
CS5412 / LECTURE 8
REPLICATION AND CONSISTENCY

(PART II: PRACTICAL OPTIONS)
Ken Birman
Spring, 2022

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 1

RECAP

Eric Brewer told us that stale data and inconsistency is fine. Why worry?
And in fact this worked for cloud computing web sites, like Amazon.com

But his CAP model doesn’t fit well with IoT settings that involve watching
real-world devices and controlling real-world actions. Consistency matters
for these cases: we need data that isn’t stale, we need fault-tolerance,
and we need scalability too!

So we discussed state machine replication and virtual synchrony.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 2

RECAP: STATE MACHINE REPLICATION

This is a model in which we have deterministic programs

They see one update at a time and apply the updates in the same order.
There is a communications version of this (atomic multicast) and a log-
append version (persistent replicated logging).

If our replicas start up in sync, they stay in sync.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 3

RECAP: VIRTUAL SYNCHRONY

The idea was to break down a distributed systems into a

 Multicast protocol. Sends messages only while membership is stable.

 Membership service. Tracks which processes are in the system, and
what role each process is playing (like which shard it is in).

 State transfer mechanism. Uses checkpointing to initialize a joining process.

In virtual synchrony, membership changes only when updates are frozen and vice-
versa. The multicast and state transfer logic becomes much simpler.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 4

CLASSIC PAXOS

To understand the issue, it may help to start by
understanding a little about classic Paxos.

We’ll focus on the behavior of the system when membership is fixed. This
is because modern systems use virtual synchrony or a similar mechanism so
that Paxos is always paused when membership must be changed.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 5

LESLIE LAMPORT’S VISION

Leslie starts with 2F + 1 processes (for example, to
tolerate 1 crashed processes, we need 3 in total).

Paxos tolerates processes that get overloaded and don’t reply, but later
recover and act normally. Membership is not changed in such cases.

The state is stored on logs – this is a persistent append-only update model.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 6

LESLIE DIDN’T USE VIRTUAL SYNCHRONY

At the time, he wasn’t familiar with my model.

So he assumed that the membership was fixed, and that some processes
simply couldn’t be reached due to being crashed – a temporary problem.
Crashed processes would later restart on their own.

His idea: each update just needs to reach a majority of the members.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 7

QUORUM POLICY: UPDATES (WRITES)

To achieve high availability, allow an update to make progress without
waiting for all the copies to acknowledge it.

 Require that a “write quorum” (QW) must participate in the update

 Easy to implement this requirement using a 2-phase commit protocol

Basic approach: Leader asks the loggers (“acceptors”) to log an update.
But it won’t commit unless QW respond “success”. So we have a request
phase and then a commit phase: a 2-phase commit.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 8

(2-PHASE COMMIT “OVERSIMPLIFIES”)

Each of the two phases can require a few rounds of messages.

This relates to cases with concurrent updates occurring, or where some
processes actually do fail and then recover with some data loss.

We won’t get into those details in CS5412.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 9

HOW DOES PAXOS READ DATA?

The central issue is that due to being failed when an update occurred,
some acceptors (some log copies) might lack certain writes.

To compensate, Paxos has a client (a “learner”) read multiple replicas.
Then the learner merges the log contents, which fills in any gaps.

Accordingly, we define the read quorum, QR to be large enough to
overlap with any prior update that was successful. E.g. might have QR = 2

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 10

VERIFY THAT THEY OVERLAP
So: we want
QW + QR > N: Read overlaps with updates
QW + QW > N: Any two writes, or two updates, overlap

The second rule is needed to ensure that any pair of writes on the same
item occur in an agreed order

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 11

R1 R2 R3 N = 3
QW = 2
QR = 2Write x=7

Read x

VISUALIZING THIS

The client asks the leader to add a message to the Paxos logs. Paxos is
like a “postal system”. The leader will be in charge of this request.

The system “discusses” the letter for a while (the first phase, which picks the
slot in the log, stores the letter in the log, and reaches QW acceptors).

Once the update is “committed” the learners can execute the command

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 12

R1 R2 R3

learners
client

leader Acceptor Acceptor Acceptor

Logs, one per
acceptor

SO… PAXOS IS LIKE A SINGLE APPEND-ONLY
LOG, BUT IMPLEMENTED WITH MANY LOGS!
Thinking of Paxos as a way to make a durable log of messages is the right
way to view the classic protocol. Logs are on disk and are durable.

We use multiple logs, but the way we merge them when learning causes
them to behave like one gap-free log.

