
CS 5412: LECTURE 9
TIMESTAMPED DATA

Ken Birman
Spring, 2022

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 1

TODAY: DRILL DOWN ON TIME

Last time we discussed time more as an active aspect of a coordinated
system (one of a few dimensions in which an IoT system might be active).

But once a sensor reading is captured and stored, there is also a temporal
aspect to data analysis.

What can we say about time for data and events “inside” a data store?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 2

TIME IN THE REAL WORLD

Einstein was first to really look closely at this topic.

It led to his theory of relativity: Time has no absolute meaning.

But Einstein was thinking about particles moving at near the speed of light,
or near black holes. Do those ideas apply in other settings?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 3

TIME IN COMPUTER SYSTEMS

In IoT, time is tricky to work with for many reasons:
 Even with GPS recievers, it can be hard to get a good fix, so time

can drift
 IoT sensors often lack GPS and their clocks need to be reset via an

event, but then might drift by seconds per day
 Sensors can also fail, and this includes their clocks.

Thus a timestamped event may have inaccurate time!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 4

Often, we put “timestamps”
on IoT sensor records

IN WHAT WAYS CAN WE TALK ABOUT TIME?

First, whenever we use time in an IoT setting, it is important to track the
time source and the associated skew:

 Without GPS time, sensor time will drift by seconds/day

 With GPS time, clocks can be accurate to within about 1ms

 With special purpose hardware for synchronization, the machines in a
cloud would be able to share a clock and be accurate to a few us.

 … but today’s cloud computers don’t have that form of shared clocks,
and if virtualized, clocks can be quite inaccurate! A total mess!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 5

Presenter
Presentation Notes
GPS is common but it does add hardware and consume power, so sensors won’t have a GPS unit unless there is a really good reason to do so. Otherwise they depend on humans to set the clock (like a household temperature unit) or they run a network clock synchronization protocol. Those work well, but are only accurate up to the (unknown) variability of the network delay.

VENDORS PREFER LIMITED ACCURACY!

Several recent security problems have involved an attacker who places a
monitoring program on the same machine that some security code is on. The
attacker is assumed to have the source code for the application it is attacking.

The monitoring program measures timing properties of the memory and caching
hardware at very high accuracy and is able to deduce contents of the memory
state of the attacked program.

It seems doubtful that this would work, but several exploits show that it really
does work! To reduce the risk, cloud vendors make it hard to measure time.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 6

Presenter
Presentation Notes
Meanwhile, within the cloud, the operators are trying hard to make time imprecise, at fine-grained resolution (milliseconds or less). This surprises people!

LAMPORT’S CAUSAL ORDER

Leslie Lamport considered this issue, but in computing systems

 He actually started as a physicist inspired by Einstein, but went on
to formalize distributed protocols, and won the Turing Award

 Primarily a theoretician, but he also was the author of Latex

 Especially good at elegant ways of posing problems and solving them

He suggested that an important aspect of consistency should involve
“consistency with respect to past events”. He calls this “causal” consistency

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 7
Drill down: Consistency

Presenter
Presentation Notes
OK, time for a little theory.

HOW DOES HE DEFINE CAUSALITY?

Suppose that event A occurs in a data center, and then later event B.

Did A “cause” B to happen?

 What if A was at 10am, and B at 11:30pm. Does knowing time help?

 What if A was a command to register a new student, and B was
an internal action that creates her “meal card” account?

 What if A was an email from the department asking me about my
teaching preferences, and B was my reply?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 8
Drill down: Consistency

Presenter
Presentation Notes
Lamport wants us to think about cause-effect.

HOW DOES HE DEFINE CAUSALITY

For Leslie, event A causes event B if there was a computation that somehow
was triggered by A, and B was part of it. Inspired by physics!

But this is hard to discover automatically.

Instead, Leslie focused on potential causality: A “might” have caused B.

Under what conditions is this possible?

 Somehow, information must flow from A to B.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 9
Drill down: Consistency

Presenter
Presentation Notes
The analogy with physics is actually what originally inspired him.

NOTATION FOR REPRESENTING CAUSALITY

Leslie proposes that we write A → B if A potentially caused B.

He suggests that we use the words “happened before” for →

Now the question arises: is → just a mathematical concept, or can we build
a practical tool for tracking causality in real systems?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 10
Drill down: Consistency

Presenter
Presentation Notes
When you see an arrow in a sentence, read it as “happens before”. Try that out on the ones above: “A happens before B”.

