Software Routers: NetMap

Hakim Weatherspoon

Assistant Professor, Dept of Computer Science
CS 5413: High Performance Systems and Networking
October 8§, 2014

Slides from the “NetMap: A Novel Framework for Fast Packet I/O” at the USENIX
Annual Technical Conference (ATC), June 2012.

Goals for Today

e Gates Data Center and Fractus tour Y

e NetMap: A Novel Framework for Fast Packet I/O

— L. Rizzo. USENIX Annual Technical Conference (ATC),
June 2012, pages 101-112.

Fractus Cloud

Production-side and Experimental side
e 1 rack of 19 machines each

e Network
— 1x HP 10/100 Mb management switch 4 L4
— 1x Top-of-Rack switch: Dell Force10 10 Gb Et ernet data switch
e Contains a bonded pair of 40 Gb links to the research rack (80 Gb total)
e Servers

— 2x 8-core Intel Xeon E5-2690 2.9 GHz CPUs (16 cores/32
threads total)

— 96 GB RAM
— A bonded pair of 10 Gb Ethernet links (20 Gb total)
— 4x 900 GB 10k RPM SAS drives in RAID O

Fractus Cloud

Internet

Border router

ccess router

Tier-1 switches

Tier-2 switches

TOR switches

Server racks

Fractus Cloud — Production-is_iﬁ e

> S d=1g rriralirstior
Hosted Virtualization

Virtual Machine Monitor (VIVIM)

Hnst-ﬂperaﬂng_ﬁ-,fstem

Shared Hardware

=
 Multiple virtual machines on one physical machine

e Applications run unmodified as on real machine

e VM can migrate from one computer to another
6

Goals for Today

e Gates Data Center and Fractus tour Y

e NetMap: A Novel Framework for Fast Packet I/O

— L. Rizzo. USENIX Annual Technical Conference (ATC),
June 2012, pages 101-112.

Direct Packet 1/0O Options

e Good old sockets (BPF, raw sockets)

— Flexible, portable, but slow

Direct Packet 1/O options

e Good old sockets (BPF, raw sockets) QxS
— Flexible, portable, but slow
— Raw socket: all traffic from all NICs to user-space
— Too general, hence complex network stack
— Hardware and software are loosely coupled

— Applications have no ccl)ntrol OVer resources
I . .)

A LSS PII

N etwork]] | Network ™ B!
- icati —— emory
. yp&threads
int&grated memor |
Raw socket controller < sogkt-10 link

0-8 tx/rx queues (0-8)

Direct Packet 1/0O Options

e Good old sockets (BPF, raw sockets)

— Flexible, portable, but slow

e Memory mapped buffers (PF_PACKET, PF_RING)
— Efficient, if mbufs/skbufs do not get in the way

Direct Packet I/O Options

e Good old sockets (BPF, raw sockets)

— Flexible, portable, but slow

e Memory mapped buffers (PF_PACKET, PF_RING)
— Efficient, if mbufs/skbufs do not get in the way

Operating system

Hardware
pu

7
4 NIC registers NIC ring Buffers\ mbufs

... phy addr - T~
head len

tail 1 -H\\“

~v_add r-

Direct Packet 1/0O Options

Good old sockets (BPF, raw sockets)

— Flexible, portable, but slow

Memory mapped buffers (PF_PACKET, PF_RING)
— Efficient, if mbufs/skbufs do not get in the way

Run in the kernel (NETFILTER, PFIL, Netgraph, NDIS, Click)
— Can be fast, especially if bypassing mbufs

Custom Libraries (OpenOnLoad, Intel DPDK)

— Vendor specific: Normally tied to vendor hardware

Can we find a better (fast, safe, HW-independent)
solution?

Traditional Network Stack

e How slow is the
traditional raw socket
and host network stack?