Atomic multicast keeps everything in memory. It runs much faster, but the
application would need to handle any logging.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 13

PAXOS BALLOT NUMBERS

So… Paxos thinks of the log as a series of slots to be filled with updates.

But the first phase might not succeed on the first try. What if fewer than
QW acceptors are able to accept some update?

This leads to the idea of “ballots” – the first phase loops, with the leader
trying to get QW successes on a series of proposals, each with an
increasing ballot number. (Of course, ideally, we succeed right away).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 14

IN FAILURE-FREE SYNCHRONOUS RUNS

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 15

1 1

2

n

.

.

.

(“accept”, 〈1,1〉 ,v1)

1

2

n

.

.

.

1 1

2

n

.

.

.

(“prepare”, 〈1,1〉)

(“ack”, 〈1,1〉, 〈0,0〉,⊥)

decide v1

(“accept”, 〈1,1〉 ,v1)

Simple Paxos implementation
always trusts process 1

CRITICISMS OF PAXOS

The protocol is very slow and clumsy.

It has a proof of correctness, which is great, but is also very complex and
many implementations have had bugs. Over the decades more and more
Paxos implementations have been proposed and proved to implement
state machine replication, but by now it is no longer clear what Paxos “is”!

In fact the classic Paxos protocol wasn’t even invented by Lamport! There
were at least three prior systems using it.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 16

17

LESLIE LAMPORT’S REFLECTIONS

“Inspired by my success at popularizing the consensus problem by describing it with
Byzantine generals, I decided to cast the algorithm in terms of a parliament on an ancient
Greek island.

“To carry the image further, I gave a few lectures in the persona of an Indiana-Jones-style
archaeologist.

“My attempt at inserting some humor into the
subject was a dismal failure.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

DERECHO TO THE RESCUE!

Derecho is a system created at Cornell that implements a new version of
Paxos in which we also tried to leverage modern datacenter networks.

 It can support atomic multicast or durable (logged) Paxos.

 It runs on standard TCP but also supports a new and more modern
hardware implementation of TCP in which the memory of one
computer can be read or written directly from some other computer.
This is called remote direct memory access: RDMA.

 When setting up Derecho, a configuration file tells it which to use.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 18

A Derecho is a powerful wind

DERECHO IS A SOFTWARE LIBRARY

Derecho is a C++ library that handles membership, atomic multicast and
persistent logging.

It is designed specifically to support sharded micro-services in modern
datacenter settings.

The developer builds a new microservice by linking against the library.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 19

DERECHO IS EXTREMELY FAST

As much as 10,000x faster than standard Paxos protocols.

In fact we can even prove that Derecho is an optimal Paxos solution: no
Paxos protocol can eliminate any delays from Derecho. Decisions occur as
early as they safely can be performed.

However, modern developers don’t really want a C++ library. So we are
creating Cascade, a new DHT for the IoT cloud, layered on Derecho.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 20

DERECHO INTERNALS
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 21

MOTIVATION: CONSIDER PAXOS
ON A FAST NETWORK

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 22

P RQ

“Here is 100B message m”
“Are you till prepared to commit m?”
“Commit m”

“Ack”
“Ack”

MOTIVATION: CONSIDER PAXOS
ON A FAST NETWORK

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 23

P RQ

“Here is 100B message m”
“Deliver m”
“Garbage collect m”

“Ack”
“Ack”

TIMELINE, PROCESS P

P

0.75us + 100B/12.5GB/s = 0.750000008us
1.5us

1.5us

1.5us

4.5us + 12 messages (limit: 75M/s)

MOTIVATION: CONSIDER PAXOS
ON A FAST NETWORK

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 24

P RQ

“Here is 100B message m”
“Deliver m”
“Garbage collect m”

“Ack”
“Ack”

TIMELINE, PROCESS P

P

0.75us + 100B/12.5GB/s = 0.750000008us
1.5us

1.5us

1.5us

4.5us + 12 RDMA messages (limit: 75M/s)

Peak possible performance?

♦ Time to perform one 100B reliable multicast? 4.5us + “noise”
… based on time expended, limited to 222,222/s

♦ 12 network operations out of 75M: limited to 6.25M/s

♦ This network could have transferred 56KB of data in 4.5u
… we left 99.8% capacity “unused”!

