 else x := 2 end

else

x := 3

end

(7)

Here, values in z and y implicitly flow to x. This is because the value of x
indicates the truth values of guards z > 0 and y > 0. For example, if x is 2,
then it can be deduced that z > 0 is true and y > 0 is false. However, if x is 3,
then it can be deduced that z > 0 is false, but nothing can be deduced about
the truth value of y > 0. So, assignments x := 1 and x := 2 reveal information
about both guards z > 0 and y > 0, while assignment x := 3 reveals information
only about z > 0. Thus, we say that the execution of assignments x := 1 and
x := 2 is controlled by guards z > 0 and y > 0, while the execution of assignment
x := 3 is controlled by only guard z > 0.

The set of guards that control the execution of a command is called the
context of that command. Because the execution of a command may reveal
information about its context (e.g., assignment x := 1 in (7) reveals information
about guards z > 0 and y > 0), the enforcement mechanism uses a context label
ctx to represent the sensitivity of the information conveyed by a context. In
example (7), we saw that the context of x := 1 involves guards z > 0 and y > 0.
The context label ctx that represents the sensitivity of z > 0 and y > 0 is the
combination of the sensitivity of z and the sensitivity of y. So, the context label
ctx for x := 1 in (7) is Γ(z) t Γ(y). The label Γ(x) of x had better be at least
as restrictive as ctx , otherwise information could be implicitly leaked from the
context to x. For example, if Γ(x) = H, Γ(y) = L, and Γ(z) = H, then the
program is accepted. However, if Γ(x) = L, Γ(y) = L, and Γ(z) = H, then the
program is rejected.

Up until now we examined how the static enforcement mechanism, with fixed
Γ, analyses particular commands. Next, we define this enforcement mechanism

7

as a typing system and explain how it can analyze any possible command.
This typing system addresses explicit and implicit flows using the techniques
introduced above.

Typing system

We employ a static type system to enforce noninterference. Here types are
labels. There is a fixed mapping Γ from variables to types (i.e., labels). The
typing system consists of typing rules for

• deducing types for expressions, given types of variables in these expres-
sions,

• deciding whether each command in a program is type correct.

If a program is type correct according to the typing rules, then it is proved that
the program satisfies noninterference.

Typing rules for expressions

Typing rules for expressions use judgment Γ ` e : ` to denote that expression e
has type ` according to mapping Γ. We give one typing rule for each possible
expression that may occur in a program, given syntax in Figure 1.

No information about secret variables is revealed by a constant n, because
its value remains the same for all possible execution of a program. So, a constant
can be safely tagged with bottom label ⊥, which equals to L when considering
confidentiality labels {L,H}. The typing rule for constants is:

Γ ` n : ⊥.

The type of a variable is the label that Γ maps this variable to:

Γ ` x : Γ(x).

The type of an expression e+e′ should be at least as restrictive as the type
of e and the type of e′. So, it suffices for the type of e+ e′ to be the join of the
type of e and the type of e′:

Γ ` e+ e′ : Γ(e) t Γ(e′).

Typing rules for commands

Typing rules for commands use judgment Γ, ctx ` c to denote that according to
mapping Γ and context label ctx , command c is type correct.

We give one typing rule for each possible kind of command that may occur
in a program, given syntax in Figure 1.

An assignment x := e is type correct if the explicit flow from e to x and the
implicit flow from the context of that assignment to x are allowed. In particular,

8

Γ(x) should be at least as restrictive as Γ(e) (to prevent explicit flows) and at
least as restrictive as ctx (to prevent implicit flows). So, we write:

Γ, ctx ` x := e

if Γ ` e : `

and ` t ctx v Γ(x)

We use the inference rule below to represent the above statement:

Γ ` e : ` ` t ctx v Γ(x)

Γ, ctx ` x := e

Here, the judgments above the line are called the premises of the inference rule,
and the judgment below the line is called the conclusion of the inference rule.