File Function/description time | delta
ns ns
user program sendto 8 96
system call
uipc_syscalls.c | sys_sendto 104
uipc_syscalls.c | sendit 111
uipc_syscalls.c | kern_sendit 118
uipc_socket.c sosend —
uipc_socket.c sosend_dgram 146 137
sockbuf locking, mbuf
allocation, copyin
udp_usrreq.c udp_send 273
udp_usrreq.c udp-output 273 57
ip-output.c ip-output 330 198
route lookup, ip header
setup
if_ethersubr.c ether_output 528 162
MAC header lookup and
copy, loopback
if_ethersubr.c ether_output_frame 690
ixgbe.c ixgbe_mqg_start 698
ixgbe.c ixgbe_mg_start_locked| 720
ixgbe.c ixgbe_xmit 730 220
mbuf mangling, device
programming
- on wire 950

Traditional Network Stack

Significant amount of time spent at all levels of thé"
stack

 The system call cannot be avoided (or can it?)

e Device programming is extremely expensive

e Complex mbufs are a bad idea

e Data copies and mbufs can be saved in some cases
 Headers should be cached and reused if possible

Motivation for a new design

Design Guidelines

No requirement/reliance on special hardware features
Amortize costs over large batches (syscalls)

Remove unnecessary work (copies, mbufs, alloc/free)
Reduce runtime decisions (a single frame format)

Modifying device drivers is permitted, as long as the
code can be maintained

NetMap summary

Framework for raw packet I/O from userspace

e 65 cycles/packet between the wire in userspace
— 14Mpps on one 900 MHz core

e Device and OS independent

e Good scalability with number of CPU frequency and
number of cores

e libpcap emulation library for easy porting of applications

4 netmap_if netmap rings) NIC ring

len

[1| cur

ring ofs[]

o p a C ket b u ffe rS num_rings f ring size | phy addr

— Numbered and ~

avail
flags
H H buf ofs
fixed size f = .
ags | len | index
- -

* netmap rings

— Device independent

copy of NIC ring

Shared memory region

J

cur: current tx/rx position -
avail: available slots

Ptrs stored as offsets or indexes (so not dependent of virtual mem)
 netmap_if

— Contains references to all rings attached to an interface

Protection

Rely on standard OS mechanism

e The NIC is not exposed to the userspace

e Kernel validates the netmap ring before using its contents
e Cannot crash the kernel or trash other processes memory

Data Ownership

e No races between kernel and user
e Global fields, and [cur...cur+avail-1 |:
— Owned by the application, updated during system calls

e other slots/buffers
— Owned by the kernel

* Interrupt handler never touches shared memory regions

NetMap API

* Access

— open: returns a file descriptor (fd)

— ioctl: puts an interface into netmap mode

— mmap: maps buffers and rings into user address space
e Transmit (TX)

— Fill up to avail bufs, starting at slot cur

— ioctl(fd, NIOCTXSYNC) queues the packets
e Receive (RX)

— ioctl(fd, NIOCTXSYNC) reports newly received packets

— Process up to avail bufs, starting at cur

e poll()/select()

NetMap API

Access

— open: returns a file descriptor (fd)

— ioctl: puts an interface into netmap mode

— mmap: maps buffers and rings

Transmit (TX)
— Fill up to avail bufs, starting at
— ioctl(fd, NIOCTXSYNC) queues

Receive (RX)
— ioctl(fd, NIOCTXSYNC) reports
— Process up to avail bufs, startir

poll()/select()

fds.fd = open("/dev/netmap", O_RDWR);
strcpy (nmr.nm_name, "ix0");
ioctl(fds.fd, NIOCREG, &nmr);

p

= mmap(0, nmr.memsize, fds.fd);

nifp = NETMAP_IF(p, nmr.offset);
fds.events = POLLOUT;
for (5;) {

}

poll(fds, 1, -1);
for (r 0; r < nmr.num_queues; r++) {
ring = NETMAP_TXRING(nifp, r);
while (ring->avail-- > 0) {
i = ring->cur;
buf = NETMAP_BUF (ring, ring->slot[i].buf_index);
. store the payload into buf ...
ring->slot[i].len = ... // set packet length
ring->cur = NETMAP_NEXT(ring, i);
}
}

Multiqueue/multicore support

* One netmap ring per physical NIC ring
e By default, the fd is bound to all NIC rings, but

— joctl can restrict the binding to a single NIC ring pair

— multiple fd’s can be bound to different rings on the same card
— The fd’s can be managed by different threads

— Threads mapped to cores with pthread_setaffinity()

Netmap Mode Application

* Data path netmap API
— Normal path between NICand netmap
host stack is removed rings B
e Control path [\ host I
stack
— OS believes NIC is still there ‘ -'T —
NIC rings

network adapter

— Ifconfig, ioctl, etc still work [—!

