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CAN WE BUILD CONSISTENT, HIGHLY 
AVAILABLE µ-SERVICES?
When building µ-services everything needs to be sharded for scaling.  

But so far, our shards have just a single member each.  

If we also want fault-tolerance we would have two or more members per 
shard, not just one.
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CAN WE BUILD CONSISTENT, HIGHLY 
AVAILABLE µ-SERVICES?
We also learned about the CAP folk-theorem.

It says that consistency is just not needed in the cloud and that we should 
build systems with weak consistency if they would be more available 
(responsive) even when partitioned.  

Web sites tolerate staleness.  We can hide many forms of staleness, or 
explain it away.  Usually, our customer won’t even notice.  
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CAN WE BUILD CONSISTENT, HIGHLY 
AVAILABLE µ-SERVICES?
But in IoT settings, inconsistency is a big problem.  
 IoT systems monitor physical things, like motors and power grids.
 Inconsistencies can be confusing – they might tell us the motor isn’t on,

yet in fact it is on.  We don’t want stale IoT data!
 Many people think that IoT requires strong consistency.

Could we build µ-services that just replicate the entire state: CA but not P?
 If they don’t depend on a second layer of services, P won’t arise.
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OTHER TASKS THAT REQUIRE CONSISTENT 
REPLICATION

Copying programs to machines that will 
run them, or entire virtual machines.

Replication of configuration parameters 
and input settings.

Copying patches or other updates.

Replication for fault-tolerance, within the 
datacenter or at geographic scale.

Replication so that a large set of first-
tier systems have local copies of data 
needed to rapidly respond to requests

Replication for parallel processing in the 
back-end layer.

Data exchanged in the “shuffle/merge” 
phase of MapReduce

Interaction between members of a group 
of tasks that need to coordinate

 Locking

 Leader selection and disseminating
decisions back to the other members

 Barrier coordination
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LESLIE LAMPORT TO THE RESCUE!

This is Leslie Lamport, who was a pioneer in bringing rigorous models and 
reasoning to distributed computing systems.

For Leslie, our question relates to replicating state.  If we have replicas of 
the state of a µ-service, it can tolerate failures, and if we can make it 
consistent we get C+A.  Now we might not actually need P.

State machine replication is the name Lamport proposed for this new model
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HOW DOES STATE MACHINE REPLICATION 
WORK?
We start with some set of processes (like servers in a DHT shard)

Initialize them into the identical starting state.

Then make sure each process sees the identical events in the identical 
order.  If the code is deterministic, they will remain consistent.

From this idea we can build up abstractions like fault-tolerant computing.
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THERE ARE MANY NEW IDEAS HERE!

Can we really build “deterministic” computer programs?

What does it really mean to build a program that can be replicated this 
way?  How does this even fit with an IoT setting using µ-services?

Anyhow, how did we know which servers should do this replication?  And 
what if one of them fails, but the others keep running?
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DETERMINISM

The idea here is to think of each program as code that reads inputs, then 
computes on the input, then produces outputs.

A non-deterministic program might do various different things even with 
the identical inputs.

A deterministic program will always behave identically.
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WHY MIGHT A PROGRAM N OT
BE DETERMINISTIC?
Think about a program that reads the clock.

If I make two copies, they won’t see the same value because computer 
clocks advance at such high rates (nanosecond increments) that you 
basically can’t read two clocks in parallel and see the same time!

So even if you just print the time, your program is non-deterministic.
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MORE ISSUES… 

Most modern programs are multithreaded.

But this implies that the thread scheduling order is random and 
unpredictable.  The only way to be fully sure of the order is to use locking 
in some very rigid way.

Since most programs don’t use locking in such a rigid way, the scheduling 
order can’t be controlled, and so each copy behaves differently.
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MORE ISSUES…

Some programs read input from more than one potential source, like more 
than one client on a network.

Those programs could get two inputs more or less at the same time – in 
which case one replica might see A, then B.  But the other might see B first.

In fact this could even happen if we have one network connection to a 
multithreaded client.
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LESLIE’S ANSWER?  “MEH.”

When people first raised these concerns, Leslie didn’t really respond.

He said that at the end of the day, he is a theoretical computer scientist 
and not an engineer.  He said his role is to “inspire” not “implement”.

Leslie did define “building blocks” for state machine replication, but he 
didn’t worry much about those issues.
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THE MAIN BUILDING BLOCKS

One is called atomic multicast. The other is called durable logging.

Both implement state machine replication, but in different settings.