The typing rule for “if”-statement is responsible for constructing the correct
context label under which the branches of this statement should be type checked.
In particular, statement if e then c else c′ end is type correct if c and c′ are
type correct in a context label augmented with the type of e:

Γ ` e : ` Γ, ` t ctx ` c Γ, ` t ctx ` c′

Γ, ctx ` if e then c else c′ end

A “while”-statement while e do c end is type correct if c is type correct
in a context augmented with e:

Γ ` e : ` Γ, ` t ctx ` c
Γ, ctx ` while e do c end

A sequence statement c; c′ is type correct if c and c′ are type correct:

Γ, ctx ` c Γ, ctx ` c′

Γ, ctx ` c; c′

This typing system can be used to enforce labels from an arbitrary lattice
(non just H and L labels), for either confidentiality or integrity.

Example

Consider the program below and a static mapping Γ from variables to labels.

if x > 0 then z := 1 else z := 2 end; y := z. (8)

We follow the typing rules introduced above to deduce restrictions between
labels Γ(x), Γ(y), Γ(z), such that the program is type correct. If Γ satisfies
these restrictions between labels, then program (8) is type correct. Otherwise,
program (8) is not type correct.

The context of program (8) is empty, because no guard controls the execution
of (8). So, the context label ctx for (8) can be set to the bottom label ⊥. We

9

want to deduce the relation between labels Γ(x), Γ(y), Γ(z) such that we can
prove the following judgment:

Γ,⊥ ` if x > 0 then z := 1 else z := 2 end; y := z. (9)

According to the typing rule of sequence statement, (9) can be proved if the
following hold:

Γ,⊥ ` if x > 0 then z := 1 else z := 2 end (10)

Γ,⊥ ` y := z. (11)

According to the typing rule of assignment, (11) can be proved if:

Γ(z) t ⊥ v Γ(y)

which can be rewritten as:
Γ(z) v Γ(y) (12)

because Γ(z) t ⊥ = Γ(z).
From the typing rule of “if”-statement, (10) can be proved if:

Γ ` x > 0 : Γ(x)

Γ,⊥ t Γ(x) ` z := 1

Γ,⊥ t Γ(x) ` z := 2

where the last two judgments can be rewritten as:

Γ,Γ(x) ` z := 1 (13)

Γ,Γ(x) ` z := 2. (14)

According to the typing rule of assignment, (13) and (14) can be proved if:

Γ(x) v Γ(z). (15)

So, program (8) is type correct, under the bottom context label ⊥, if re-
strictions (12) and (15) hold between labels Γ(x), Γ(y), and Γ(z). For instance,
if Γ(x) = L, Γ(y) = H, and Γ(z) = L, then restrictions (12) and (15) hold.
However, if Γ(x) = L, Γ(y) = L, and Γ(z) = H, then restriction (12) does not
hold, and thus program (8) is not type correct.

Table 1 summarizes the deduction steps we followed above as a proof tree.
At the bottom of the proof tree is the judgment that needs to be proved. At
the top of the proof tree reside the restrictions that need to hold between labels
Γ(x), Γ(y), and Γ(z).

Noninterference for any label `

The static type system we introduced for information flow control is sound. This
means that if a program is type correct, then the program satisfies noninter-
ference. Equivalently, this type system does not accept programs that violate
noninterference.

10

Γ ` x > 0 : Γ(x)

Γ(x) v Γ(z)

Γ,Γ(x) ` z := 1

Γ(x) v Γ(z)

Γ,Γ(x) ` z := 2

Γ,⊥ ` if x > 0 then z := 1 else z := 2 end

Γ(z) v Γ(y)

Γ,⊥ ` y := z

Γ,⊥ ` if x > 0 then z := 1 else z := 2 end; y := z

Table 1: Proof tree

Up until now we have defined noninterference in terms of a simple lattice,
which consists of a set of labels {L,H} and a restrictiveness relation v. In
practice, more than two labels are needed to represent desired information flow
policies. So, now, we generalize the statement of noninterference to describe
allowed flows between labels of an arbitrary lattice.