NetMap and Host Stack

Netmap Mode Application
* Data path netmap API
— Packets from NIC end up in ~— netmap
netmap ring rings H
— Packets from TX netmap ring [\ host [
stack

are sent to the NIC ‘

NIC ri
* Control path [=] — -IT j

— OS believes NIC is still there network adapter

— Ifconfig, ioctl, etc still work

/ero copy

e Zero-copy forwarding by swapping buffer indexes

src = &src_nifp->slot[i]; /* locate src and dst slots */
dst = &dst_nifp->slot[j];

/* swap the buffers x/

tmp = dst->buf_index;

dst->buf_index = src->buf_index;

src->buf_index = tmp;

/* update length and flags */

dst->len = src->len;

/* tell kernel to update addresses in the NIC rings */
dst->flags = src->flags = BUF_CHANGED;

e Zero-copy also works with rings from/to host stack

— Firewalls, NAT boxes, IDS mechanisms

Performance Results

a 10 LJi & netmapon4cores mee
é _5_:'-'-' .:'::? netmap OoNn 2 cores

(0] 8 §:§ netma p on '1 core s -

(4y] 6 .—_':-'-? :-:3? LI”UX/pktgen M B

- I FreeBSD/netsend

2 458

O ! i
0 0.5 1 1.5 2 2.5 3
Clock speed (GHz)

Performance Results

e TX tput vs burst size

16
14
@ 12
= 10
o 8
r 6
X4
2 .
0 - netmap with 1 core s

2 4 6 8 10 12 14 16
Batch size (packets)

Performance Results

e RX tput vs packet size

Rate (Mpps)

O N B~ OO 00O N &

(O]

III'IIiIIIIII-IH (F1ELLLL]

t)(—

rx |T|||||.|||||||

50

100

150

200

250

Packet size (bytes)

300

R Performance Results

 Forwarding performance

Configuration Mpps
netmap-twd (1.733 GHz) 14.88
netmap-twd + pcap 7.50
click-fwd + netmap 3.95
click-etherswitch + netmap | 3.10
click-twd + native pcap 0.49
openvswitch + netmap 3.00
openvswitch + native pcap 0.78
bsd-bridge 0.75

NetMap summary

Framework for raw packet I/O from userspace

e 65 cycles/packet between the wire in userspace
— 14Mpps on one 900 MHz core

e Device and OS independent

e Good scalability with number of CPU frequency and
number of cores

e libpcap emulation library for easy porting of applications

Before Next time

* Project Progress Qs
— Need to setup environment as soon as possible
— And meet with groups, TA, and professor

e Lab3 — Packet filter/sniffer
— Due Thursday, October 16
— Use Fractus instead of Red Cloud

 Required review and reading for Friday, October 15

— “NetSlices: Scalable Multi-Core Packet Processing in User-Space”, T. Marian, K. S.
Lee, and H. Weatherspoon. ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), October 2012, pages 27-38.

— http://dl.acm.org/citation.cfm?id=2396563
— http://fireless.cs.cornell.edu/publications/netslice.pdf

e Check piazza: http://piazza.com/cornell/fall2014/cs5413
e Check website for updated schedule

	Software Routers: NetMap
	Goals for Today
	Fractus Cloud
	Slide Number 5
	Fractus Cloud – Production-side
	Goals for Today
	Direct Packet I/O Options
	Direct Packet I/O options
	Direct Packet I/O Options
	Direct Packet I/O Options
	Direct Packet I/O Options
	Traditional Network Stack
	Traditional Network Stack
	Motivation for a new design
	NetMap summary
	Netmap data structure and API
	Protection
	Data Ownership
	NetMap API
	NetMap API
	Multiqueue/multicore support
	NetMap and Host Stack
	NetMap and Host Stack
	Zero copy
	Performance Results
	Performance Results
	Performance Results
	Performance Results
	R Performance Results
	NetMap summary
	Before Next time

