Recall: Audit tasks

• **Recording:**
 – what to log
 – what not to log
 – how to log
 • locally
 • remotely
 – how to protect the log

• **Reviewing:**
 – manual exploration
 – automated analysis
MANUAL
Manual review

• Enable administrators to explore logs and look for {states, events}

• Issues:
 – Designers might not have anticipated the right {states, events} to record
 – Visualization, query, expressivity (HCI/DB issues)
 – Correlation amongst multiple logs
Interfaces

- **Flat text** [example: last time's syslog]
- **Hypertext** [example]
- **DBMS** [example: queries in CMS]
- **Graph** (nodes might be entities like processes and files, edges might be associations like forking or times) [example]
Techniques

• Temporal replay: animate what happened when
 example

• Slice: display minimal set of log events that affect a given object
Automated review and response

• **Review:** detect suspicious behavior that looks like an attack, or detect violations of explicit policy
 – Custom-built systems
 – Classic AI techniques like training neural nets, expert systems, etc.
 – Modern applications of machine learning

• **Response:** report, take action
INTRUSION DETECTION
Intrusion detection

Intrusion detection system (IDS):

• automated review and response
• responds in (nearly) real time
• components:
 – sensors
 – analysis engine
 – countermeasure deployment
 – audit log
Example: Network monitoring

- **Suspicious behavior:** opening connections to many hosts
- **Automated response:** router reconfigures to isolate suspicious host on its own subnet with access only to (e.g.) virus scanner download, notifies administrators
- **Issue:** errors...
Errors

• **False positive:** raise an alarm for a non-attack
 – makes administrators less confident in warnings
 – perhaps leading to actual attacks being dismissed

• **False negative:** not raise an alarm for an attack
 – the attackers get in undetected!

• Tradeoff between the two needs to be tunable; difficult to achieve the right classification statistics
Identification methodologies

[Denning 1987]

1. **Signature based:** recognize known attacks
2. **Specification based:** recognize bad behavior
3. **Anomaly based:** recognize abnormal behavior
1. Signature-based detection

• A.k.a. *misuse detection* and *rule-based detection*

• Characterize known attacks with signatures

• If behavior ever matches signature, declare an intrusion

• **Issues:**
 – Works only for known attacks
 – Signature needs to be robust w.r.t. small changes in attack
Example: Tripwire

[open source tool and commercial product]

• **Policy**: certain files shouldn't change

• **State snapshot**: analyzes filesystem, stores database of file hashes

• **Automated response**: runs (e.g. daily) and reports change of hash

• **Issues**: where to store database, how to protect its integrity, how to protect tripwire itself?
Example: Network Flight Recorder (NFR)

[Ranum et al. 1997]

• Three components:
 – Packet sucker captures network traffic
 – Decision engine uses custom-written filters in DSL to extract information from packets
 – Backend writes information to disk; packets are discarded

• Queries performed over stored information while rest of system continues to process packets

• Similar ideas used in Bro [Paxson 1999], available still as open source IDS
Network-based IDS

• Typically a separate machine
• **Stealth mode:**
 – one NIC faces the network being monitored, no packets ever sent out on it, no packets can be routed specifically to it
 – another NIC faces a separate network through which alarms are sent
• **Honeypot:**
 – dedicated machines(s) or networks
 – purpose is to look attractive to attacker
 – but actually just a trap: monitored to detect and surveil attacker
2. Specification-based detection

- Characterize good behavior of program with a specification
- If behavior ever departs from specification, declare an intrusion

Issues:
- Effort to create specifications
- Any program is a potential vulnerability if executed by a privileged user
Example: Distributed Program Execution Monitor (DPEM)

[Ko et al. 1997]

- Monitors Unix audit logs
- Analyst writes grammar in DSL to describe good behavior
- Parser checks conformance of logs with grammar
- Distributed because it combines information from multiple hosts
3. Anomaly-based detection

• Characterize normal behavior of system
• If behavior ever departs far enough from normal, declare an intrusion

• **Issues:**
 – Feature identification
 – Obtaining data on what is normal
Example: Haystack

[Smaha 1988]

• Monitors value of some statistic of interest over a sliding time window: $a_i, a_{i+1}, ..., a_j$

• Determine lower and upper bounds t_L and t_U such that 90% of values lie between t_L and t_U

• If next value is outside t_L and t_U, raise an alarm

• Adaptive: as window moves, detector itself adjusts
Statistical models

• **Threshold models:** min and max
• **Moment models:** mean and standard deviation
• **Markov models:** probability of next event based on current state
• Seems like a job for machine learning...
Machine learning

• Despite extensive academic research, “Machine learning [for IDS] is rarely employed in...real world settings” [Sommer & Paxson 2010]

• ML is great for classification: finding similarities

• ML is not as great at outlier detection: here, “normal vs. abnormal”

• ML in adversarial setting not well understood
Identification methodologies

1. **Signature based:** recognize known attacks
2. **Specification based:** recognize bad behavior
3. **Anomaly based:** recognize abnormal behavior
INTRUSION RESPONSE
Intrusion handling

[Northcutt 1998]

1. Preparation
2. Identification
3. Containment
4. Eradication
5. Recovery
6. Follow up
Automated response

• **Monitor**: collect (additional) data
• **Protect**: reduce exposure of system
• **Alert**: call a human
Counterattack

• **Legal**: file criminal complaint

• **Technical**: damage attacker to stop attack or prevent future attacks
 – Might harm an innocent party
 – Might expose you to legal liability
Upcoming events

• [next week] Prof. Schneider guest lectures on Mon and Wed

You are secure from intrusion, secure from yourself; and your hard, restricting shell of individuality is at once dissolved as...you gaze into the vistas of a sunset. – John Muir