The happens before relationship is partial: we might have A  B or B  A, but sometimes neither property holds. In particular, if A and B are concurrent, neither happens-before property will hold.

WHY WOULD WE WANT TO TRACK A → B?

Consider the Securities and Exchange Commission.

For them, A might be “information about stock X” and B “a trade of X”.

An insider trade occurs if someone with non-public information takes
advantage to trade a stock before that information comes out. So if “John
learned that the IBM quantum computer showed promise”, then bought IBM
stock, perhaps John violated the insider trading law.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 11

LAMPORT’S POINT

Simply seeing data records in which John talks to his friend at IBM at
10:00am and then buys IBM stock at 10:01am might not be “proof” of
criminality. These days the cloud might participate in all of these events.

If the records were timestamped by the identical clock, and the clock isn’t
faulty, this really would be proof.

But if the records came from different computers, clock imprecision could
be creating an illusion. If we track actual →, we would be confident.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 12

TRACKING A → B

Leslie first considered normal clocks. But they don’t track →
 Here, he took his inspiration from Einstein
 “Time is an illusion.” Einstein went on to draw space-time diagrams.

So Leslie asked: “Can we use space-time diagrams as the basis of a new
kind of “logical clock”?
 If A → B, then LogicalClock(A) < LogicalClock(B)
 If LogicalClock(A) < LogicalClock(B), then A → B

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 13
Drill down: Consistency

Presenter
Presentation Notes
Next, Leslie suggests that we think of a clock as a system call, one that returns a number.
Call this number a “timestamp”.

LogicalClock(A) might mean “what would A’s clock read, right now?”

In Lamport’s approach, this is a number, like 187 or 223. If we label event A with the number, we “timestamped” A.

So read that last part this way:

If A happens before B, then we want to be sure that the LogicalClock on A will have a smaller time value than the one on B.

And similarly, If the LogicalClock on A has a value smaller than the one on B, it would be great if we could conclude that event A happened before event B.

DEVELOPING A SOLUTION

Suppose that every computer (P, Q, …) has a local, private integer

Call these LogicalClockP and LogicalClockQ etc.

Each time something happens, increment the clock.

 Now, if A and B happen at P, the LogicalClockP can tell us that A → B.

 But what if A is on machine P, and B happens on Q?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 14
Drill down: CAP Consistency

Presenter
Presentation Notes
More terminology.

A SPACE-TIME DIAGRAM FOR THIS CASE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 15

P

Q

A P sends M

Drill down: Consistency

X

Presenter
Presentation Notes
Here you can see that X is before A, and A is before B. So X is before B. Just illustrates a few examples of ways happens-before can arise.

A SPACE-TIME DIAGRAM FOR THIS CASE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 16

P

Q

A

B

P sends M

Q receives M

Drill down: Consistency

X

Presenter
Presentation Notes
Here you can see that X is before A, and A is before B. So X is before B. Just illustrates a few examples of ways happens-before can arise.

A SPACE-TIME DIAGRAM FOR THIS CASE
Uncoordinated counters don’t solve our problem

Here, A and B end up with the identical Time, so we incorrectly conclude
that A did not happen before B

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 17

P
LogicalClockP

Q
LogicalClockQ

A P sends M

0 1 2 3

0 1 2

Q receives M B

Drill down: Consistency

X

Presenter
Presentation Notes
Now if we just count events, we can’t use those counters to track happens before.
�We get nonsense.
�So Leslie said this won’t do the job.

AHA!

But notice that in the diagram, the “receive” occurs when LogicalClockB = 1.

Yet the “send” of M was at LogicalClockA = 3.

So Lamport proposes this fix:

 Each time an interesting event occurs at P, increment LogicalClockP

 If P sends M to Q, include LogicalClockP in M. When Q receives M,
LogicalClockQ = Max(LogicalClockQ, LogicalClockM) + 1

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 18
Drill down: Consistency

Presenter
Presentation Notes
Lamport’s scheme is basically that you adjust your clock to always advance. And in particular if you get a message someone sent at (their) time 3, your clock should read 4 for the next event you perform. If your clock was still at 2, just set it forward.
�This ensures that time never jumps backward, unexpectedly, which is something we wouldn’t want a clock to do. If we didn’t adjust the clock, the receive would be timestamped 2, and it would look like the message was sent at time 3 but arrived at time 2. And that would be like sending email to yourself yesterday!

Lamport’s simple formula for incrementing the LogicalClock works that way.

