Overview: Cloud Datacenters II

Hakim Weatherspoon
Associate Professor, Dept of Computer Science
CS 5413: High Performance Systems and Networking
January 30, 2017
Background: The Internet

• How do we get bits into and out of datacenters?
Background: The Internet

Internet Protocol / Internet Protocol Protocol Stack

- **application**: supporting network applications
 - FTP, SMTP, HTTP
- **transport**: process-process data transfer
 - TCP, UDP
- **network**: routing of datagrams from source to destination
 - IP, routing protocols
- **link**: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- **physical**: bits “on the wire”
Background: The Internet

message
segment
datagram
frame

source

application
transport
network
link
physical

destination

application
transport
network
link
physical

link
physical

switch

router

H_t M
H_n H_t M
H_l H_n H_t M

H_t M
H_n H_t M
H_l H_n H_t M

H_n H_t M
H_l H_n H_t M

H_n H_t M
Network Protocol “Layers”

<table>
<thead>
<tr>
<th>Departure (airport)</th>
<th>Intermediate air-traffic control centers</th>
<th>Arrival (airport)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ticket (purchase)</td>
<td>ticket (complain)</td>
<td>ticket</td>
</tr>
<tr>
<td>baggage (check)</td>
<td>baggage (claim)</td>
<td>baggage</td>
</tr>
<tr>
<td>gates (load)</td>
<td>gates (unload)</td>
<td>gate</td>
</tr>
<tr>
<td>runway (takeoff)</td>
<td>runway (land)</td>
<td>takeoff/landing</td>
</tr>
<tr>
<td>airplane routing</td>
<td>airplane routing</td>
<td>airplane routing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

layers: each layer implements a service

– via its own internal-layer actions

– relying on services provided by layer below
• What does it take to build a million server datacenter?
Tech Titans Building Boom

• What does it take to build a million server datacenter?

• Challenges
 – Readily available (fiber-optic) networking
 – Abundant water
 – Inexpensive electricity
 • How much electricity?
 • 200W per server * 1M servers = 200MW!
 • Equivalent to 200k houses!
 – Management (e.g. installation, failures)
 – Environmental impact

Titan tech boom, randy katz, 2008
Tech Titans Building Boom

• What does it take to build a million server datacenter?
• Challenges
 – Readily available (fiber-optic) networking
 – Abundant water
 – Inexpensive electricity
 • How much electricity?
 • 200W per server * 1M servers = 200MW!
 • Equivalent to 200k houses!
 – Management (e.g. installation, failures)
 – Environmental impact
• Prior state of the art, dot-com era of 1990’s to 2000’s
 – 1k to 2k servers -> 1MW to 2MW
 – Setup and management was fairly manual
Tech Titans Building Boom

• What does it take to build a million server datacenter?
• Locations (power/cooling/water)
 – Washington, N.C., S.C., Iowa, Oklahoma,..., Siberia!

Titan tech boom, randy katz, 2008
Tech Titans Building Boom

• What does it take to build a million server datacenter?

• Server Utilization
 – 40x 200W pizza boxes
 – CPUs are 60% of power
 – 8 to 16kW per rack
 – 0.5kW/m²
 – Air cooling

• Google/Microsoft
 - Better power mgmt.
 . Avg instead of peak
 - Better power supplies
 voltage regulators, fans
 - Remove GPU
 - Water cooling
Tech Titans Building Boom

• What does it take to build a million server datacenter?
• Containers (server, power, cooling efficiency)
 – 2500 to 3000 servers, instead of 40 to 80
 – Power and cooling efficiency
 – Power density, 16kW/m² instead of 0.5 kW/m²
Tech Titans Building Boom

- What does it take to build a million server datacenter?

Titan tech boom, randy katz, 2008
Tech Titans Building Boom

• What does it take to build a million server datacenter?
 – Power efficiency
 – Cooling efficiency
 – Server efficiency
 • Power proportionality
 • utilization
 – Power density
 • 0.5 kW/m² – raised floor datacenter
 • 16 kW/m² – containerized datacenter
 – Management/failure
 • Software masked failures
 • containerization

Titan tech boom, randy katz, 2008
Tech Titans Building Boom

• Power efficiency
 – Tune power supply for average, not peak
 – Voltage regulators
 – Remove unnecessary components

• Cooling efficiency
 – HP “smart cooling”
 – Air-side economization
 – Containers
Tech Titans Building Boom

• PUE
 – Total power consumption / total power used by consumers

• Results
 – Typical enterprise DC
 • 2007 – 2
 • 2011 – 1.7 (with optimizations may reach 1.3)
 – Google DCs
 • Avg – 1.21
 • Best – 1.15
 – Microsoft
 • Chicago – 1.22
• Virtualization
 – DCs run at 15% of their capacity without virtualization
 – DCs run at 80% with virtualization

• Other SW tools
 – Power usage control
 – Shared distributed data
 – Handle software failures
Perspective

• To build large and efficient datacenters
 – Better power efficiency
 – Better cooling efficiency
 – Specialized systems for datacenters
Before Next time

• Finish Lab0 by Tuesday

• Fill out survey to help form groups

• Create a project group
 – Start asking questions about possible projects

• Check website for updated schedule