Given a lattice that consists of a set Λ of labels and restrictiveness relation
v, we express noninterference with respect to a label ` ∈ Λ. Consider a principal
who is allowed to read variables tagged with that label `. Then, this principal is
also allowed to read any variable tagged with a label in set Low(`) = {`′ | `′ v `}.
This is because, by the definition of relation v, label `′ is allowed to flow to label
`. However, this principal should not be allowed to read any variable tagged
with a label `′′ not in Low(`), because `′′ is not allowed to flow to `. So, each
label `′ in Low(`) is considered “low” with respect to ` and each label `′′ not
in Low(`) is considered “high” with respect to `.“High” inputs with respect to
` should not flow to “low” outputs with respect to `. This requirement should
hold for any label ` ∈ Λ, so noninterference can be generalized as:

∀` : M1 =` M2 ⇒ c(M1) =` c(M2), (16)

where M1 =` M2 denotes equality on all variables tagged with a label in Low(`),
and c(M1) =` c(M2) denotes equality on all outputs tagged with a label in
Low(`).

The static type system is sound with respect to statement (16) of noninter-
ference. Statement (16) can be used for either confidentiality or integrity. In
fact, statement (16) is oblivious to the exact meaning of labels and the policies
they represent. Noninterference in (16) only depends on the restrictiveness re-
lation v defined on the set Λ of labels. Consequently, the typing system can be
used to enforce noninterference in (16) for any information flow policies, pro-
vided these policies are represented by labels where relation v and join operator
t are defined.

Limitations of the static typing system

Programs accepted by the static typing system may leak sensitive information
through their termination behavior. Consider the program below:

while s 6= 0 do skip end;

p := 1

11

where s is a secret variable (i.e., Γ(s) = H), and p is a public variable (i.e.,
Γ(p) = L). The final value of p is the output of the program. Command skip
has no effect.1 If s 6= 0 is true, then the program does not terminate, and thus
p := 1 is never executed. So, no public output is generated. However, if s 6= 0 is
false, then the program terminates, by assigning 1 to p. So, one public output
is generated. Consequently, the termination behavior of the program is used as
a covert channel to leak s 6= 0 to public outputs!

The typing rule for the while-statement has to be strengthened, if leaking
through termination needs to be prevented. For example, the typing rule could
accept a while-statement only when the type of its guard expression is the
bottom label ⊥:

Γ(e) = ⊥ Γ, ctx ` c
Γ, ctx ` while e do c end

(17)

Under this restriction, the termination behavior of the program does not depend
on sensitive information, and thus the covert channel due to termination is
avoided. However, the enforcement mechanism becomes overly conservative;
more secure programs, such as

while s > 0 do s := s+ 1 end,

are now rejected. Researchers in information flow control either chose to ig-
nore the covert channel due to termination, to avoid making their mechanism
conservative, or try to find a more precise rule than (17).

The current static type system is already conservative enough, because there
are programs that satisfy noninterference but they are not type correct. Con-
sider, for example, the program below:

if x > 0 then y := 1 else y := 1 end

where the confidentiality labels for variables are fixed: Γ(x) = H and Γ(y) = L.
This program satisfies noninterference, because x does not flow to y, but it is
not type correct, because Γ(x) 6v Γ(y). Consider another example:

if 1 = 1 then y := 1 else y := x end (18)

with the same confidentiality labels as above. Again, this program satisfies
noninterference, because x does not leak to y, but it is not type correct, because
Γ(x) 6v Γ(y). These two programs are examples of false positives for the static
type system: they satisfy noninterference but they are not type correct.

It is impossible to built an enforcement mechanism for information flow
control that accepts exactly those programs that satisfy noninterference. This
is because the halting problem, which is undecidable, can be reduced to the
information control problem. Consider the following statement:

if s > 1 then c; p := 2 else skip end

1Command skip cannot be used to leak sensitive information, thus the typing system
always accepts it: Γ, ctx ` skip.

12

where s is a secret variable and p is a public variable. If a mechanism could
precisely decide whether this statement is secure, then this mechanism could
decide whether command c terminates (if the statement is secure, it means that
c does not terminate, but if the statement is not secure, than c terminates),
which is impossible. So, false positives are unavoidable for information flow
control mechanisms.

The effort of researchers has been focused on proposing enforcement mecha-
nisms with as few false positives as possible. One way to decrease false positives
is for the mechanism to use run time information. These mechanisms are called
dynamic, because they analyze programs during execution.

