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Goals for Today
• Gates Data Center and Fractus tour

• NetMap: A Novel Framework for Fast Packet I/O
– L. Rizzo. USENIX Annual Technical Conference (ATC), 

June 2012, pages 101-112.



Production-side and Experimental side
• 1 rack of 19 machines each
• Network

– 1x HP 10/100 Mb management switch
– 1x Top-of-Rack switch: Dell Force10 10 Gb Ethernet data switch

• Contains a bonded pair of 40 Gb links to the research rack (80 Gb total)

• Servers
– 2x 8-core Intel Xeon E5-2690 2.9 GHz CPUs (16 cores/32 

threads total)
– 96 GB RAM 
– A bonded pair of 10 Gb Ethernet links (20 Gb total)
– 4x 900 GB 10k RPM SAS drives in RAID 0

Fractus Cloud
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Fractus Cloud – Production-side

• Multiple virtual machines on one physical machine
• Applications run unmodified as on real machine
• VM can migrate from one computer to another
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• Good old sockets (BPF, raw sockets)
– Flexible, portable, but slow

Direct Packet I/O Options



Direct Packet I/O options
• Good old sockets (BPF, raw sockets)

– Flexible, portable, but slow
– Raw socket: all traffic from all NICs to user-space
– Too general, hence complex network stack
– Hardware and software are loosely coupled
– Applications have no control over resources
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• Good old sockets (BPF, raw sockets)
– Flexible, portable, but slow

• Memory mapped buffers (PF_PACKET, PF_RING)
– Efficient, if mbufs/skbufs do not get in the way
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• Good old sockets (BPF, raw sockets)
– Flexible, portable, but slow

• Memory mapped buffers (PF_PACKET, PF_RING)
– Efficient, if mbufs/skbufs do not get in the way

• Run in the kernel (NETFILTER, PFIL, Netgraph, NDIS, Click)
– Can be fast, especially if bypassing mbufs

• Custom Libraries (OpenOnLoad, Intel DPDK)
– Vendor specific: Normally tied to vendor hardware

• Can we find a better (fast, safe, HW-independent) 
solution?

Direct Packet I/O Options



• How slow is the
traditional raw socket
and host network stack?

Traditional Network Stack



Significant amount of time spent at all levels of the 
stack
• The system call cannot be avoided (or can it?)
• Device programming is extremely expensive
• Complex mbufs are a bad idea
• Data copies and mbufs can be saved in some cases
• Headers should be cached and reused if possible

Traditional Network Stack



Design Guidelines
• No requirement/reliance on special hardware features
• Amortize costs over large batches (syscalls)
• Remove unnecessary work (copies, mbufs, alloc/free)
• Reduce runtime decisions (a single frame format)
• Modifying device drivers is permitted, as long as the 

code can be maintained

Motivation for a new design



Framework for raw packet I/O from userspace
• 65 cycles/packet between the wire in userspace

– 14Mpps on one 900 MHz core

• Device and OS independent
• Good scalability with number of CPU frequency and 

number of cores
• libpcap emulation library for easy porting of applications

NetMap summary



• packet buffers
– Numbered and 

fixed size

• netmap rings
– Device independent

copy of NIC ring
cur: current tx/rx position
avail: available slots
Ptrs stored as offsets or indexes (so not dependent of virtual mem)

• netmap_if
– Contains references to all rings attached to an interface

Netmap data structure and API



Rely on standard OS mechanism
• The NIC is not exposed to the userspace
• Kernel validates the netmap ring before using its contents
• Cannot crash the kernel or trash other processes memory

Protection



• No races between kernel and user
• Global fields, and [ cur…cur+avail-1 ]:

– Owned by the application, updated during system calls

• other slots/buffers
– Owned by the kernel

• Interrupt handler never touches shared memory regions

Data Ownership



• Access
– open: returns a file descriptor (fd)
– ioctl: puts an interface into netmap mode
– mmap: maps buffers and rings into user address space

• Transmit (TX)
– Fill up to avail bufs, starting at slot cur
– ioctl(fd, NIOCTXSYNC) queues the packets

• Receive (RX)
– ioctl(fd, NIOCTXSYNC) reports newly received packets
– Process up to avail bufs, starting at cur

• poll()/select()

NetMap API
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• One netmap ring per physical NIC ring
• By default, the fd is bound to all NIC rings, but

– ioctl can restrict the binding to a single NIC ring pair
– multiple fd’s can be bound to different rings on the same card
– The fd’s can be managed by different threads
– Threads mapped to cores with pthread_setaffinity()

Multiqueue/multicore support



Netmap Mode
• Data path

– Normal path between NIC and 
host stack is removed

• Control path
– OS believes NIC is still there
– Ifconfig, ioctl, etc still work

NetMap and Host Stack



Netmap Mode
• Data path

– Packets from NIC end up in 
netmap ring

– Packets from TX netmap ring 
are sent to the NIC

• Control path
– OS believes NIC is still there
– Ifconfig, ioctl, etc still work

NetMap and Host Stack



• Zero-copy forwarding by swapping buffer indexes

• Zero-copy also works with rings from/to host stack
– Firewalls, NAT boxes, IDS mechanisms

Zero copy



Performance Results



• TX tput vs clock speed and number of cores

Performance Results



• TX tput vs burst size

Performance Results



• RX tput vs packet size

Performance Results



• Forwarding performance

R Performance Results



Framework for raw packet I/O from userspace
• 65 cycles/packet between the wire in userspace

– 14Mpps on one 900 MHz core

• Device and OS independent
• Good scalability with number of CPU frequency and 

number of cores
• libpcap emulation library for easy porting of applications

NetMap summary



Before Next time
• Project Progress

– Need to setup environment as soon as possible
– And meet with groups, TA, and professor

• Lab3 – Packet filter/sniffer
– Due Thursday, October 16
– Use Fractus instead of Red Cloud 

• Required review and reading for Friday, October 15
– “NetSlices: Scalable Multi-Core Packet Processing in User-Space”, T. Marian, K. S. 

Lee, and H. Weatherspoon. ACM/IEEE Symposium on Architectures for 
Networking and Communications Systems (ANCS), October 2012, pages 27-38.

– http://dl.acm.org/citation.cfm?id=2396563
– http://fireless.cs.cornell.edu/publications/netslice.pdf

• Check piazza: http://piazza.com/cornell/fall2014/cs5413
• Check website for updated schedule
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