Authentication of Humans

Prof. Clarkson
Spring 2017
Review

• Course so far:
 – Introduction to security
 – Cryptography

• Rest of semester: Accountability, both for Prevention and Deterrence
Accountability

Hold principals responsible for their actions

• Authorization: mechanisms that govern whether actions are permitted

• Authentication: mechanisms that bind principals to actions

• Audit: mechanisms that record and review actions
Authentication of humans

Categories: [IBM, TR G520-2169, 1970]

• **Something you know**
 password, passphrase, PIN, answers to security questions

• **Something you have**
 physical key, ticket, {ATM,prox,credit} card, token

• **Something you are**
 fingerprint, retinal scan, hand silhouette, a pulse
Authentication of humans

- **Two-factor authentication:** authenticate based on two independent methods
 - password plus registered mobile phone
 - ATM card plus PIN
 - token plus PIN
 - combination lock codes plus gait analysis
- **Multi-factor authentication:** two or more independent methods
- Best to combine separate categories, not reuse categories
 - non-example: requiring two passwords from a single human: arguably not independent
 - non-example: requiring single password from each of two humans: authorizes two humans then makes authorization decision
- What is being authenticated...?
IDENTITY
Personal identity

• Major philosophical problem
 – People are not identical to themselves over time, but their identity persists throughout changes
 – cf. Ship of Theseus
• Intrinsic identity: continuation of consciousness
• Extrinsic identity: relationship to everything else
• Incarnated:
 – Personal identity is made present in a body
 – But is it confined to body?
• Control: individual's, others', no one's?
Digital identity

• **Digital identity**: data that describes a person and its relationship to others
 – not the person itself; not a personal identity
 – fictional people, dead people, virtual people (AIs?)

• A person could have many digital identities, some overlapping, some contradictory

• Data could be incorrect, outdated, incomplete
Aspects of digital identity

- Name
- NetID
- Email address
- URL
- IP address
- Citizenship
- Political party
- ...

[...]
Identity

- **Attribute**: property of a principal
 - name is "Ezra Cornell", birthdate is 01/11/1807, mother's maiden name is Barnard

- **Identity**: set of attributes
 - each principal may have many identities of use in different scenarios (student, taxpayer, athlete)

- **Identifier**: an attribute that is unique within a population

- **Verifier**: an attribute that is hard to produce hence can be used as a basis for authentication
Identity

• **Enrollment:** establishing identity with a system
 – Create an account
 – Get an ID card, visa
 – Register a machine on a network
 – Get a signing key from a provider

• System might (not) verify claimed attributes during enrollment
 – Websites rarely do
 – Governments often do
 – Companies might, especially for a fee
Biometric

• Something you are

• Biometric: measurement of biological and behavioral attributes
 – fingerprint, iris, retina, face, voice, handwriting, hand shape, hand veins, hand print, (DNA?)
 – biological attributes can be confounded by behavior
 – biology and behavior is non-constant: variation from one measurement to the next
Example: Hand geometry

- Used in Olympic Games, Walt Disney World, nuclear facilities, data centers, ...
- Camera images palm and side of hand (no texture information)
- Images reduced to (e.g.) 31000 points then 90 measurements then 9 bytes of data
 - Final data not directly related to any source measurements
 - Data stored as a template for later comparison

Example: Hand geometry

• When user authenticates, another set of images taken
 – If data are close enough to stored template, user deemed authenticated
 – Can adjust threshold per-user, in case some users are difficult to authenticate

• Each time user is authenticated, template is updated to account for change over time
Example: Fingerprint

- Particular use: California social services
 - prevent applicants for welfare from defrauding state by receiving assistance under multiple identities
- Fingerprint stored as bitmap and as minutiae
 - When user authenticates, computer compares minutiae
 - If they match, human additionally reviews bitmap images (about 15 out of 10000 authentications have minutiae match even though fingerprints do not)
Biometric attributes as verifiers

Requirements:

• Identifier
• Small variation over time and measurement
• Easy to measure
• Difficult to spoof
• Acceptable to users
Biometric attributes as verifiers

• **Advantages:**
 – Can’t lose or forget a biometric
 – Easy to use some biometrics (e.g., fingerprint scan vs. PIN on iPhone)