Q computes:
LogicalClockQ = max(0, 3) + 1

A SPACE-TIME DIAGRAM FOR THIS CASE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 19

P
LogicalClockP

Q
LogicalClockQ

A P sends M

0 1 2 3

0 4 5

Q receives M B

Drill down: Consistency

LogicalClockM = 3

X

Presenter
Presentation Notes
Now the “logical clocks” work properly. If A happens before B, B will have a bigger logical clock time than A.

WE NOW HAVE A CHEAP PARTIAL SOLUTION!

With Lamport’s logical clocks, we pay a small cost (one integer per
machine, to keep the clock, and some space in the message)

Let’s use LogicalClock(X) to denote the relevant LogicalClock value for x.
We can time-stamp events and messages.

 If A → B, then LogicalClock(A) < LogicalClock (B)

 But… if LogicalClock (A) < LogicalClock (B), perhaps A didn’t happen
before B!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 20
Drill down: Consistency

Presenter
Presentation Notes
Lamport’s clocks solve half of our goal, but not the whole goal.
�The “if” part works. But not the “else” part.

A SPACE-TIME DIAGRAM FOR THIS CASE
With logical clocks, even if P and Q never talk, we might have Time(A) < Time(B)

Here, if we claim that LogicalClock(A) < LogicalClock (B) ⇒ A → B, this is
nonsense! In fact ¬(A → B), ¬(B → A). (A and B are “concurrent”)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 21

P
LogicalClockP

Q
LogicalClockQ

A

0 1

0 1 2 3

BX Y

Drill down: Consistency

Firewall blocks all traffic: P can’t communicate to Q

Presenter
Presentation Notes
In this example, P and Q never talk, yet event A (it happens on machine P) is timestamped 1, and B (over on Q) gets timestamp 3. Now, you can see that 1 < 3, but also that there was no way that A caused B, or influenced B.
�This is why the “else” part isn’t working for us.

LOGICAL CLOCKS ONLY WORK IN ONE DIRECTION.

Logical clocks approximate the causal happens-before relationship, but
only in an “if-then” sense, not “If and only if”.

Yet, they are useful: Lamport gives many examples where this suffices.

We actually can do better, but at the “cost” of higher space overhead.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 22
Drill down: Consistency

DETECTING INSIDER TRADING

The S.E.C.* wants to detect that “John learned of the good news from Lilly,
CEO of Zebra Corp. Then he purchased stock before the market heard.”

If A was John learning, and B was the stock purchase, then the SEC wants to
look at LogicalClock(A) < LogicalClock(B), and conclude “A → B”.

But logical clocks don’t let us conclude this. And John might insist that “I kept
a log of call times, and I spoke to Lilly after the IBM market announcement.
Perhaps some clock drifted and the S.E.C. has its time sequence wrong.”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 23
* Securities Exchange Commission

INTUITION BEHIND VECTOR CLOCKS

Suppose that we had a fancier clock that could act like logical clocks do
(with the “take the max, then add one” rule).

But instead of a single counter, what if it were to count “events in the
causal past of this point in the execution”, tracking events on a per-process
basis?

For example, a VectorClock value for A = [5,7] might mean “event A
happens after 5 events at P, and 7 events at Q”.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 24

VECTOR CLOCKS ARE EASY TO IMPLEMENT
A vector clock has one entry per machine. VT(A) = [3, 0, 7, 1]
 If an event occurs at P, P increments its own entry in the vector
 When Q receives M from P, Q computes an entry-by-entry max,

then increments its own entry (because a “receive” is an event, too)

VectorClock comparison rule:

Define VT(A) < VT(B) if
VT(A) ≤ VT(B), Now, VT(A) < VT(B) iff A → B
but VT(A) ≠ VT(B)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 25
Drill down: Consistency

Presenter
Presentation Notes
These are a fancier kind of clock that do solve the problem we just saw, but usually we don’t need to work with them. In fact in cs5412 we will never mention them again. In contrast we actually will use LogicalClock counters.

The vector clock needs one counter per process which makes these large. In a cloud you might have 10M processes running concurrently even in a single datacenter. We wouldn’t want a vector 10M entries long. In fact they can be compressed, but we won’t fuss with that in CS5412.

A SPACE-TIME DIAGRAM FOR THIS CASE
Case A: Suppose that P and Q never interact.

With vector clocks we can see that A is concurrent with X, Y and B. We can use
the comparison rule to show this, for example that ¬(A → B) and ¬(B → A).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 26

P
VectorClockP

Q
VectorClockQ

A

[0,0] [1,0]

[0,0] [0,1] [0,2] [0,3]

BX Y

Drill down: Consistency

Firewall blocks all traffic: P can’t communicate to Q

Presenter
Presentation Notes
Revisiting our bad case, but now using vector clocks. You can see them: [1,0] means “1 on P’s clock and 0 on Q’s clock”.