A FEW IDEAS

Have all the 3 members perform concurrent updates… now we might get
some overlap and push our efficiency… to 0.6%

Run lots of threads… maybe 10 per process. We aim for 6% efficiency
(but locking and scheduling delays will cut this sharply)

Batch 1000 messages at a time. But now the average message waits
until 500 more have turned up. Latency soars to 2.25ms

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 25

AT BEST, YOU GET SOMETHING LIKE THIS…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 26

P RQ

Messy and unpredictable with
sudden bursts of data

movement… Unlikely to
perform well

BETTER: SEPARATE DATA PLANE AND
CONTROL PLANE, MAKE THEM LOCK-FREE

Data plane: The actual data messages. Send them continuously, as soon as
new updates show up

Control plane: Responsible for deciding when it is safe to deliver
(“commit”). Receivers continuously report their acks, in an all-to-all pattern.
This way every process can deduce that messages are deliverable.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 27

BETTER: SEPARATE DATA PLANE AND
CONTROL PLANE, MAKE THEM LOCK-FREE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 28

P RQ

BETTER: SEPARATE DATA PLANE AND
CONTROL PLANE, MAKE THEM LOCK-FREE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 29

P RQP RQ

BETTER: SEPARATE DATA PLANE AND
CONTROL PLANE, MAKE THEM LOCK-FREE

Data plane runs steadily Control information exchanged continuously

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 30

P RQ P RQ

HOW TO PUT THESE INTO ORDER?

Derecho uses round-robin order: one message from P, then one from Q, etc.

If a process has nothing to send, Derecho generates a “null message” from
it, so that the others won’t have to pause.

This rule allows processes to stream data at high speeds without pausing.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 31

P
Q

R

HOW DERECHO GETS ITS SPEED

By “aligning” the flow of information with the network and not waiting for
round-trip responses, it can run at the full network speed continuously.

Derecho never pauses unless the application no longer has data to send.

Analogous real-world situation: filling a bucket from a steady stream of
water (Derecho), versus filling it one cup at a time (Paxos).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 32

DERECHO KEEPS THE NETWORK BUSY (BLUE) AND SPENDS
VERY LITTLE TIME IN PROTOCOL SOFTWARE (PINK)

33

This snapshots Derecho under continuous heavy load

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

DERECHO’S EPOCH MECHANISM IN ACTION

Derecho focuses on sharded services for modern cloud settings, and it
packages this fast version of atomic multicast or Paxos with an automated
way to organize the application into shards

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 34

Warm-started
spare processes

DERECHO’S EPOCH MECHANISM IN ACTION

For example, if a failure occurs, Derecho automatically repairs it.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 35

Warm-started
spare processes

Copies state from
some active member

Mellanox 100Gbps RDMA on ROCE (fast Ethernet)ATOMIC MULTICAST
PERFORMANCE 100Gb/s = 12.5GB/s

Derecho Atomic Multicast on RDMA

Derecho can make 16
consistent replicas at

2.5x the bandwidth of
making one in-core

copy

memcpy (large, non-cached objects): 3.75GB/s

Derecho is faster than LibPaxos or Zookeeper even on TCP

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 36

OUR NEW TOY: CASCADE
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 37

SO WHY DO WE NEED MORE?

Derecho is a C++ library for sharded data + atomic multicast/Paxos.

Not everyone is a C++ coding wizard, so only really good developers
can use Derecho directly.

Cascade project starts with Derecho and turns it into… a DHT for IoT!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 38

CASCADE IS…

A DHT with a fancy, flexible API (for example, versioned put, notifications
when (key-value) pairs of interest change)

Layered on Derecho: Blazingly fast!

Customizable: You can integrate your own code into Cascade using the
watch-a-key feature

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 39

CASCADE IS DESIGNED TO BE CUSTOMIZED

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 40

Which cow
is this?

Is this cow
clean enough

to milk?

Does this
cow have
mastitis?

A single Cascade server can support
multiple customized services

Cascade “instances”
within datacenter

CASCADE IS DESIGNED TO SCALE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 41

Which cow
is this?

Is this cow
clean enough

to milk?

Does this
cow have
mastitis?

A single Cascade server can support
multiple customized services

Cascade “instances”
within datacenter

WAN replication via read-only mirroring,
using Zhen Xiao’s WAN Agent.

CASCADE OFFERS STRONG CONSISTENCY

42

HDFS CASCADE USING CONSISTENT CASCADE WITH
CUTS BUT TRUSTING SERVER CLOCKS SENSOR TIME

Cascade consistent cuts + GPS-timestamped sensor data result in clean
input to the D-AI algorithm (in this case, a simple visualization)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

Data Center

The Farm Server (IoT Edge)

Frame
Extractor

Video clip
store

Frame
Sampler

Frame
Server

WAN

Image Pipeline
Front End

(As an external client)

Cascade Image pipeline

A REALISTIC DAIRY IMAGE PIPELINE
Dairy Farm

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 43

Streaming image frames through TCP portal
Farm server

… DETAILED VERSION (PyLINQ ON MSFT AZURE)
Date cow_id daily_yield daily_fat … daily_protein

