

Theorem

There is **no** deterministic protocol that solves Consensus in a message-passing asynchronous system in which at most one process may fail by crashing

How can one get around FLP?

Weaken the problem

- Weaken termination
 - \square use randomization to terminate with arbitrarily high probability
 - □ quarantee termination only during periods of synchrony
- Weaken agreement
 - Dε agreement
 - real-valued inputs and outputs
 - $\, \geqslant \,$ agreement within real-valued small positive tolerance ϵ
 - □k-set agreement
 - Agreement: In any execution, there is a subset W of the set of input values, | W| =k, s.t. all decision values are in W
 - Validity: In any execution, any decision value for any process is the input value of some process

Around FLP in 80 Slides

How can one get around FLP?

Constrain input values

Characterize the set of input values for which agreement is possible

Strengthen the system model

Introduce failure detectors to distinguish between crashed processes and very slow processes

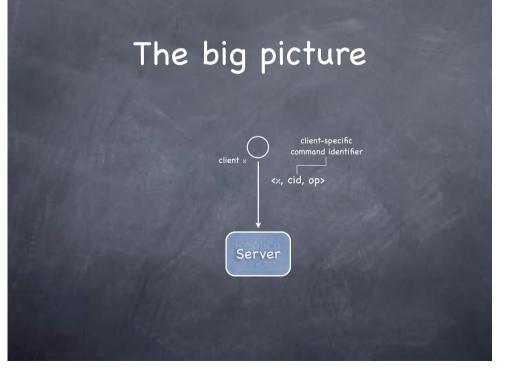
The Part-Time Parliament

- Parliament determines laws by passing sequence of numbered decrees
- Direct democracy: Citizens/ Legislators leave and enter the chamber at arbitrary times
- No centralized records: each legislator carries a ledger recording the approved decrees

Paxos

Government 101

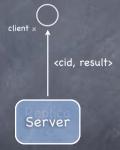
- No two ledgers contain contradictory information
- If a majority of legislators are in the Chamber and no one enters or leaves the Chamber for a sufficiently long time, then
 - □ any decree proposed by a legislator is eventually passed
 - □ any passed decree appears on the ledger of every legislator

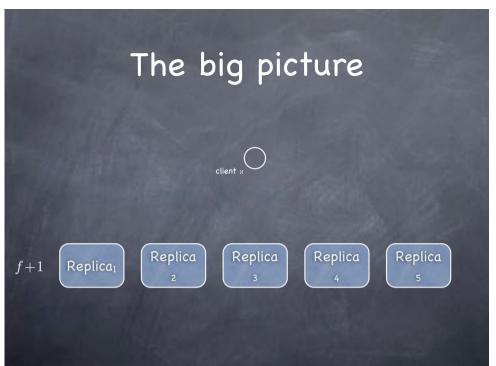


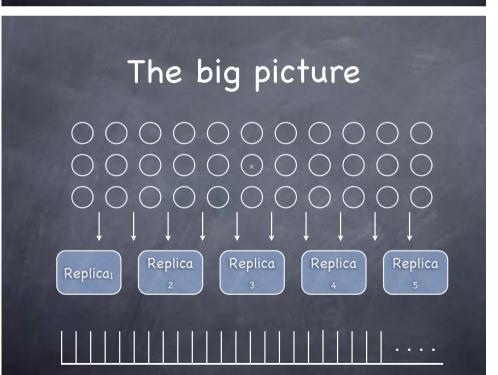
Back to the future

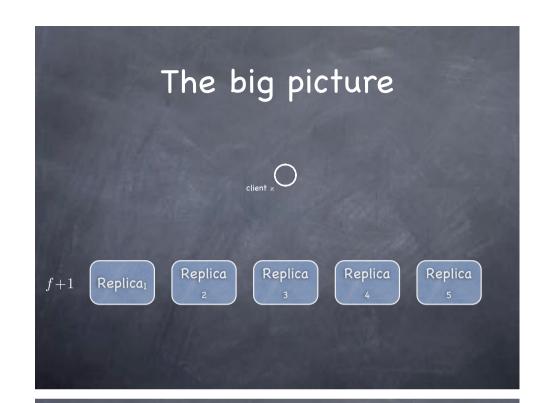
- A protocol for state machine replication in an asynchronous environment that admits crash failures (key ideas already present in earlier work on Viewstamped Replication by Oki and Liskov)
- Messages:
 - □ between correct endpoints are eventually received
 - 🗆 can be lost and duplicated, but not corrupted