A SPACE-TIME DIAGRAM FOR THIS CASE
Case B: P sends a message to Q after A, and it is received before B at Q.

The vector timestamps show that A happens before B (and also, before Y).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 27

P
VectorClockP

Q
VectorClockQ

A

[0,0] [1,0]

[0,0] [0,1] [1,2] [1,3]

BX Y

Drill down: Consistency

Now the firewall is gone and a message gets through!

Maximum computed here. No
need to increment the local
timer unless this receive is
viewed as a “significant

event” for your application,.

Presenter
Presentation Notes
Notice that when the receive occurred, Q’s clock jumped from [0,1] to [1,2]. We learned that P’s clock is at 1 (or maybe larger, by now), and also one more event just happened at Q (the receive). So the vector clock is accounting for every aspect of this.

And now, if we compare A at time [1,0] with B at time [1,3] we can see that A happens before B! Vector clocks work for Lamport’s full set of goals!

Just the same, we won’t be using them this semester.

VECTOR CLOCKS SOLVE THE S.E.C. PROBLEM!

A: John spoke to his friend Lilly.

Then the message M was to tell his stock broker to “Buy IBM futures ASAP!”
B was the purchase. Our goal: Deduce that A → B using just a database
with information about A, and information about B, including timestamps.

We just saw that
VectorClock(A) < VectorClock(B) ⇒ A → B!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 28

SO WHY NOT ALWAYS USE VECTOR CLOCKS?

They represent happens-before with full accuracy, which is great.

But you need one vector entry per process in your application. For a small
µ-service this would be fine, but if the vector would become large, the
overheads are an issue.

So, we try to use a LogicalClock before considering a VectorClock.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 29

MORE FUN WITH CAUSALITY
Working with Mani Chandy (CalTech), Lamport also showed that you can
use → to define “now” in a way that makes sense even for a fully
distributed system

He draws a complex space-time picture, perhaps this one:

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 30

P

Q

A

E

FR

S
T

U

B

D

C

H

G

Drill down: Consistency

Presenter
Presentation Notes
Moving on, what about a system where we want to make a snapshot? The issue here is how to read the data at “wall clock” (like your watch) 10am and get a sensible answer.

Recall that actual clocks on today’s real machines or sensors have so-so clock synchronization. If they just write something down when their local clocks read 10am you can get nonsense because messages are flying around at microsecond speeds, which is way finer resolution than clock synchronization.

CONSISTENT CUTS AND SNAPSHOTS

They asked: Suppose I visit each node, each at some point in time. Can we
extend consistency to cover such a case (“consistent cut”)

Or even fancier: what if each node makes a checkpoint for me when I visit
it along a cut. Can we end up with a “consistent snapshot”, like a photo?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 31
Drill down: Consistency

CONSISTENT AND INCONSISTENT SNAPSHOT

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 32

Imagine taking
photos of our
geese one by
one and creating
a tiled mashup

Truth: 7 Geese in a V formation

Drill down: Consistency

Presenter
Presentation Notes
Leslie and Mani Chandy thought about this and realized that the issue is a bit like assembling one sensible photo by stitching together a set of sub-photos. Like this one. Imagine that each “box” is one camera in an IoT system with 4x7 cameras. Ideally they would trigger instantaneously and simultaneously and a snapshot of the sky would show each goose once, each in one frame, in perfect sync.

But just saying “snap at time 10am” wouldn’t do this. They might be out of sync due to clock imprecision.

CONSISTENT AND INCONSISTENT SNAPSHOT

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 33

But suppose
they were in
motion while
you did this

Truth: 7 Geese in a V formation

Drill down: Consistency

Presenter
Presentation Notes
For example, suppose our geese reached this state after a few more milliseconds.

CONSISTENT AND INCONSISTENT SNAPSHOT

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 34

Without coordination, some
vanish, some are duplicated!

You might even see a goose that
shifted to avoid collision with

another goose, but see that other
goose in a much earlier place,

before it even got close.

Truth: 7 Geese in a V formation

Drill down: Consistency

Presenter
Presentation Notes
Well, if some cameras ran that much late, we would get this messy photo and it actually shows some geese twice! The shape of the flock is totally lost and the image is an impossible mashup state.

