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Abstract— As data centers have increased in size, there has
been a push to create clusters out of cheaper, more affordable
commodity parts that can easily be replaced upon failure,
and that create more affordable data centers overall. However,
such large clusters are still outside of feasibility for individuals
and small businesses. It is a worthwhile exercise to see if
much smaller clusters could be created for such applications,
and to compare their performance / price measure to that
of traditional datacenters. In our case, we explored creating
such a cluster with Raspberry Pis which are $35 credit-card-
sized, single-board computers. More specifically, we built a
distributed data processing architecture in Python that runs on
a cluster of four Raspberry Pi’s and closely resembles Google’s
MapReduce architecture. In order to profile the performance
of the system, we wrote several example MapReduce jobs such
as counting words, calculating baseball statistics, and counting
n-gram frequency for text documents.

This project will be extended to create a type of plug-and-
complete networking project that can be used to teach and
introduce networking concepts in one of Cornell’s primary
systems class: CS 3410 or CS 4410. This will also include
coming up with a complete instruction set and set of guidelines
to support students completing the project. During the imple-
mentation process, all members of our team learned previously
unknown skills, including how to create a cluster, programming
the infrastructure that lies under a single, physical switch, and
analyzing system throughput.

I. INTRODUCTION
A. Raspberry Pi

The Raspberry Pi is a credit-card-sized, single-board com-
puter whose initial purpose was to enable students learning
computer science (really at any education level) to have
more hands on experience. Since their launch, they have
become incredibly popular among in the computer science
and maker movement communities and have been used to
make everything from home automation systems to full-
fledged laptops to monitoring devices. For this project, we
were generously given four Raspberry Pis to create a little
computing cluster, in other words a mock data center. We
chose to use the Raspberry Pi platform because of their price,
availability, and support community. At $35, one would be
hard pressed to find a cheaper, more established solution
for low cost, hands on computing. Raspberry Pis are also
readily available online and Professor Weatherspoon even
had the four that he lent us lying around in his office for
opportunities such as this one. The community surrounding
the Raspberry Pi also proved to be invaluable, offering an
unparalleled amount of online support during the installation
of our cluster. Additionally, other members of the community
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had set-up similar clusters and we readily pulled from their
own experiences, shared online through forums and blog
posts.

Fig. 1.

A Raspberry Pi model B

B. MapReduce

MapReduce is a programming model popularized by
Google in the mid-2000s and used for processing large
amounts of data. It is inspired by the functional programming
map and reduce patterns and is designed to be easily paral-
lelizable, allowing programmers with little to no knowledge
of parallel or distributed computing to write jobs that run
on tens to thousands of machines in the cloud. The interface
for a job (the term for a MapReduce program that is run on
the system) itself requires two functions, which we will call
map and reduce. Their interfaces have the following types:

o map (kl, vl) — list(k2, v2)

o reduce (k2, list(v2)) — list(v2)

An example of a word-counting job in pseudo-code where
the input is a text document and each initial value is a line
of text would look as follows:

map (key, line):

for word in line.split( ):
yield (word, 1)

reduce (word, values):

return sum(values)

The overall MapReduce architecture can be seen in Figure
On the left hand side is the initial data set split into
several pieces. Each piece is sent to one of several parallel
workers who apply the map function each line or atom of
the piece. The result is then written locally to disk on the
worker. From there, the results are then piped to another
worker who applies the reduce function to the intermediate



data. Once this is done, the output is written to a file, usually
on a distributed file system. There is a single master that
coordinates the data flow and a user program that invokes
the master with the MapReduce job to run and what data to
run it on.
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Fig. 2. The Google MapReduce architecture

Googles own implementation of MapReduce is closed
source, but several open source projects have emerged as
the programming model was popularized, such as Hadoop.
We followed the architecture laid out in Googles MapReduce
white paper closely, but took some liberties wherever we saw
fit.