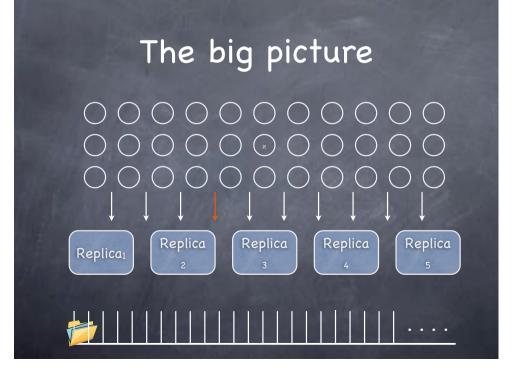
The big picture

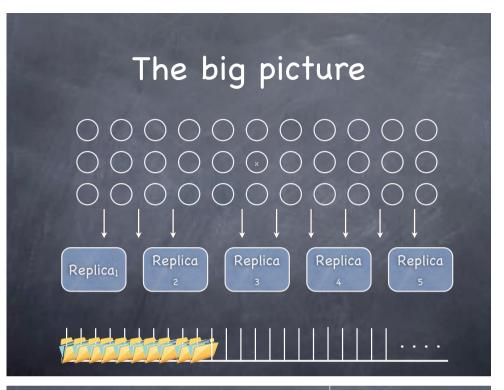












```
process Replica(leaders, initial_state)
                                                                                                         Replica
  var state := initial\_state, slot\_num := 1, proposals := \emptyset; decisions := \emptyset
      switch receive()
          case \langle request, p \rangle:
          case <decision,s,p> :
            decisions := decisions \cup \{(s, p)\}
            while \exists p' : \langle slot\_num, p' \rangle \in decisions do
                                                                                          \langle next, result \rangle := op(state);
                                                                                            state := next:
            end while
     end switch
                                                                                      end if
   end for
                                                                                  end function
end process
  function propose(p)
      if \nexists s : \langle s, p \rangle \in decisions then
                                                                                              R4. For each \rho, the
       s' := \min\{s \mid s \in \mathbb{N}^+ \land \nexists p' : \langle s, p' \rangle \in proposal \cup decisions\};
                                                                                              variable \rho.slot_num
       proposals := proposals \cup \{(s', p)\};
       \forall \lambda \in leaders : send(\lambda, \langle propose, s', p \rangle);
                                                                                              never decreases
      end if
  end function
```

Replicas

- Receive client requests
- Propose command for lowest unused slot to leaders
- Upon decision, execute commands in slot order
- @ Return result to clients
- Not necessarily identical at any time!

 $\forall \lambda \in leaders : send(\lambda, \langle propose, s', p \rangle);$

end if

end function

- **3** Each replica ρ maintains four variables:
 - \square $\rho.state$: the application state
 - $\rho.slot_num$: next slot for which ρ does not know a decision
 - \square $\rho.proposals$: set of <slot number, command> pairs for past proposals
 - \square $\rho.decisions$: set of <slot number, command> pairs for decided slots