Dynamic enforcement mechanisms

A dynamic mechanism checks and/or deduces labels on variables during execu-
tion. If an assignment x := e is executed, and if Γ is fixed, then the mechanism
checks whether relation Γ(e) t ctx v Γ(x) holds and halts the execution when
the check fails. If an assignment x := e is executed, and if Γ is flow sensitive,
then the mechanism deduces label Γ(x) to be Γ(e) t ctx . When execution en-
ters a conditional command, the mechanism augments ctx with the label of the
guard.

Under a dynamic mechanism, statement (18) would be accepted. This is
because, at any execution, only assignment y := 1 is executed, and this assign-
ment does not cause any illegal explicit or implicit flows. So, statement (18),
which is rejected by the static type system, would be accepted by a dynamic
mechanism.

However, dynamic mechanisms are notorious for introducing leakage of in-
formation through the checks they perform and the labels they deduce during
execution. The example below demonstrates how sensitive information may be
leaked through deduced labels:

x := 0;

if h > 0 then x := 1 else skip end;

y := x

(19)

Assume the dynamic mechanism uses a flow sensitive mapping Γ, which is ini-
tialized as: Γ(x) = L, Γ(y) = L, and Γ(h) = H. Assume also that the final
value of y is the output of the program. If h > 0 is false, then Γ(x) remains L,
and thus, Γ(y) becomes L, at termination. So, the value assigned to y will be a
public output. If h > 0 is true, then Γ(x) becomes H, and thus, Γ(y) becomes
H, at termination. So, no public output will be generated. Thus, the value of
h > 0 is leaked to public outputs.

Notice that in example (19) the value of h > 0 always flows to the value of
x. This is because the final value of x is 1 when h > 0 is true, and 0 when h > 0
is false. So, at termination, x should always be tagged with H. However, the
dynamic mechanism of the example above failed to tag x with H when h > 0

13

was false, because during execution no assignment to x was performed in the
context of h > 0. So, that dynamic mechanism missed to capture the indirect
flow from h to x, when h > 0 was false, because x did not appeared as a target
variable2 in the the taken branch; x was a target variable in the untaken branch.

One way to capture indirect flows to target variables of untaken branches, is
to perform an on-the-fly static analysis of untaken branches. When the execu-
tion (and the analysis) of the taken branch of a conditional statement finishes,
the mechanism can analyze the untaken branch, without executing it, to ensure
all implicit flows from the context to target variables are captured. Considering
again example (19). When h > 0 is false, and after the taken branch (i.e., skip)
is executed, an on-the-fly static analysis can be applied to the untaken branch
x := 1. Specifically, Γ(x) would be deduced to be Γ(1)tΓ(h), which is label H.
So, for every execution, x is tagged with H. Subsequently, for every execution,
y is tagged with H, and thus there will always be no public output. Thus, h > 0
is no longer leaked to public outputs.

A dynamic enforcement mechanism may leak sensitive information when it
decides to halt an execution due to a failed label check. Consider the program
below:

p := 0;

if s > 0 then p := 1 else s := 1 end;

p := 2

where fixed mapping Γ is: Γ(p) = L and Γ(s) = H. Assume that the final value
of p is the (public) output of the program. If s > 0 is true, then execution
is halted to prevent s from implicitly flowing to p through assignment p := 1.
So, no public output is generated. If s > 0 is false, then execution terminates
normally, and thus one public output is generated. Here, a public output is
generated depending on whether the execution is halted or not, which in turn
is a decision that depends on s > 0. Consequently, s > 0 is leaked to public
outputs. Current research is focused on designing dynamic mechanisms that do
not leak sensitive information when they decide to halt an execution, without
making the mechanism too conservative.

As a conclusion, dynamic mechanisms have both advantages and disadvan-
tages comparing to static mechanisms for information flow control. A dynamic
mechanism may be less conservative (less false positives) than a static mech-
anism, but a dynamic mechanism adds run time overhead. Also, a dynamic
mechanism may introduce new covert channels due to label deduction and halt-
ing decisions.

2For any assignment x := e, x is called the target variable.

14