An IoT system really faces this problem!!!! This is a real scenario!

THIS IS THE SAME ISSUE WE SAW IN OUR
LECTURE ON CASCADE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 35

Inconsistent data is a problem. How does Cascade achieve consistency?

CONSISTENT SNAPSHOT

If we use the method of Chandy and Lamport we get a consistent
snapshot: there won’t be any duplicates or mashup effect!

Goal of a consistent snapshot is to let us combine data from multiple
processes (machines) in a distributed system, but only count each thing
once, with no causal gaps or duplication.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 36
Drill down: Consistency

Presenter
Presentation Notes
Leslie and Mani found a way to map that snapshot question to logical clocks! It won’t actually cover the full set of real-time issues but at least we can avoid the mess of one machine claiming some messages were received that another machine claims it hasn’t yet sent, for example.

In CS5412 we aren’t going to look at this algorithm in detail. But there are several ways to do it. One is to just shut the whole system down temporarily, wait for everything to pause, then ask each machine for its photo or whatever, then resume. This will work.

A second is to ask the machines for photos that were concurrent with some VectorClock time. This works well. There is even a way to ask for photos at some specific LogicalClock time, and this can work too.
�The actual algorithm Chandy and Lamport proposed employs a kind of two-phase commit. Machines just make the snapshot when the protocol tells them to, but the protocol is implemented in such a way that they can prove that it will collect photos at times along some consistent cut. So this is a fourth way to do it.

CONSISTENT CUTS AND SNAPSHOTS

Recall: Lamport looks at “pictures” of such a system, like these

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 37

P

Q

E

FR

S
T

U

B

C

H

G

A “cut” across
the systemD

Drill down: Consistency

Presenter
Presentation Notes
Here is how they say to do it. You tell the machines to run an algorithm (I won’t have time to explain how it works, just assume you can look it up if you ever need it) and it makes photos at times that are consistent with each other.

Guaranteed: you won’t end up with a mashup of different geese.

Of course not everyone worries about photos of flocks of geese. But their trick is actually also useful for things like auditing a bank or checking for deadlock.

A bad audit might count some money twice, or miss some. A bad deadlock detector might sense deadlocks that aren’t real. With a consistent cut, if you audit along the cut, you compute the proper bank state. And you can package this up into a simple library method that cloud computing builders can work with.

So this is one case where we don’t agree with CAP. If you are auditing a bank, you need the C in CAP. But you can use Leslie’s ideas to get consistency of this kind, at low cost, and with great scaling. Eric just isn’t always right. Still, CAP makes sense as a starting place. The trick is to know that when you need consistency, there are ways to get it, and they aren’t always hugely costly.

CONSISTENT CUTS AND SNAPSHOTS

A cut is consistent if no “message arrows” go backwards through it

… this cut is a consistent one.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 38

P

Q

E

FR

S
T

U

B

C

H

G

D

Drill down: Consistency

CONSISTENT CUTS AND SNAPSHOTS

A cut is inconsistent if “message arrows” do go backwards through it

… this cut is inconsistent. C → D, and the cut included D, yet it omits C.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 39

P

Q

E

FR

S
T

U

B

C

H

G

D
A backwards

message

Drill down: Consistency

Presenter
Presentation Notes
Mani and Leslie’s algorithm would never take a picture of machine S before it sent some message, but then mash it with a picture of machine P after that message arrives. And this, in fact, would have been inconsistent behavior, so we should be glad it won’t make that mistake.
�For geese: we won’t show the same goose twice: at place S, and at place P.

For money, we won’t show the same money in two accounts, even though really it was just being moved.
�For deadlock, we won’t show P waiting for a lock Q holds, and Q waiting for P, unless there is a genuine locking cycle.
�Consistent cuts and snapshots are awesome this way. A cut is just what happens if you compute “along” the red line. A snapshot is what happens if you checkpoint all the computers, along the red line, then combine the checkpoints.

A CONSISTENT CUT IS LIKE A PHOTO

It shows a state the system might actually have once been in

You could use that state for garbage collection, or to do an audit of a
bank, or to detect deadlocks.

But an inconsistent cut is broken. It omits parts of the past and any
conclusion from it would be incorrect. A real system could never have been
in an inconsistent state of this kind.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 40
Drill down: Consistency

HOW TO CREATE A CONSISTENT SNAPSHOT

One option is to briefly pause the whole system.

When all processes have paused, make snapshots of their “state”. Also
record the contents of any message channels.

