Key Establishment

Prof. Clarkson
Spring 2017
Review

• Secure channel:
 – Bidirectional, multi-message conversations
 – Confidentiality goal: The channel does not reveal anything about messages except for their timing and size
 – Integrity goal: If Alice sends a sequence of messages m_1, m_2, \ldots then Bob receives a subsequence of that, and furthermore Bob knows which subsequence; and the same for Bob sending to Alice

• Cryptography employed:
 – Authenticated encryption to protect confidentiality and integrity
 – Message numbers to further protect integrity
 – Key derivation function to create many shared keys out of one session key

• Still need to share the session key!
Session key generation

Back to this assumption:

For now, let's assume Alice and Bob already have a single shared session key k

We need a means for Alice and Bob to generate that key...
Key establishment

Theorem [Boyd 1993]: impossible to establish secure channel between principals who do not already...

• share a key with each other, or
• separately share a key with a trusted third party, or
• have the means to ascertain a public key for each other

...i.e., you can't get something for nothing
Theorem [Boyd 1993]: impossible to establish secure channel between principals who do not already...

- share a key with each other,
- separately share a key with a trusted third party, or
- have the means to ascertain a public key for each other.

...i.e., you can't get something for nothing.
Key establishment

• Terminology:
 – user is a principal who will use the generated session key for further communication
 – other principals might be involved but won't learn or use the key

• Key transport protocol: session key is generated by one principal then transferred to all users

• Key agreement protocol: session key is generated as a function of inputs from all users and transferred to all users
KEY ESTABLISHMENT WITH TTP
Key establishment

Let's build something “really simple”...

- a key transport protocol
- with a trusted server
- who picks the session key
Transport protocol

• **Assume:** trusted server S with whom A and B already share a **long-term** key
 – A shares kAS with S
 – B shares kBS with S

• **Output:** new session key kAB shared by A and B
 • S trusted to generate key (correctly, randomly)
 • S ought to immediately forget kAB

• **Security goals:**
 1. only A and B (and S) know that key (confidentiality)
 2. (more to come...)
ATTEMPT #1
Naïve protocol

1. A -> S: A, B
2. S -> A: kAB
3. A -> B: A, kAB
Naïve protocol

Can attacker violate conf. goal and learn k_{AB}?

1. A, B
2. k_{AB}
3. A, k_{AB}
Eavesdropping attack

Can attacker violate conf. goal and learn k_{AB}? Yes!

1. A, B
2. k_{AB}
3. A, k_{AB}
3'. A, k_{AB}
ATTEMPT #2
Countermeasure: Encryption

Key seems confidential... but do A and B understand its purpose?

1. A, B
2. Enc(k_{AB};k_{AS}), Enc(k_{AB};k_{BS})
3. A, Enc(k_{AB};k_{BS})
Man in the middle attack

1. A, B

2. \(\text{Enc}(k_{AB}; k_{AS}), \text{Enc}(k_{AB}; k_{BS}) \)

3. A, \(\text{Enc}(k_{AB}; k_{BS}) \)

3'. A, \(\text{Enc}(k'_{AB}; k_{BS}) \)
Countermeasure: Non-malleable encryption

- **Non-malleable**: Adversary cannot undetectably transform a ciphertext into a related ciphertext.
- Degree of integrity is somewhere in-between plain-old encryption and authenticated encryption.
Countermeasure: Non-malleable encryption

• In the rest of this lecture, assume Enc is non-malleable
 – For symmetric schemes, the usual way to get non-malleability is with MACs, i.e., authenticated encryption
 – For asymmetric schemes, other methods possible that don’t require digital signatures
 • RSA with OAEP
 • Cramer-Shoup extension of Elgamal
Another MITM attack

Key seems confidential... but do A and B understand its purpose? No!

Goal: 2. Users associate correct key with correct principal identities (integrity)
Yet another MITM attack

Problem 1: M knows shared key (violates conf. goal)

Problem 2: A believes key is shared with B rather than M (violates int. goal)
ATTEMPT #3
Countermeasure: Names

1. A, B

2. Enc(B, k_{AB}; k_{AS}), Enc(A, k_{AB}; k_{BS})

3. Enc(A, k_{AB}; k_{BS})
1st MITM attack blunted

M can’t change name in message 3
So B correctly believes key is shared with A

1. A, B
2. Enc (B, k_AB; k_AS), Enc (A, k_AB; k_BS)
3. Enc (A, k_AB; k_BS)
3’. Enc (A, k_AB; k_BS)
2nd MITM attack blunted

M can’t change message 2
So A rejects kAM

1. A, B

1'. A, M

2. Enc(M, kAM; kAS), Enc(A, kAM; kMS)

2'. Enc(M, kAM; kAS), Enc(A, kAM; kMS)

ABORT
Replay attack

1. A, B

2. \(\text{Enc}(B, \text{old}_kAB; kAS), \text{Enc}(A, \text{old}_kAB; kBS) \)