12/3/20 1 14 3.96 … 2.89

… … … … … …

1/10/21 237 20 4.42 … 4.55

Filtered image frames

External Client to Cascade

Upload daily date to Azure Blob Storage

Date cow_id …

12/3/20 1 …

… … …

12/3/20 237 …

Integrate daily data

Cascade backend

<field>/<cow_id>{<ts(ver)>}
daily_protein/cow_id1{ver_1} = 2.89

daily_fat/cow_id237{ver_38} = 4.42

CV model
Image analysis

Download blobs from Azure &
Store to Cascade VCSS subgroup

cow id: 127

LINQ query to retrieve data of most recent 10 days from Cascade about cow
128

ML Model
birth prediction

Probability of calving
in next 8h is: 80%

Store to subgroup VCSS
Trigger image analysis

Action = black_cow_infer

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 44

Streaming image frames through TCP portal
Farm server

C++ IS SIMILAR (BUT MORE EFFICIENT)
Date cow_id daily_yield daily_fat … daily_protein

12/3/20 1 14 3.96 … 2.89

… … … … … …

1/10/21 237 20 4.42 … 4.55

Filtered image frames

External Client to Cascade

Upload daily date to Azure Blob Storage

Date cow_id …

12/3/20 1 …

… … …

12/3/20 237 …

Integrate daily data

Cascade backend

<field>/<cow_id>{<ts(ver)>}
daily_protein/cow_id1{ver_1} = 2.89

daily_fat/cow_id237{ver_38} = 4.42

CV model
Image analysis

Download blobs from Azure &
Store to Cascade VCSS subgroup

cow id: 127

LINQ query to retrieve data of most recent 10 days from Cascade about cow
128

ML Model
birth prediction

Probability of calving
in next 8h is: 80%

Store to subgroup VCSS
Trigger image analysis

Action = black_cow_infer

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 45

INSIDE A CASCADE µ-SERVICE

We really want the data
to be “ideally” positioned or
copied directly to the perfect
place…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 46

Image to
classify

GPU
GPU-accelerated kernel

initiated from the lambda

Request for
classification runs

as a lambda

Skip this transfer for any ML objects
already cached in the GPU device!

RDMA directly into GPU memory

Application Layer

Cascade Storage Layer

Accelerator Layer
ML model, configuration, parameters

SUMMARY

We actually can have C+A if P isn’t needed – the key is to have the
microservice hold the needed state in replicated objects, and then to align
the Paxos protocol with the properties of the hardware

The resulting performance is amazing… but people don’t want to use a
C++ library these days. They work in higher level AI packages like Tensor
Flow and Databricks, and those run on DHTs.

So, Cornell is now building Cascade: A DHT that leverages Derecho.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 47

	CS5412 / Lecture 8�Replication and Consistency (Part II: Practical Options)
	Recap
	Recap: State Machine Replication
	Recap: Virtual Synchrony
	Classic Paxos
	Leslie Lamport’s vision
	Leslie didn’t use virtual synchrony
	Quorum policy: Updates (writes)
	(2-phase commit “oversimplifies”)
	How does Paxos read data?
	Verify that they overlap
	Visualizing this
	So… Paxos is like a single append-only log, but implemented with many logs!
	Paxos Ballot numbers
	In Failure-Free Synchronous Runs
	Criticisms of Paxos
	Leslie Lamport’s Reflections
	Derecho to the rescue!
	Derecho is a software library
	Derecho is extremely fast
	Derecho Internals
	Motivation: Consider Paxos�on a fast network
	Motivation: Consider Paxos�on a fast network
	Motivation: Consider Paxos�on a fast network
	A few ideas
	At Best, You get something like this…
	Better: Separate Data Plane and Control Plane, make them lock-free
	Better: Separate Data Plane and Control Plane, make them lock-free
	Better: Separate Data Plane and Control Plane, make them lock-free
	Better: Separate Data Plane and Control Plane, make them lock-free
	How to put these into order?
	how Derecho gets its speed
	Derecho keeps the network busy (blue) and spends very little time in protocol software (pink)
	Derecho’s Epoch Mechanism in action
	Derecho’s Epoch Mechanism in action
	Atomic Multicast�performance
	Our New Toy: Cascade
	So why do we need more?
	Cascade is…
	Cascade is designed to be customized
	Cascade is designed to scale
	Cascade offers strong consistency
	A realistic Dairy Image Pipeline�
	Slide Number 44
	Slide Number 45
	Inside A Cascade -Service
	Summary