This is provably a consistent snapshot. But the pause might be noticeable

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 41

FANCIER ALGORITHM

Chandy and Lamport also have a fancier “online” algorithm

We will only give an overview today, but you can find all the details in
their paper (linked to the syllabus).

It avoids the need to pause the system, but does require sending
messages.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 42

THE ONLINE CHANDY/LAMPORT ALGORITHM

Each process is assumed to have a checkpoint mechanism, and a channel
“recording” tool. Snapshot = {(checkpoint, channel-contents)} from all processes.

To start a snapshot, some process

1. Takes a checkpoint

2. Turns on the channel records for its connections to other processes.

3. Sends them a message: “Snapshot in progress”

4. When it receives “Snapshot is in progress” from a process, it turns off the
channel recorder. Once all channels are recorded, its snapshot is done.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 43

THE ONLINE CHANDY/LAMPORT ALGORITHM

Note that we don’t need a channel recording for channels we received
“snapshot underway” from at the outset. Those have “empty” state

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 44

A

C

B

DCheckpoint A

Checkpoint B

Checkpoint C

Checkpoint D

B to A
recorder

C to A
recorder

D to C
recorder

D to B
recorder

CASCADE HAS AN EVEN EASIER OPTION

In Cascade, as data is accumulated, it becomes stable and that portion of
the log or history won’t change again.

This enables Cascade to use a special kind of timestamp to “find” a
consistent cut in the logs. The cut is just a point in each log such that the
collection of log “prefixes” is closed under →.

The Cascade algorithm doesn’t pause the system or send extra messages

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 45

VISUALIZING CASCADE CONSISTENCY

A temporal query for time τ sees a consistent cut at τ ± δclock.

Queries to unstable data must wait, but updates are stable within 50us.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 46

Put(k,v)
Put(k,v)

Put(k,v)

Put(k,v)

(ε, τ)

St
ab

le
 p

or
tio

n
U

ns
ta

bl
e

ta
il

λ

Each Cascade shard has its own Paxos-based log

Each λ is triggered by an upcall
from a “watcher” monitoring some

key (or pattern)

The image part with relationship ID rId3 was not found in the file.

tim
e

λ
λ

λ

Put(k,v)

EVERY GET “SEES” A CONSISTENT CUT

Cascade allows you to get an object for a specific instant in time.

A time-indexed get of multiple objects returns data along a consistent cut.

This allows you to “collect” data into a vector, array or higher dimensional
tensor. Our animation was a 3-D tensor: time, plus a 15x15 array of
values from power-grid sensors (synchrophasor IoT devices)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 47

SUMMARY

Systems with imperfect clocks, should integrate causality with their clock,
not rely purely on clock timestamps.

This is done with Lamport’s “causal” timestamp or a vector timestamp.
 A causal timestamp is just one integer, so many systems use it
 A vector timestamp would cover all cases, but needs one integer per

machine. So these vectors can be too large for practical use.
 The mechanism is already integrated into Cascade

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 48

	CS 5412: Lecture 9 �Timestamped Data
	Today: Drill down on Time
	Time in the real world
	Time in computer Systems
	In what ways can we talk about Time?
	vendors prefer limited accuracY!
	Lamport’s Causal Order
	How does he define causality?
	How does he define causality
	Notation for representing causality
	Why would we want to track A  B?
	Lamport’s point
	Tracking A  B
	Developing a solution
	A space-time Diagram for this case
	A space-time Diagram for this case
	A space-time Diagram for this case
	Aha!
	A space-time Diagram for this case
	We now have a cheap partial solution!
	A space-time Diagram for this case
	Logical clocks only work in one direction.
	Detecting insider trading
	Intuition behind vector clocks
	Vector Clocks are easy to implement
	A space-time Diagram for this case
	A space-time Diagram for this case
	Vector Clocks solve the S.E.C. problem!
	So why not always use vector clocks?
	More fun with Causality
	Consistent Cuts and Snapshots
	Consistent and inconsistent snapshot
	Consistent and inconsistent snapshot
	Consistent and inconsistent snapshot
	This is the same issue we saw in our lecture on Cascade
	Consistent Snapshot
	Consistent Cuts and Snapshots
	Consistent Cuts and Snapshots
	Consistent Cuts and Snapshots
	A consistent Cut is like a photo
	How to create a consistent snapshot
	Fancier algorithm
	The Online Chandy/Lamport algorithm
	The Online Chandy/Lamport algorithm
	Cascade has an even easier option
	Visualizing Cascade COnsistency
	Every Get “sees” a consistent cut
	Summary

