
Software Routers: NetMap

Hakim Weatherspoon
Assistant Professor, Dept of Computer Science

CS 5413: High Performance Systems and Networking
October 8, 2014

Slides from the “NetMap: A Novel Framework for Fast Packet I/O” at the USENIX
Annual Technical Conference (ATC), June 2012.

Goals for Today
• Gates Data Center and Fractus tour

• NetMap: A Novel Framework for Fast Packet I/O
– L. Rizzo. USENIX Annual Technical Conference (ATC),

June 2012, pages 101-112.

Production-side and Experimental side
• 1 rack of 19 machines each
• Network

– 1x HP 10/100 Mb management switch
– 1x Top-of-Rack switch: Dell Force10 10 Gb Ethernet data switch

• Contains a bonded pair of 40 Gb links to the research rack (80 Gb total)

• Servers
– 2x 8-core Intel Xeon E5-2690 2.9 GHz CPUs (16 cores/32

threads total)
– 96 GB RAM
– A bonded pair of 10 Gb Ethernet links (20 Gb total)
– 4x 900 GB 10k RPM SAS drives in RAID 0

Fractus Cloud

Server racks

TOR switches

Tier-1 switches

Tier-2 switches

Border router

Access router

Internet

Fractus Cloud

Fractus Cloud – Production-side

• Multiple virtual machines on one physical machine
• Applications run unmodified as on real machine
• VM can migrate from one computer to another
6

Goals for Today
• Gates Data Center and Fractus tour

• NetMap: A Novel Framework for Fast Packet I/O
– L. Rizzo. USENIX Annual Technical Conference (ATC),

June 2012, pages 101-112.

• Good old sockets (BPF, raw sockets)
– Flexible, portable, but slow

Direct Packet I/O Options

Direct Packet I/O options
• Good old sockets (BPF, raw sockets)

– Flexible, portable, but slow
– Raw socket: all traffic from all NICs to user-space
– Too general, hence complex network stack
– Hardware and software are loosely coupled
– Applications have no control over resources

Network
Stack

Application

Raw socket

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Network
Stack

Application

ApplicationApplication

Application

Application

Application
Application

Application
Network

Stack

• Good old sockets (BPF, raw sockets)
– Flexible, portable, but slow

• Memory mapped buffers (PF_PACKET, PF_RING)
– Efficient, if mbufs/skbufs do not get in the way

Direct Packet I/O Options

Direct Packet I/O Options
• Good old sockets (BPF, raw sockets)

– Flexible, portable, but slow

• Memory mapped buffers (PF_PACKET, PF_RING)
– Efficient, if mbufs/skbufs do not get in the way

• Good old sockets (BPF, raw sockets)
– Flexible, portable, but slow

• Memory mapped buffers (PF_PACKET, PF_RING)
– Efficient, if mbufs/skbufs do not get in the way

• Run in the kernel (NETFILTER, PFIL, Netgraph, NDIS, Click)
– Can be fast, especially if bypassing mbufs

• Custom Libraries (OpenOnLoad, Intel DPDK)
– Vendor specific: Normally tied to vendor hardware

• Can we find a better (fast, safe, HW-independent)
solution?

Direct Packet I/O Options

• How slow is the
traditional raw socket
and host network stack?

Traditional Network Stack

Significant amount of time spent at all levels of the
stack
• The system call cannot be avoided (or can it?)
• Device programming is extremely expensive
• Complex mbufs are a bad idea
• Data copies and mbufs can be saved in some cases
• Headers should be cached and reused if possible

Traditional Network Stack

Design Guidelines
• No requirement/reliance on special hardware features
• Amortize costs over large batches (syscalls)
• Remove unnecessary work (copies, mbufs, alloc/free)
• Reduce runtime decisions (a single frame format)
• Modifying device drivers is permitted, as long as the

code can be maintained

Motivation for a new design

Framework for raw packet I/O from userspace
• 65 cycles/packet between the wire in userspace

– 14Mpps on one 900 MHz core

• Device and OS independent
• Good scalability with number of CPU frequency and

number of cores
• libpcap emulation library for easy porting of applications

NetMap summary

• packet buffers
– Numbered and

fixed size

• netmap rings
– Device independent

copy of NIC ring
cur: current tx/rx position
avail: available slots
Ptrs stored as offsets or indexes (so not dependent of virtual mem)