the initial state in increasing

 $1 \le s < slot_num$

order of slot number s:

```
process Replica(leaders, initial_state)
                                                                                                            Replica
  var state := initial\_state, slot\_num := 1, proposals := \emptyset; decisions := \emptyset
      switch receive()
         case \langle request, p \rangle:
         case \langle decision, s, p \rangle:
            decisions := decisions \cup \{(s, p)\}
            while \exists p' : \langle slot\_num, p' \rangle \in decisions do
              if \exists p'' : \langle slot\_num, p'' \rangle \in proposals \wedge p'' \neq p' then
                                                                                              state := next:
               end if
              perform(p')
            end while
                                                                                             send(\kappa, \langle response, cid, result \rangle);
      end switch
                                                                                       end if
   end for
                                                                                    end function
end process
  function propose(p)
                                                                                          R3. For all replicas \rho, \rho. state
      if \nexists s : \langle s, p \rangle \in decisions then
                                                                                          is the result of applying the
       s' := \min\{s \mid s \in \mathbb{N}^+ \land \nexists p' : \langle s, p' \rangle \in proposal \cup decisions\}
                                                                                          operations in \rho.decisions to
       proposals := proposals \cup \{(s', p)\};
```

```
process Replica(leaders.initial_state)
                                                                                                           Replica
  var state := initial\_state, slot\_num := 1, proposals := \emptyset; decisions := \emptyset
      switch receive()
                                                                                    function perform(\langle \kappa, cid, op \rangle)
          case <reguest.p>:
          case \langle decision, s, p \rangle:
            decisions := decisions \cup \{(s, p)\}
            while \exists p' : \langle slot\_num, p' \rangle \in decisions do
                 propose(p'');
               end if
                                                                                             send(\kappa, \langle response, cid, result \rangle):
      end switch
                                                                                        end if
   end for
                                                                                    end function
end process
  function propose(p)
      if \nexists s : \langle s, p \rangle \in decisions then
                                                                                                R2. All commands up
       s' := \min\{s \mid s \in \mathbb{N}^+ \land \nexists p' : \langle s, p' \rangle \in proposal \cup decisions\};
                                                                                                to slot num are in
       proposals := proposals \cup \{(s', p)\};
       \forall \lambda \in leaders : send(\lambda, \langle propose, s', p \rangle):
                                                                                                the set of decisions
      end if
  end function
```

Paxos: the basic idea

- Leaders compete to create a permanent mapping between slot numbers and proposals
- The mapping is recorded in "Paxos memory" at a set of state machines called acceptors

 Note: Though state machines, acceptors
- A leader never proposes a map that may conflict with what is stored in Paxos memory
- A leader, before attempting to create a new map between a slot number for which it knows not a decision and a proposal, "reads" the Paxos memory to check whether such map may already exist
- Once a leader learns that a new mapping has become permanent, it informs the replicas

```
process Replica(leaders.initial_state)
                                                                                                             Replica
  var state := initial\_state, slot\_num := 1, proposals := \emptyset; decisions := \emptyset
       switch receive()
         case <request.p>:
         case \langle decision, s, p \rangle:
            decisions := decisions \cup \{(s, p)\}
            while \exists p' : \langle slot\_num, p' \rangle \in decisions do
               if \exists p'' : \langle slot\_num, p'' \rangle \in proposals \wedge p'' \neq p' then
                 propose(p'');
            end while
                                                                                              send(\kappa, \langle response, cid, result \rangle);
      end switch
   end for
                                                                                     end function
end process
  function propose(p)
      if \nexists s : \langle s, p \rangle \in decisions then
                                                                                                 R1. For any given
       s' := \min\{s \mid s \in \mathbb{N}^+ \land \nexists p' : \langle s, p' \rangle \in proposal \cup decisions\};
       proposals := proposals \cup \{(s', p)\};
                                                                                                 slot, replicas decide
       \forall \lambda \in leaders : send(\lambda, \langle propose, s', p \rangle);
                                                                                                  the same command
      end if
  end function
```

Ballots

Each leader has an infinite supply of ballots

The set of ballots of different leaders are disjoint

Ballots

© Each leader has an infinite supply of ballots

- The set of ballots of different leaders are disjoint
- Ballots are lexicographically ordered pairs $\langle seg_no, LId \rangle$

A mapping is forever...