II. MOTIVATION

Our main motivation for this project is to push the limits
of low-cost, commodity computing. With the rise of com-
modity server-based data centers, we saw the next frontier
as constructing these data centers out of just about the
cheapest boards commercially available. This would lower
the barrier to entry for cluster computing and make it a
reality that can be realized by anybody in their own home
(although one could argue that this is already on the rise via
advancements in GPU programming accessibility). We also
want to profile this type of cluster and compare it to other so-
lutions available today, specifically Cornells own Computer
Science Undergraduate Lab (CSUG) servers. Furthermore,
our project goes hand-in-hand with the Raspberry Pi Foun-
dations initial mission of making physical computing more
accessible to students learning computer science at all levels.
Much in that way, we aim to make cluster computing more
accessible to computer science students at Cornell University
by turning our project into a project for an undergraduate
course, where students will complete the Distributed File
System and MapReduce and implementations presented here.

III. DESIGN

A. System Architecture

The entire system can be broken down into three parts:
the client, the master, and the followers. The client is what
a user would speak to the system through. It communicates
directly with the master machine to interact with the system.

We provide this client library so that the user never has to
worry about correctly communicating with the master and
can do so through very simple calls in the shell, which
will be shown later. The master and follower parts are
run on computers in the cluster Communication between
the different parts is done through sockets, much like the
labs earlier in the semester. We designed our own chat-like
protocol through which the different parts can talk to each
other autonomously. In this way, each part of the system
runs its own chat server and sends messages to other parts
chat servers. Communication between the client and master
is initiated by the user, whereas communication between the
master and followers happens completely autonomously and
is initiated after client calls to master.
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The layout of our cluster

B. Distributed File System

The distributed file system exposes a simple interface with
commands such as: Is, mkdir, rm, mv, cat, and upload. We
will show the flow for each of these commands below. The
state of the file system is stored in memory on the master
and is currently not backed up on disk. Each file in the
file system is composed of chunks, or pieces of the file
which contain some number of lines of data. Each chunk
is assigned a UUID which is then logged as belonging to
the file. These chunks are stored on disk on the followers in
a dedicated directory. Followers do not need to know which
file a chunk belongs to; they are solely used to store, read,
and perform operations on chunks when requested by the
master. Communication flows for the distributed file system
commands can be seen in Figures ] 5 and [6]
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C. MapReduce

The MapReduce system is accessed via a command sim-
ilar to those of the DFS, which we call map_reduce. As
arguments, it takes the path in the DFS of the data set (it
must already be uploaded), the path in the DFS to store the
results, and a MapReduce job file. The job file is a normal
python file which can use all of the standard Python libraries,
but not third party ones like numpy (although this could
easily be changed by installing those libraries on the master
and followers). The file must define two functions, map and
reduce, and may also implement an optional third function,
combine. Map takes a string which is a line from the data
set and returns a list of keys and values. Combine takes a
key and a list of values associated with that key from the
map phase and returns a new value. Reduce takes a key
and a list of values associated with that key from either the
map or combine phases and returns a new value. This closely
follows the Google MapReduce interface as described above.
Map and combine are executed on the followers in separate
threads (not the chat server thread), while reduce is executed
on the master in a separate thread. The communication flow
for MapReduce can be seen in Figure
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IV. SETUP

The experimental setup consists of four raspberry pis
running Raspbian version September 2014. All four pis
are connected to a Netgear WGPS606 54 Mbps Wireless
Print Server w/4-port Switch by ethernet cables, where ports
are 10/100 autosensing RJ-45 ports. The switch is then
wirelessly connected to eduroam, Cornell’s secure Wi-Fi
network. Each pi is configured to own a static IP address for
ease of use (thus saving us from modifying the code every
time pis get new IP address by DHCP). Pi 2 is currently
running our master program while the rest of pis are running
the follower program. We then run client requests from our
own machine to test our system. Side note on setting up a
static IP:

1) Gather network information. Specifically, we need
current IP address (which will be made static later),
gateway IP, netmask, network, and broadcast address.

2) Disable DHCP client and add above information to the
network interface file.

3) Restart the network

Fig. 8.

