
CS 5430

Information-Flow Policies

Elisavet Kozyri
Spring 2017

Restrictions on data

2

Restrictions on data

•Confidentiality

–Who can read data.

•Integrity

–How much trusted data is.

•Privacy

–What operations can be applied on data.

3

Access control for enforcing restrictions

4

Access control for computed data

Doc

Can read:
Alice
Bob

Doc’ Doc’’

computation

Can read:
Alice
Bob

Can read:
Alice
Bob

Manual assignment
of access control
policies to
computed data!

5

Scaling to many pieces of data…

6

Scaling to many users…

7

Scaling to many interactions…

?

?

?

?

?

Need to assign
restrictions in an
automatic way.

8

Limits of access control

•Not suitable for the Big Data era.

•[Lampson 1973] Malicious program could:

–Leak information in metadata (billing reports,
nonces chosen in protocols, ...)

–Use shared resources and OS API to encode
information (e.g., file locking, CPU cycles)

9

Limits of access control

•Not suitable for the Big Data era.

•[Lampson 1973] Malicious program could:

–Leak information in metadata (billing reports,
nonces chosen in protocols, ...)

–Use shared resources and OS API to encode
information (e.g., file locking, CPU cycles)

10

Covert channels:
not intended for information

transfer yet exploitable for that purpose

Information Flow (IF) Policies

•An IF policy specifies restrictions on the
associated data, and on all its derived data.

•IF policy for confidentiality:

–Value ὺand all its derived values are allowed to be
read at most by Alice.

11

Different from the access control policy:
Value ὺis allowed to be read at most by Alice.

Information Flow (IF) Policies

•An IF policy specifies restrictions on the
associated data, and on all its derived data.

•IF policy for confidentiality:

–Value ὺand all its derived values are allowed to be
read at most by Alice.

–Equivalently, ὺis allowed to flow only to Alice.

•The enforcement mechanism automatically
deduces the restrictions for derived data.

12

Information flow policies

Doc

Can flow to:
Alice

Doc’ Doc’’

computation

Automatic
deduction
of policies!

Can flow to:
Alice

Can flow to:
Alice

13

Scaling to many interactions…

14

Scaling to many interactions…

15

Labels to represent policies

Examples for confidentiality:

•Classifications

–Unclassified (U), Confidential (C), Secret (S),
Top Secret (TS)

–Low confidentiality (L), High confidentiality (H)

•Sets of principals:

–{Alice, Bob}, {Alice}, {Bob}, {}

16

Labels to represent policies

17

Doc
H

Doc’ Doc’’
HH

More restrictive than necessary…

18

x := maj(v1, v2ȟ ȣȟ vn)
H

Wanted to
be L!

Required to be H.

HHH

More restrictive than necessary…

19

x := Enc(v; k)

Wanted to
be L!

Required to be H.

H HH

Less restrictive than necessary…

20

m := Match(students; addresses)

Wanted to
be H!

Required
to be L.

L LL

More expressive IF labels

Need to specify changes of restrictions based on:

•applied operations, or

•conditions on execution state, or

•ownership of values, or …

For example, a vote ὺcan be tagged with label:

21

H L
maj

Satisfaction of IF policies

• Consider inputs and outputs of a program being tagged with label
H or L.

• Inputs tagged with H are allowed to flow only to outputs tagged
with H.

• Inputs tagged with H are not allowed to flow to outputs tagged
with L.

• Changing input values tagged with H, should not cause changes on
outputs tagged with L.

• This requirement is an instantiation of noninterference.

– Inputs tagged with H should not interfere with outputs tagged with L.

• Noninterference is a semantic guarantee that should be offered by
the enforcement mechanism of IF policies.

• Access control does not offer a similar semantic guarantee.
22

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:

•Changes on H inputs should not cause changes on L
outputs.

23

H

L

H

L

Program
Inputs Outputs

Noninterference: Example

24

H

L

H

L

H

L

H

L

1

2

3

3

3

2

5

3

Ὤ
ὬḧὬ ὰȠ
ὰḧὰ ρ

ὰ

Ὤᴂ

ὰᴂ

Ὤ
ὬḧὬ ὰȠ
ὰḧὰ ρ

ὰ

Ὤᴂ

ὰᴂ

The program satisfies noninterference!

Noninterference: Example

25

H

L

H

L

H

L

H

L

1

2

3

6

Ὤ

ὰᴂ

ὰᴂḧὬ ςz

Ὤ

ὰᴂ

ὰᴂḧὬ ςz

The program does not satisfy noninterference!

Noninterference

•Consider a program ὅ.

•Consider two memories ὓ and ὓ , such that

–they agree on values of variables tagged with,:

–ὓ ὓ .

26

ὓ and ὓ may not agree on values of
variables tagged with(.

Noninterference

•Consider a program ὅ.

•Consider two memories ὓ and ὓ , such that

–they agree on values of variables tagged with,:
–ὓ ὓ .

•ὅὓ are the observations produced by executing ὅto
termination on initial memory ὓ :
–final outputs, or

–intermediate and final outputs.

•Then, observations tagged with ,should be the same:
–ὅὓ ὅὓ .

27

Noninterference

ὓᶅ , ὓ : if ὓ ὓȟthen ὅὓ ὅὓ .

28

For a program ὅand a mapping from variables to labels in ,ȟ(:

Termination sensitive noninterference

29

H

L

H

L

H

L

H

L

2

4

9

Ὤ

ὰᴂ

while Ὤ υdo
skip;

ὰḧτ

while Ὤ υdo
skip;

ὰḧτ

Ὤ

ὰᴂ

Termination sensitive noninterference

•If

–ὓ ὓ ,

•then

–╒terminates on ╜ iff╒terminates on ╜ , and

–ὅὓ ὅὓ .

30

Noninterference (variation)

31

L

H

L

L

H

L

1

1

6

0

Ὤ
ὰᴂḧὬάέὨς

ὰᴂ

Ὤ
ὰᴂḧὬάέὨς

ὰᴂ

Noninterference (variation)

32

L

H

L

L

H

L

1

2

5

6

Ὤ
ὰᴂḧ ὬάέὨς Ὤ

ὰᴂ

Ὤ
ὰᴂḧ ὬάέὨς Ὤ

ὰᴂ

Noninterference for previous example

•If

–ὓ ὓȟand

–╜ ▐□▫▀ ╜ ▐□▫▀

•Then,

–ὅὓ ὅὓ .

33

More variants of noninterference

Prof. Clarkson is guilty too.

•[O'Neill, Clarkson, Chong 2006]: a variant of
probabilistic noninterference

•[Micinski, Fetter-Degges, Jeon, Foster, Clarkson
2015]: noninterference for Android apps

34

Noninterference

•The more expressive the IF policies, the less
appropriate noninterference becomes.

•Active research:

–New semantic guarantees for expressive IF policies.

35

Upcoming events

•[Final exam] Please, read post on Piazza (@105)
for important information.

Don't let school interfere with your education.
– Mark Twain

36