- ...once it is accepted by a majority of acceptors - it is then chosen
- ballot most recently adopted by α
- **5** To make mapping $\langle s, p \rangle$ permanent, λ needs a majority of acceptors to adopt the ballot of the pvalue that contains $\langle s, p \rangle$

Acceptors

- Send messages only when prompted
- @ Can crash...
- a ... but we assume no more than a minority will
- \odot Need at least 2f+1acceptors to tolerate *faults*

- \odot Each acceptor α maintains two variables:
 - \sqcap $\alpha.ballot_num$, initially \perp
 - \square $\alpha.accepted$, a set of pvalues, initially empty
- - □ b: ballot number
 - $\sqcap s$: slot number
 - \square p: a proposal
- α accepts $e \equiv e \in \alpha.accepted$
- α adopts $b \equiv \alpha.ballot_num := b$

```
process Acceptor()
  var \ ballot\_num := \bot, accepted := \emptyset;
      switch receive();
          case \langle p1a, \lambda, b \rangle:
```

if $b > ballot_num$ then

 $ballot_num := b$:

ase <p2a, $\lambda, \langle b, s, p \rangle$ > : if $b > ballot_num$ then

 $ballot_num := b$:

 $accepted := accepted \cup \{\langle b, s, p \rangle\}$

end switch

end for

end process

A1. An acceptor can only adopt strictly increasing ballot numbers

Acceptor

- \odot On receiving <pla λ, b >
 - \square adopts b iff larger than $ballot_num$
 - \square returns to λ all accepted pvalues
 - \odot On receiving $\langle p2a, \lambda, \langle b, s, p \rangle \rangle$
- q_{\square} adopts b iff larger than $ballot_{-num}$
- \square accepts e if b equal to $ballot_num$
- \sqcap returns to λ the current $ballot_num$

Invariants

A2. An acceptor can only accept $\langle b, s, p \rangle$ if $b = ballot_num$

A3. An acceptor α can not remove entries from $\alpha.accepted$

```
process Acceptor()

var ballot\_num := \bot, accepted := \emptyset;
for ever

switch receive();

case \langle \mathbf{pla}, \lambda, b \rangle :

if b > ballot\_num then

ballot\_num := b;
end if

send(\lambda, \langle \mathbf{plb}, self(), ballot\_num, accepted := accepted :=
```

A4. For a given b and s, at most one proposal can be under consideration by the acceptors: $\langle b, s, p \rangle \in \alpha.accepted \land \langle b, s, p' \rangle \in \alpha'.accepted \implies p = p'$

Acceptor

- \odot On receiving <pla λ, b >
 - $\hfill\Box$ adopts b iff larger than $ballot_num$
 - $_{\square}$ returns to λ all accepted pvalues
 - on receiving $\langle p2a, \lambda, \langle b, s, p \rangle \rangle$
- $/_{\square}$ adopts b iff larger than $ballot_num$
- \square accepts e if b equal to $ballot_num$
- \square returns to λ the current $ballot_num$

Invariants

A5. Suppose a majority of acceptors has $\langle b, s, p \rangle \in \alpha.accepted$. If b' > b and $\langle b', s, p' \rangle \in \alpha'.accepted$, then p = p'

C1. For any b and s, at most one commander is spawned

A4. For a given b and s, at most one proposal can be under consideration by the acceptors

- A commander's mission has two possible outcomes:
 - ☐ success: replicas learn that the proposed mapping
 has been permanently established
 - \Box failure: the leader learns that b may no longer be acceptable to a majority of acceptors

Commander invariants

C2. Suppose a majority of acceptors has $\langle b, s, p \rangle \in \alpha.accepted$. If a commander is spawned for $\langle b', s, p' \rangle$: b' > b, then p = p'