The physical setup of our cluster

V. IMPROVEMENTS

Since the previous report, a number of improvements were
made. First a few minor bugs in the code were fixed. For
example, the cat function for viewing file contents now
ensures that it only displays 1 copy of the data in the correct
order (not a random shuffle of the chunks as before), and the
MapReduce function now terminates gracefully by sending
the proper response to the client. As will be seen in the results
section, the performance of the Pi cluster ranges between
10% faster and 300% faster than in the progress report.
This was caused by an improvement in the way the port
select function was being handled, which was causing up to
a 10 second delay between write/reads during MapReduce.
Finally, the code was exported to a different set of servers
for experimentation and testing. Although we were unable to
have our code easily communicate between one of Cornells
Cloud Computing clusters due to its security settings, we
were able to port it to the Cornell CSUG machines with a
few minor adaptations (since not all Python libraries used



were supported on these machines). In addition to allowing
for a testing comparison, the successful porting of the code
to CSUG could prove crucial for its adaptation into future
undergraduate class project.

VI. RESULTS
A. MapReduce Application

All performance testing on the created cluster was per-
formed using a simple natural language processing appli-
cation that is well-suited for the MapReduce architecture.
Essentially the application counts all n-grams in a text
document for n = 1,2,3, where an n-gram is defined as a
word sequence of length n. The application performs the
following actions:

1) Uploads a pre-processed version of the King James
Bible with 1 sentence (verse) per line, which the
distributed file systems spreads throughout the cluster.

2) Sends MapReduce request messages that contain the
necessary Map and Reduce code modules to the mas-
ter.

3) Waits for a success message to be received from the
cluster master indicating that the Map and Reduce
modules have completed running. All of the 1-gram,
2-gram, and 3-gram counts can then be seen in the
results file through the cat command (all ngrams are
placed into the same file).

For most tests, a smaller subset of the King James Bible was
used, which contained the first 8192 versess (each on its own
line) for a total file size of 1.20 MB (about 146 bytes/line).
Using this data, the following experiments were run both on
our commodity cluster of 4 Pis, and on 4 Cornell CSUG
nodes.

B. Explanation of Performance Statistics Gathered

For all experiments, the following statistics were gathered
using the “timeit” library in Python:

Upload Time: The time necessary to upload the data file to
the master and all Pis in the cluster. This gives a reasonable
idea of how long it takes for the data to traverse to main
nodes (client to master, and master to follower).

Full MapReduce Time: The time necessary for the entire
MapReduce job to be completed

Max Map Time: The maximum time that any one of the
follower took to complete all of its assigned jobs. Only time
spent within each Map function call was considered.

Reduce Time: The time the master node spent reducing
the results from all worker node results.

Networking Time: Because all other processes of the
MapReduce job were trivial, the networking time was taken
to be the remaining time of the full MapReduce job. There-
fore, we have: Networking Time = [Full MapReduce Time]
- [Max Map Time + Reduce Time]

Note on Calculation: We believe this is relatively ac-
curate for the networking time. On the Pis this includes
serialization of the Map and Reduce modules being sent
to the master, although this overhead is not included on
the CSUG machines since the libraries are not supported

and that functionality removed. It also includes the time
required to send these serialized/unserialized MapReduce
function modules to all the cluster nodes, the ssh connection
overhead, and the fact that our laptop was using a USB
over Ethernet connection. In addition, the calculation does
not take into account concurrent networking time occurring
simultaneously that could be added onto each other for total
networking time — which would indicate that it is possibly a
lower estimate and should slightly offset any other process
overhead included.

C. Experiment 1: Varying File Size

For the first experiment, we varied the size of the file
on which we were performing the MapReduce application.
This would allow us to see the effect on shear data size
on processing performance and networking time. Because
we had 1 master and 3 single-core worker Pis, we decided
to keep a constant number of 3 chunks for the experiment
(one per Pi), and varied the number of file lines per chunk
accordingly to keep the number of chunks set at 3. (A chunk
is one section of the files stored on 1 of the system nodes.)
The results are shown in Figure [9] below.
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Fig. 9.