3. \(\text{Enc}(A, \text{old}_kAB; kBS) \)

Goal: 3. the session key is *fresh* (integrity)
Secrets do leak

- “Truth will out” – Shakespeare, *Merchant of Venice*
- “For nothing is hidden that will not be disclosed, nor is anything secret that will not become known and come to light.” – Luke 8:17
- **Goal 4:** protect new messages from disclosure if old session key does become known to adversary (conf.)
 - Old messages will be disclosed
 - New messages need not be
- Is it likely that adversary learns session key k_{AB} but not any long-term shared keys?
 - Session keys typically stored only in memory
 - Long-term keys might be stored elsewhere
Implementing key erasure

• Never assume that deallocation or garbage collector will make keys inaccessible

• Zero out arrays containing keys, passwords, other secrets; if you can!
 – High-level languages make it quite hard
 – Compilers might optimize away
 – Registers and memory can end up in swap files on disk
 – DRAM can be cooled, physically extracted, and read
Countermeasure: Challenge-Response

- (back to that replay attack with old keys)
- Challenger issues question
- Responder gives answer
- Example: *From Russia with Love*
 - Unfortunately, that *static challenge* can be replayed
- So crypto protocols use nonces
 - Principals contribute their own unique nonce to be convinced of *freshness*
ATTEMPT #4
Countermeasure: Nonces

1. A, B, nA

2. Enc(B, nA, kAB, Enc(A, kAB; kBS); kAS)

3. Enc(A, kAB; kBS)

Convinces A that key is fresh, but not B...
1. A, B, nA

2. Enc(B, nA, kAB, Enc(A, kAB; kBS); kAS)

3. Enc(A, kAB; kBS)

4. Enc(nB; kAB)

5. Enc(nB-1; kAB)

Msg 4&5 meant to guarantee freshness, but don’t…
Replay attack

Assume:
• M captures message 3, and
• M learns kAB
FINAL ATTEMPTS
Solution 1: submit nonces from both users to S
Solution 2: use synchronized clocks and timestamps as nonce

1. A, B

2. Enc(B, tS, kAB, Enc(A, tS, kAB; kBS); kAS)

3. Enc(A, tS, kAB; kBS)

tS is time at server S. A and B reject any message that is too old.
Wrapup: Secure channel

- Used authenticated encryption, message numbers, key derivation function, key establishment protocol
- Now we can have secure conversations!
Lessons learned

• Designing simple cryptographic protocol is hard
 – Attacks aren't obvious
 – Published protocols later found to be flawed

• Goals aren't immediately obvious
 – We ended up with four
 – There are many more contemplated in literature
KEY ESTABLISHMENT WITH PUBLIC KEYS
Assume: A and B already have key pairs (KA,kA), (KB,kB), And public keys are already known to both

From nA and nB derive a key, e.g., $H(nA, nB)$

* Still need non-malleable encryption not plain-old encryption
MITM attack

1. $\text{Enc}(A, nA; \ KM)$

2'. $\text{Enc}(nA, nB; \ KA)$

3. $\text{Enc}(nB; \ KM)$

1'. $\text{Enc}(A, nA; \ KB)$

3'. $\text{Enc}(nB; \ KB)$
MITM attack

1'. $\text{Enc}(A, nA; KB)$

2'. $\text{Enc}(nA, nB; KA)$

3'. $\text{Enc}(nB; KB)$

M just impersonated A!
Countermeasure: Names

Attack and fix published in [Lowe 1996]
Fixed protocol known as Needham-Schroeder-Lowe

1. $\text{Enc}(A,n_A; KB)$
2. $\text{Enc}(B,n_A,n_B; KA)$
3. $\text{Enc}(n_B; KB)$
MITM attack blunted

1. $\text{Enc}(A, nA; KM)$

1'. $\text{Enc}(A, nA; KB)$

2'. $\text{Enc}(B, nA, nB; KA)$

ABORT
KEY ESTABLISHMENT FROM NOTHING
Diffie-Hellman(-Merkle)

• Key agreement protocol [1976]
 – Basis of many later protocols
 – Still available in SSL
 – No free lunch: establishes key but without any authentication of principals
 – Like having a secure telephone line to an unknown person

• Metaphor based on colors:
 https://www.youtube.com/watch?v=YEBfamv__do&feature=youtu.be&t=138
Whitfield Diffie and Martin Hellman

2015 Turing Award Winners

For critical contributions to modern cryptography.

The ability for two parties to communicate privately over a secure channel is fundamental for billions of people around the world. On a daily basis, individuals establish secure online connections with banks, e-commerce sites, email servers and the cloud. Diffie and Hellman’s groundbreaking 1976 paper, “New Directions in Cryptography,” introduced the ideas of public-key cryptography and digital signatures, which are the foundation for most regularly-used security protocols on the Internet today.
Upcoming events

• [today] A2 due, A3 out

You can’t always get what you want.
But...sometimes you get what you need.
–The Rolling Stones