A5. Suppose a majority of acceptors has $\langle b,s,p \rangle \in \alpha.accepted$. If b'>b and $\langle b',s,p' \rangle \in \alpha'.accepted$, then p=p'

```
process Commander(\lambda, acceptors, replicas, \langle b, s, p \rangle)
                                                                      Commander
 var waitfor := acceptors, pvalues := \emptyset
 \forall \alpha \in acceptors : send(\alpha, \langle p2a, self(), \langle b, s, p \rangle);
  for ever
    switch receive():
                                                              Must enforce
           waitfor := waitfor - \{\alpha\};
                                                         R1. For any given slot, replicas
                                                         decide the same command
              send(\rho, \langle \mathsf{decision}, s, p \rangle);
            exit();
           end if:
                                            A5. Suppose a majority of acceptors has
           send(\lambda, \langle preempted, b' \rangle)
                                            \langle b, s, p \rangle \in \alpha.accepted. If b' > b and
        end if
                                            \langle b', s, p' 
angle \in lpha'.accepted, then p=p'
    end switch
  end for
end process
                                     C2. Suppose a majority of acceptors has
                                     \langle b, s, p \rangle \in \alpha.accepted. If a commander is
                                     spawned for \langle b', s, p' \rangle : b' > b, then p = p'
```

```
\underline{\mathsf{process}}\ Commander(\lambda, acceptors, replicas, \langle b, s, p \rangle)
                                                                                  commander
 var waitfor := acceptors, pvalues := \emptyset
 \forall \alpha \in acceptors : send(\alpha, \langle p2a, self(), \langle b, s, p \rangle);
  for ever
     switch receive():
        case \langle p2b, \alpha, b' \rangle:
          if b' = b then
             if |waitfor| < |acceptors|/2 then
               \forall \rho \in replicas:
            end if:
                                                     Notify the leader and exit
          end if
     end switch
  end for
end process
```

```
process Commander(\lambda, acceptors, replicas, \langle b, s, p \rangle)
                                                                          commander
  var waitfor := acceptors, pvalues := \emptyset
 \forall \alpha \in \overline{acceptors : send(\alpha, \langle p2a, self(), \langle b, s, p \rangle)};
   for ever
     switch receive():
       case \langle p2b, \alpha, b' \rangle:
         if b' = b then
            if |waitfor| < |acceptors|/2 then
              \forall \rho \in replicas:
                                                  A higher ballot b' is active: a
            end if:
                                                  majority of acceptors may no
            send(\lambda, \langle preempted, b' \rangle)
                                                  longer be willing to accept b
         end if
     end switch
  end for
end process
```


- \odot Before spawning commanders for ballot b, leader invokes a scout
- Scouts read the Paxos memory to help leaders propose mappings that satisfy C2.
- A scout's mission has two possible outcomes:
 - □ success: the leader learns that the proposed ballot has been adopted by a majority of acceptors and receives all pvalues accepted by that majority
 - failure: the leader learns that b may no longer be acceptable to a majority of acceptors

```
process Scout(\lambda, acceptors, b)
                                                               Scout
 var waitfor := acceptors, pvalues := \emptyset
 \forall \alpha \in acceptors : send(\alpha, \langle pla, self(), b);
  for ever
    switch receive():
                                                    Scout
     case <plb, \alpha, b', r > :
       if b' = b then
                                                   □gets a majority of
         \overline{pvalues} := pvalues \cup r;
                                                      acceptors to adopt b
          if |waitfor| < |acceptors|/2 then
                                                   □collects all pvalues
             send(\lambda, \langle adopted, b, pvalues \rangle)
                                                      that acceptors have
          end if:
                                                      accepted while
          send(\lambda, \langle preempted, b' \rangle)
                                                      adopting ballots no
                                                      larger than b
        end if
    end switch
  end for
end process
```

```
process Scout(\lambda, acceptors, b)
                                                                                 Scout
 var\ waitfor := acceptors, pvalues := \emptyset
 \forall \alpha \in acceptors : send(\alpha, \langle pla, self(), \langle b \rangle);
  for ever
     switch receive():
        case \langle p1b, \alpha, b', r \rangle:
          if b' = b then
             if |waitfor| < |acceptors|/2 then
                  send(\lambda, \langle adopted, b, pvalues \rangle);
             end if:
             send(\lambda, \langle \mathsf{preempted}, b' \rangle)
                                                      Notify the leader and exit
          end if
     end switch
  end for
end process
```

```
process Scout(\lambda, acceptors, b)

var waitfor:=acceptors, pvalues:=\emptyset

\forall \alpha \in acceptors: send(\alpha, \langle \operatorname{pla}, self(), \langle b \rangle);

for ever

switch receive();

case \langle \operatorname{plb}, \alpha, b', r \rangle :

if b' = b then

pvalues:=pvalues \cup r;

waitfor:=waitfor - \{\alpha\};

if |waitfor| < |acceptors|/2 \text{ then}

send(\lambda, \langle \operatorname{adopted}, b, pvalues \rangle);

exit();

end if;

else

send(\lambda, \langle \operatorname{preempted}, b' \rangle)

exit();

end if

end switch

end for

end process
```