The first comparison to note is that the Pis have about
12% the processing throughput per time interval. This should
be expected, given that the Pis have a slower single-core
processor. However, despite the slower performance of the



Pis that creates a much larger range on the y-axis, it is quite
interesting to see that the profiles of the Pi and CSUG cluster
matches nearly exactly, indicating that the commodity Pis do
a great job at mimicking the performance balance of a larger
machine (at least in this experiment).

In both cases, the networking time begins to surpass
processing time as the size of the data increases and the
number of workers are kept constant. Logically, we believe
this makes sense: the processor can predictably handle the
larger job without much context switching, whereas the
networking must handle more (possibly) unsuccessfully de-
livered packets and bandwidth limitations. Therefore, it ap-
pears that given a limited set of workers, increasing network
bandwidth might be a good approach towards increasing the
performance of the system.

D. Experiment 2: Varying Number of Workers

For the second experiment, we varied the number of
workers performing the MapReduce job, with the job being
split equally with 1 chunk per worker. The size of the file
was kept constant at our current maximum file size of 1.20
MB, and the lines per chunk were varied accordingly to keep
the invariant stated above. The results are shown in Figure
below.
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As in Experiment 1, we see the same relative slower

performance between the Pis and lab machines, and also
similarly matching performance profiles. As expected, as
the number of workers increases, the total MapReduce time
decreases. It is somewhat surprising that the networking that
the network time also decreases as the number of workers
increases, although this is likely caused by the fact that
less per-worker data is being sent, and these messages can
be sent simultaneously as long as they do not congest the
same network path. Less data being sent to each worker at a
time also means it is less likely for their buffers to become
saturated.

E. Experiment 3: Varying the Number of Chunks

For the last experiment, we varied the number of chunks
a mapreduce job was split into by varying the number of
file lines per chunk. The size of the file was kept constant
at our current maximum file size of 8192 lines (1.20 MB),
and three worker nodes were used. The results are shown in
Figure [TT] below.
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The results show that for our system, as the number of
chunks increased, the processing time initially increased,
as the jobs were more evenly distributed over idle worker
threads. However, as the number of chunks continued to
increase, the processing time began to increase linearly —
becoming very large. Initially, the team believed this was due
to the extra networking overhead. However, as can be seen



in the results (and particularly for the CSUG machines), the
networking time remains relatively low, while the processing
time accounts for the great majority of the MapReduce time.
This implies that as the number of chunks or small jobs
increases, the jobs themselves and the multitude of context
switching between these jobs is not handled efficiently on
the number of machines at hand. Therefore, in the case of
a datacenter similar to ours where an increasing number
of small jobs are being seen, it may be wisest to increase
performance by investing in more processing power instead
of bandwidth.

F. Economic and Reliability Comparison

The economic feasibility of the Pis is compared against
two scenarios: a user renting computation from a cloud
service such as from Amazon, and that of creating ones own
server.

A small Amazon EC2 general purpose on-demand server
is currently priced at $0.013/hr, which leads to a yearly cost
of $114 if run continuously. Under the assumption that we
have 4 of these running year-round for an architecture similar
to our own, then the total cost/year would be $456. Energy
costs are non-existant to the consumer, as these costs are
covered by Amazon. As stated earlier, the Raspberry Pis cost
about $35 each, for a total of $140 (excluding the relatively
cheap switch and Ethernet cables). Let us also assume that
the Amazon Web Service instances perform just as well as
those in Cornells lab. Then although the price over 1 year is
$456/$140 = 3.26 times as much for Amazon over the Pis the
Pis in general perform at least 10 times worse when measured
in time. Therefore, you pay a little over 3 times as much for
over 10 times performance gains — so Amazon clearly is
the clear winner over our Pis for the price/throughput ratio.
Without considering energy costs, the cost of 4 servers would
be $2000 versus the Pis at $140, so the Pis clearly do win out
economically when considering performance/$ in this case,
especially since energy costs (discussed below) could add up
to a couple hundred dollars per year for each Dell server in
this case.