• netmap_if
– Contains references to all rings attached to an interface

Netmap data structure and API

Rely on standard OS mechanism
• The NIC is not exposed to the userspace
• Kernel validates the netmap ring before using its contents
• Cannot crash the kernel or trash other processes memory

Protection

• No races between kernel and user
• Global fields, and [cur…cur+avail-1]:

– Owned by the application, updated during system calls

• other slots/buffers
– Owned by the kernel

• Interrupt handler never touches shared memory regions

Data Ownership

• Access
– open: returns a file descriptor (fd)
– ioctl: puts an interface into netmap mode
– mmap: maps buffers and rings into user address space

• Transmit (TX)
– Fill up to avail bufs, starting at slot cur
– ioctl(fd, NIOCTXSYNC) queues the packets

• Receive (RX)
– ioctl(fd, NIOCTXSYNC) reports newly received packets
– Process up to avail bufs, starting at cur

• poll()/select()

NetMap API

• Access
– open: returns a file descriptor (fd)
– ioctl: puts an interface into netmap mode
– mmap: maps buffers and rings into user address space

• Transmit (TX)
– Fill up to avail bufs, starting at slot cur
– ioctl(fd, NIOCTXSYNC) queues the packets

• Receive (RX)
– ioctl(fd, NIOCTXSYNC) reports newly received packets
– Process up to avail bufs, starting at cur

• poll()/select()

NetMap API

• One netmap ring per physical NIC ring
• By default, the fd is bound to all NIC rings, but

– ioctl can restrict the binding to a single NIC ring pair
– multiple fd’s can be bound to different rings on the same card
– The fd’s can be managed by different threads
– Threads mapped to cores with pthread_setaffinity()

Multiqueue/multicore support

Netmap Mode
• Data path

– Normal path between NIC and
host stack is removed

• Control path
– OS believes NIC is still there
– Ifconfig, ioctl, etc still work

NetMap and Host Stack

Netmap Mode
• Data path

– Packets from NIC end up in
netmap ring

– Packets from TX netmap ring
are sent to the NIC

• Control path
– OS believes NIC is still there
– Ifconfig, ioctl, etc still work

NetMap and Host Stack

• Zero-copy forwarding by swapping buffer indexes

• Zero-copy also works with rings from/to host stack
– Firewalls, NAT boxes, IDS mechanisms

Zero copy

Performance Results

• TX tput vs clock speed and number of cores

Performance Results

• TX tput vs burst size

Performance Results

• RX tput vs packet size

Performance Results

• Forwarding performance

R Performance Results

Framework for raw packet I/O from userspace
• 65 cycles/packet between the wire in userspace

– 14Mpps on one 900 MHz core

• Device and OS independent
• Good scalability with number of CPU frequency and

number of cores
• libpcap emulation library for easy porting of applications

NetMap summary

Before Next time
• Project Progress

– Need to setup environment as soon as possible
– And meet with groups, TA, and professor

• Lab3 – Packet filter/sniffer
– Due Thursday, October 16
– Use Fractus instead of Red Cloud

• Required review and reading for Friday, October 15
– “NetSlices: Scalable Multi-Core Packet Processing in User-Space”, T. Marian, K. S.

Lee, and H. Weatherspoon. ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), October 2012, pages 27-38.

– http://dl.acm.org/citation.cfm?id=2396563
– http://fireless.cs.cornell.edu/publications/netslice.pdf

• Check piazza: http://piazza.com/cornell/fall2014/cs5413
• Check website for updated schedule

	Software Routers: NetMap
	Goals for Today
	Fractus Cloud
	Slide Number 5
	Fractus Cloud – Production-side
	Goals for Today
	Direct Packet I/O Options
	Direct Packet I/O options
	Direct Packet I/O Options
	Direct Packet I/O Options
	Direct Packet I/O Options
	Traditional Network Stack
	Traditional Network Stack
	Motivation for a new design
	NetMap summary
	Netmap data structure and API
	Protection
	Data Ownership
	NetMap API
	NetMap API
	Multiqueue/multicore support
	NetMap and Host Stack
	NetMap and Host Stack
	Zero copy
	Performance Results
	Performance Results
	Performance Results
	Performance Results
	R Performance Results
	NetMap summary
	Before Next time