Scout

A higher ballot b' is active: a majority of acceptors may no longer be willing to accept b

- Spawns a scout for initial ballot number
- ☐ Enters a loop waiting for one of three messages:
 - $\begin{tabular}{l} \square $\langle {\sf propose}\,,s,p\rangle$ from a \\ ${\sf replica}$ \end{tabular}$
 - \square \(\lambda\) adopted, \(ballot_num, pvals\rangle\) from a scout
 - \square (preempted, $\langle r', \lambda' \rangle \rangle$ from a commander or a scout

- **3** Each leader λ maintains three variables:
 - \square $\lambda.ballot_num$, initially 0
 - \square $\lambda.active$, boolean, initially false
 - $\ \square \ \lambda.proposals$, an initially empty map $\langle slot_number, proposal \rangle$
- Leader moves between active and passive mode
 - \square in passive mode is waiting for $\langle adopted, ballot_num, pvals \rangle$
 - in active mode spawns commanders for each of the proposal it holds

How a leader enforces C2

- \odot Suppose λ learns that a majority of acceptors has adopted its ballot b (\langle adopted, $b, pvals\rangle$)
 - \square CASE 1: if for some slot s there is no value in pvals, then it is impossible that a permanent mapping for a smaller ballot already exists or will ever exist for s: any proposal by λ will satisfy C2

```
process Leader(acceptors, replicas)
  spawn(Scout(self(), acceptors, ballot\_num);
 for ever
                                                                                        eader
     switch receive():
         case \langle propose, s, p \rangle:
          if \nexists p': \langle s, p' \rangle \in proposals then
             if active then
             end if
                                                               x \oplus y \equiv \{\langle s, p \rangle \mid \langle s, p \rangle \in y \lor \}
          end if
                                                                           (\langle s, p \rangle \in x \land \nexists p' : \langle s, p' \rangle \in y)\}
        case <adopted, ballot\_num, pvals > 
                                                                       \forall b', p' : \langle b', s, p' \rangle \in pvals \Rightarrow b' \leq b
           proposals = proposals \oplus pmax(pvals)
          \forall \langle s, p \rangle \in proposals : spawn(Commander(self(), acceptors, replicas, \langle ballot\_num, s, p \rangle);
           active := true
        end case
         case case
          if(r', \lambda') > ballot_num then
                                                                                                          end case
             active := false;
                                                                                                        end switch
             ballot\_num := (r' + 1, self());
                                                                                                      end for
             spawn(Scout(self(), acceptors, ballot\_num);
                                                                                                  end process
```

How a leader enforces C2

- Suppose λ learns that a majority of acceptors has adopted its ballot b (\langle adopted, b, pvals \rangle)
 - \square CASE 2: let $\langle b', s, p \rangle$ be the pvalue with the maximum ballot number b' for s.
 - by induction, no pvalue other than p could have been chosen for s when $\langle b', s, p \rangle$ was proposed
 - \triangleright since a majority of acceptors has adopted b, no pvalues between b' and b can be chosen
 - \blacktriangleright by proposing p with ballot b , λ enforces C2