However, the above analysis does not take into account
the reliability of the Pis. During experimentation, the Pis
crashed many times and were quite unreliable. In order to
monitor the cluster and keep a reasonable number of them
up at any given moment, a full-time hire who costs around
$40,000/year would most likely be needed. Therefore, even
when creating ones own cluster, it would be wiser to choose
more reliable components.

G. Power Considerations

Now we consider comparing against the creation of our
own cluster. One typical enterprise server such as the Dell
PowerEdge 1950 in CSUG is rated at 650W, versus a Pi
which has been reported to run at about 3W of power. At
this rate, the energy costs could add up to a couple hundred
dollars per year for each Dell server in this case. For our total
energy consumption based on the different running length
of the jobs on the Pis and CSUG, the Pis use about 1000

Joules for the job, while the Dell PowerEdge server uses
about 16,000 Joules — over an order of magnitude difference!
Therefore, if the Pis could be made reliable, and we could
tolerate longer running times, then the Pis are an excellent
option for conserving a lot of power, and the costs associated
with that power!
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VII. FUTURE WORK

Due to the success of the distributed file system and
simple MapReduce framework established, the team plans
to form the project into an assignment that can be used for
undergraduate students. It will be very useful to expose them
to basic networking components using TCP/IP connections,
the concept of MapReduce over a distributed file system, and
the necessary synchronization to keep processes coordinated.
It will also increase their experience with Linux commands
to ssh and work on the remote machines through the terminal.
However, due to the unreliability of the Pis, it might be
wisest to have the project hosted on the CSUG machines. On
the CSUG machines, the level of accessibility and reliability
would create a much more solid project base for students.

VIII. CONCLUSION

By experimenting with creating the Pi cluster and profiling
the process times of computational MapReduce jobs, he
team has arrived at a number of conclusions. As the pure
size of individual jobs and documents being passed through
network increases, networking time appears to become the
bottleneck, and performance would likely benefit most by
increasing bandwidth. As the number of working nodes
in the cluster increases, both overall networking time and
processing time of jobs tends to decrease. Finally, as the
number of small size jobs increase, processing time accounts
for the majority of the MapReduce job time due likely to
much context switching between simultaneous processes, and
therefore investing in more nodes/processing power is key to
performance gains.



Economically, the Pis cannot compete against the con-
sumer costs of a cloud service like Amazon on a dol-
lar/throughput basis. Although using the Pis to create ones
own server is significantly cheaper than creating ones own
cluster using enterprise-level equipment when considering
product and energy requirements, the economic gains are
hardly noticed when the labor required to keep the Pi servers
up and running is taken into account. Therefore, we deem
commodity parts as unreliable as the Pis not to be fit for
actual personal datacenter use.
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APPENDIX

. Instructions to Run

On Master

1) In the top-level Tiny Data directory run python master
2) Look up and write down the public-facing IP address of this machine

On Followers

1) In the top-level Tiny Data directory run python follower master_ip where master_ip is the IP address

recorded before.

On Client
1) In the top-level Tiny Data directory run python client master_ip where master_ip is the IP address recorded

before. This will print out a list of commands that are available.

2) Here’s an example of every command. All paths in the DFS must be provided as absolute paths, starting at root (/)

Is - python client master_ip ls /

rm - python client master_ip rm /some_data_file
mkdir - python client master_ip mkdir /my.dir

cat - python client master_ip cat /some_results_file

upload - python client master_ip upload /data_path_on.dfs /data_on.my_computer
1000
map_reduce - python client master_ip map.-reduce /data_path /store_results_here

map_-file.py reduce_file.py ——combine combine_file.py

B. Word Count MapReduce Job File

import re

def map_fn(line):

def

words = re.findall(r"[\w’/]+", line)
return [ (word.strip().lower(), 1) for word in words]

reduce_fn (key, values):
return sum(values)


http://elinux.org/RPi_Setting_up_a_static_IP_in_Debian
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