• **Disadvantages:**
 – Updating identities after disclosure is hard (new fingerprints? new retina?)
 • So enrolling a biometric identifier places permanent trust in receiver, even if they go bankrupt, retroactively change privacy policies, get taken over by new administration, …
 – Impossible to be application specific (your hand geometry is the same regardless of what system you use)
 – Physical process with errors…
 – Fear of negative implications for privacy…
Accuracy

- **False accept**: authenticate a principal with wrong identity (fraud)
- **False reject**: fail to authenticate a principal under right identity (insult)
- **Hypothesis testing**:
 - null hypothesis: human being authenticated has claimed identity
 - false accept = type II error
 - false reject = type I error
- **Tunable trade off of sensitivity** between which error is more likely
 - **False acceptance rate (FAR)**: percentage of attempts in which imposters are authenticated (with wrong identity)
 - **False reject rate (FRR)**: percentage of attempts in which legitimate users are denied authentication
Sensitivity

Receiver operating characteristics (ROC) curve: graph of FRR vs. FAR (or perhaps 1-FAR, perhaps nonlinear axes)

\[\gamma = \text{sensitivity} \]

Graph source: http://www.csee.wvu.edu/~natalias/biom426/performance_fall09.pdf
ROC comparison

• **Crossover error rate (CER):** value on ROC at which FAR=FRR (aka *equal error rate, ERR*)

• Many other statistics for comparison possible
 – Anytime a graph is reduced to a single number, we lose information
 – *Maybe what matters most for biometrics is the use case*
Use cases

• Entry to military facility:
 – letting imposters in might be worse than (temporarily) delaying entry of personnel
 – so prefer low false accept rate

• Entry to hotel lobby:
 – letting non-guests in might be better than (temporarily) delaying entry of guests
 – so prefer low false reject rate
ROC comparison

- Two matchers (A=solid; B=dashed)
- At point C, matchers have same FAR and FRR
- To the left of C, matcher A has lower FRR for same FAR
- To the right, matcher B has lower FRR for same FAR

Graph source: http://www.csee.wvu.edu/~natalias/biom426/performance_fall09.pdf
PRIVACY
Privacy concerns

- Governments/businesses and individuals are sometimes at odds over how identity is used.
- **Intrinsic privacy**: the individual's right to be left alone.
- **Informational privacy**: the individual's right to determine for itself when, how, and to what extent information about it is communicated to others.
• Humans might not want to disclose attributes during enrollment (SSN, political party)
• Humans might have concerns about measurements (have photo taken, parts of body scanned)
• Humans might not want action bound to their identity (buying medication)
• Requiring authentication may inadvertently become a discouraging form of authorization (those who don't want to be authenticated opt out)
• Widespread use of identifiers links identities across systems, exposing humans to inference about what they thought were unrelated activities...
Standard Universal Identifier (SUI)

[US Department of Health and Welfare (HEW), 1973]

• **Uniqueness:** no more than one person can have same SUI; each person must have no more than one SUI (injectivity)
• **Permanence:** SUI must not change during person's life
• **Ubiquity:** entire population must be issued SUIs
• **Availability:** SUI must be readily obtainable and verifiable
• **Indispensability:** Each person must remember SUI and be able to report it correctly
• **Arbitrariness:** SUI must not contain any information
• **Brevity:** SUI must be as short as possible
• **Reliability:** Must be possible to detect errors in SUI
Standard Universal Identifier (SUI)

US HEW report:

• "A permanent SUI issued at birth could create an incentive for institutions to pool or link their records, thereby making it possible to bring a lifetime of information to bear on any decision about a given individual"

• "A universally identified [person] might become a prisoner of [the] recorded past."

• "Fear of a SUI is justified... The dangers inherent... far outweigh any of its practical benefits."
Principles for privacy

When building authentication systems...

• **Seek consent:** get permission to authenticate and store identity

• **Select minimal identity:** use the smallest possible set of attributes

• **Limit storage:** don't save information about identity or authentication without need, and delete when no longer needed

• **Avoid linking:** don't reuse identifiers across systems
Privacy and biometrics

• Biometrics can violate intrinsic privacy by requiring submission to bodily contact or measurement
 – Fear of germs
 – Religious prohibitions

• Biometrics can violate informational privacy
 – Biometric identifiers might effectively become a SUI, enabling linking
Privacy and mobile phones

- Mobile phones broadcast their identity and location at frequent intervals
- GPS receiver on phone can track and report location to provider
- But mobile phones aren't permanently bound to a person
Upcoming events

• [next Wed] A3 due

Be yourself; everyone else is already taken.
– Oscar Wilde