Data Center Network Topologies: A Guided Tour through Data Center Networking

Hakim Weatherspoon
Assistant Professor, Dept of Computer Science
CS 5413: High Performance Systems and Networking
September 17, 2014
Goals for Today

• A Guided Tour Through Datacenter Networking
Authors

• Bob Felderman
 – Princeton and UCLA
 – Currently a Principle Engineer at Google
 – Founded Myricom
 • Myricom pioneered some kernel bypass approaches
 • Used in cluster computing due to low latency and high performance
 – Also, founded Precision IO

• Dennis Abts
 – PhD from U. of Minnesota
 – Currently a member of Technical Staff at Google
 • System architecture and next-gen large scale clusters
 • research interests include scalable coherence protocols, memory consistency models, interconnection networks, fault tolerant computing and robust system design
 – Sr. Principal Engineer and System Architect for Cray Inc
Goals for Today

• A Guided Tour Through Datacenter Networking

• Background: Principles and central ideas of data center networks

• Data Center Traffic

• Data Center Network Architecture

• Network Performance
 – Flow Control
 – Network Stack

• Scalable, Manageable, and Flexible

• Reliable and Available
• High Performance Computing (HPC)
 – Expensive and highly tuned
 – High bandwidth
 – Low latency
 – Fine-grained
 – E.g. HPC Application like scientific computing and financial enterprise systems
Background

- Ethernet networks
 - Cheap and general (COTS; commodity off the shelf)
 - Increasing bandwidth (1GbE, 10GbE, 40GbE, 100GbE)
 - E.g. 42% of Top500 use Ethernet in 2012 (2% in 2002)
 - E.g. Web and cloud applications
Background

• Modern Data Center
 – 10s to 100s of thousands of hosts
 – Each host many processing cores, memory, network interface, and local storage (HDD and/or SDD)

• Clusters
 – 10s of racks with 10s of servers in each rack
 – Homogeneous
 – Individual request may contact many clusters
 • Performance based on slowest response
 • Performance of Remote memory vs local disk
 • Network and resp variance congestion can reduce performance
 • Overprovisioning may be too expensive
 • QoS (quality of service): Implemented via NIC with flow classification and priorities
• Modern Data Center
 – 10s to 100s of thousands of hosts
 – Each host many processing cores, memory, network interface, and local storage (HDD and/or SDD)

• Clusters
 – 10s of racks with 10s of servers in each rack
Modern Data Center

- 10s to 100s of thousands of hosts
- Each host many processing cores, memory, network interface, and local storage (HDD and/or SDD)

Clusters

- 10s of racks with 10s of servers in each rack

Background

- warehouse-scale computer
- cooling towers
- power substation
Goals for Today

• A Guided Tour Through Datacenter Networking

• Background: Principles and central ideas of data center networks

• Data Center Traffic

• Data Center Network Architecture

• Network Performance
 – Flow Control
 – Network Stack

• Scalable, Manageable, and Flexible

• Reliable and Available
Data Center Traffic

Bimodal: Elephant and Mice

• Average the same by variance is significant
• Mice
 – Short lived
 – Most flows
• Elephant
 – Long lived and bursty
 – Less than 1% of flows
 – Performance impact is significant
 • Lead to temporary congestion on a shared bottleneck link
 • Oversubscription: Hierarchical datacenter topology
 • Inter-rack communication less orchestrated than intra-rack
Inside a 40-ft Microsoft container, Chicago data center
Data Center Network Architecture

load balancer: application-layer routing

- receives external client requests
- directs workload within data center
- returns results to external client (hiding data center internals from client)

Diagram Description

- **Internet**
- **Border router**
- **Access router**
- **Load balancer**
- **Server racks**
- **Tier-1 switches**
- **Tier-2 switches**
- **TOR switches**

Legend

- A, B, C: Data center sections
- 1-8: Server racks

Notes

- Link Layer 5-14
Data Center Network Architecture

• How to identify hosts
 – Endpoint identifiers (Local Area IP address)
 – Statically assigned identifiers or DHCP

• Limitations of Layer 2 and 3 routing
 – ARP (broadcasts)
 • Switches participate in spanning tree protocols (STP) or transparent interconnect of lots of links (TRILL)
 – 64k entries: limitation of packet-forwarding tables
Limitations

- **Topology:**
 - 2 layers: 5K to 8K hosts
 - 3 layer: >25K hosts
 - Switches:
 - Leaves: have N GigE ports (48-288) + N 10 GigE uplinks to one or more layers of network elements
 - Higher levels: N 10 GigE ports (32-128)

- **Multi-path Routing:**
 - Ex. ECMP
 - without it, the largest cluster = 1,280 nodes
 - Performs static load splitting among flows
 - Lead to oversubscription for simple comm. patterns
 - Routing table entries grows multiplicatively with number of paths, cost ++, lookup latency ++
Issues with Traditional Data Center Topology

- **Oversubscription:**
 - Ratio of the worst-case achievable aggregate bandwidth among the end hosts to the total bisection bandwidth of a particular communication topology
 - Lower the total cost of the design
 - Typical designs: factor of 2:5:1 (400 Mbps) to 8:1 (125 Mbps)

- **Cost:**
 - Edge: $7,000 for each 48-port GigE switch
 - Aggregation and core: $700,000 for 128-port 10GigE switches
 - Cabling costs are not considered!
FatTree overcomes limitations

- rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy
Goals for Today

• A Guided Tour Through Datacenter Networking

• Background: Principles and central ideas of data center networks

• Data Center Traffic

• Data Center Network Architecture

• Network Performance
 – Flow Control
 – Network Stack

• Scalable, Manageable, and Flexible

• Reliable and Available
Network Performance

• Flow control
 – L1: Propagation delay
 – L2/3: Buffering
 • Stable vs unstable networks
 – L4: end-to-end flow control—TCP

• End-host Network Stack performance
 – Kernel (OS) bypass
 – Zero-copy
 – Limitations: Interrupt Coalescing

 – What about virtualization?
 • Multi-queue NICs
Goals for Today

• A Guided Tour Through Datacenter Networking
• Background: Principles and central ideas of data center networks
• Data Center Traffic
• Data Center Network Architecture
• Network Performance
 – Flow Control
 – Network Stack
• Scalable, Manageable, and Flexible
• Reliable and Available
Perspective

• Data Center Networks have unique requirements

• However, network stack remains intact, but innovation at individual layers: (L1 – optical, L2/L3 – topologies, L4 – TCP (DCTCP), L5 – sockets)
• Project Proposal
 – due this Friday, Sept 19
 – Meet with groups, TA, and professor

• Lab2
 – Multi threaded TCP proxy
 – CHANGE: Due this Friday, Sept 22

• Required review and reading
 – http://dl.acm.org/citation.cfm?id=1402967

• Check piazza: http://piazza.com/cornell/fall2014/cs5413
• Check website for updated schedule