Data Center Virtualization: Open vSwitch

Hakim Weatherspoon
Assistant Professor, Dept of Computer Science
CS 5413: High Performance Systems and Networking
November 10, 2014

Slides from ACM SIGCOMM Workshop on Hot Topics in Networking (HotNets) presentation of “Extending networking into the virtualization layer”
Goals for Today

• Extending networking into the virtualization layer
Outline

• Motivation
• Design
• Applications
• Implementation
• Evaluation
• Discussion/Future Work
Motivation

• Virtualization is pervasive
 – At the time of writing in 2009:
 • 12% of workloads were virtual
 • Gartner predicted by 2013, 61% of workloads would be virtual
 – Scott Shenker’s talk: Virtual switches is more numerous than physical switches today
 – Intel: All endhosts should be virtualized
Networking in virtual environments is important

• Clouds routinely host 40, 60, 120 or more virtual hosts per physical host
 – 128VM’s per host is more than 2 racks full of machines
Networking in virtual environments is different

• Challenges
 – Scalability \((10^5\text{ VMs or much more})\)
 – Isolation
 – Mobility

• Conveniences
 – Hypervisor info
 – Introspection
 – Leaf nodes
Networking in virtual environments is different

• Challenges
 – Scalability (\(10^5\) VMs or much more)
 – Isolation
 – Mobility

• Conveniences
 – Hypervisor info
 – Introspection
 – Leaf nodes

Motivation

Open vSwitch
 Distribute the Switch
 Centralize Control
 Take Advantage
Outline

- Motivation
- Design
- Applications
- Implementation
- Evaluation
- Discussion/Future Work
Open vSwitch

• Control Plane/Controller/OpenFlow
 – Configuration
 – Connectivity Management
 • creating switches, managing virtual interface (VIF) connectivity, and managing physical interface (PIF) connectivity
 – for each connected VIF, a logical port is added to the switch
 – Features
 • VLAN, Port Mirroring, ACLs, NetFlow, Bonding, QoS, Anything*

• Data Plane/Forwarding/OpenFlow
 – OpenFlow controller remotely controls forwarding table
 – Defines how packets handled based on L2, L3, L4 headers
Outline

• Motivation
• Design
• Applications
• Implementation
• Evaluation
• Discussion/Future Work
Distributed Switch

Logical View

VM 1

VM n

VM 2
Distributed Switch

Physical View
VM 1
VM 2
VM host 1
VM host k
VM n
Physical Switch

Logical View
VM 1
VM 2
VM n
GRE
Controller
Extending the Data Center into the Cloud

Managed Cloud

VM 1
VM 2
VM host 1
VM n
VM host k

“cloud access server”

Customer Data Center

Controller

Applications

GRE/IPSEC/SSL
Outline

• Motivation
• Design
• Applications
• Implementation
• Evaluation
• Discussion/Future Work
Outline

• Motivation
• Design
• Applications
• Implementation
• Evaluation
• Discussion/Future Work
Evaluation

• Compare Open vSwitch to Linux Bridge

• Bandwidth
 – Fast Path: > 1Gbps
 – ovs-vswitchd: 100Mbps
 – Controller: 10Mbps

• Latency
 – Fast Path: < 1 us
 – ovs-vswitchd: < 1 ms
 – Controller: ms+
Evaluation

- Compare Open vSwitch to Linux Bridge

- Same performance as Linux bridge with same CPU
Outline

• Motivation
• Design
• Applications
• Implementation
• Evaluation
• Discussion/Future Work
Discussion/Future work

• Hardware acceleration in a virtual world?
 – Netronome, VN-Tag, VEPA

• Performance, performance, performance
• Physical switches integration
• Upstream kernel integration
• Anything*
Before Next time

- Project Interim report
 - Due Monday, November 24.
 - And meet with groups, TA, and professor
- Fractus Upgrade: Should be back online

Required review and reading for Friday, November 21

- Check piazza: http://piazza.com/cornell/fall2014/cs5413
- Check website for updated schedule