Atomic multicast is a pure networking concept.  It doesn’t save data into 
storage of any form.
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ATOMIC MULTICAST

We have a sender, and a group of receivers.

 In some situations, this group of receivers is just a list of processes.

 In others, the group is some form of “name” for the group, and a
group membership service is used to track the mapping from the name
to the current list of members.

Now we can offer the sender an atomic multicast API

outcome = atomic_multicast(destinations, message);
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ATOMIC MULTICAST

With an atomic multicast, we usually just say that the message is a vector 
of bytes.  From last week (and in the homework) you’ve learned that 
actually we can represent all sorts of objects as byte vectors, using 
serialization.

Atomic multicast normally requires some form of protocol that implements 
the sending (just like TCP, which implements reliable one-to-one data 
streams over the more basic network hardware).
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ATOMIC MULTICAST

The requirements are:
 The atomic multicast is all or nothing.  If any receiver delivers a message,

then every receiver must do so (unless it crashes, obviously).
 If a crash does occur, this can’t break the delivery guarantees.  Worst

case?  A sender crash after just one copy was sent.  This must be self-
repaired inside the protocol that implements the primitive.

 Additionally, messages must be delivered in the identical order at all
the receivers.  If A and B are simultaneously sent, the order can be A B 
or B A, but everyone must “agree”.
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PERSISTENT LOGGING

This idea starts with atomic multicast, but assumes that each receiver will 
be saving messages in an append-only file: a log.

We want all the receivers to either have identical logs, or we could allow 
the logs to have gaps but use a merge-and-repair protocol when reading 
data, to fill in any gaps.

With persistent logging, data becomes durable: After some point the 
protocol can guarantee “this information will not be lost.”
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HOW MANY FAILURES?

Leslie proposed many protocols to implement the state machine replication 
model using atomic multicast or durable logging.

He also pioneered the art of proving that his protocols would be correct if 
the number of non-faulty receivers is  sufficiently large compared to the 
number of faulty ones.

Depending on the fault model we use, this can be easy… or quite hard…
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FAILURE MODELS

Most cloud computing systems worry about crash failures and network link 
failures (partitioning).

These are relatively easy to detect and protect against.

With accurate detection we just need F+1 processes to tolerate F failures.
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MORE EXTREME MODELS

In fact there are many models that try to capture extreme behavior, such 
as being under a hacking attack.

These are generally called Byzantine fault models.  

With Byzantine faults, we usually need 3F+1 processes to overcome F 
failures – a single Byzantine process can cause big trouble!
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BYZANTINE AGREEMENT

Based on a story Leslie Lamport cooked up.

A group of knights lead small armies towards a castle.  Inside, the 
besieged King has an army too, but he would be defeated if the armies 
all attack.  However, if he can split them, he will win.

So, he bribes a knight.  Obviously, the knight’s own army won’t attack. But
the knight also needs to block at least one additional attacker… 
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SOME PROBLEMS TO THINK ABOUT

The basic issue is when the knights don’t agree.  If some attack and some 
retreat, the force will be defeated and the king in the castle wins!

But the traitorous knight is motivated to lie.  It could say retreat to some 
knights and attack to others – to split their forces.

We need a form of majority voting that works even when some knight 
tries to confuse and disrupt!  This is solvable but explains the 3F+1 rule.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 23



THE BYZANTINE MODEL IN ACTION
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Retreat!
Attack!

Attack!

Retreat!

Arthur sees Retreat, Attack, Retreat Retreats

Lancelot sees Attack, Attack, Retreat Attacks

Phillip is a traitor, unimportant what he does ---

No solution works
for 3 knights, 1 round



THE BYZANTINE MODEL IN ACTION
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Retreat!

Retreat!

Retreat!

Attack!

With four knights and 2 rounds, we can 
untangle the puzzle (they all retreat)



BASIC IDEA FOR ONE SIMPLE PROTOCOL

The main concept is to run multiple rounds of “voting”

 “ I am Lancelot.  In round 3 I heard attack, retreat, retreat, retreat”.

 “ Therefore, in round 4, Lancelot votes retreat”.

After F+1 rounds, the non-faulty knights will converge.  The single faulty
knight cannot stop them from overwhelming his confusing inputs.
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TOO MANY PROTOCOLS!

Cloud engineers became overwhelmed

For practical problems like a DHT, should we use a “fail stop” solution?  Or 
a “halting failures” model, without notification?  Or even a Byzantine one?

Cloud developers needed practical solutions.  But Leslie kept writing paper 
after paper on variations of these scenarios, without clarity of which to 
actually implement.
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FRED SCHNEIDER TO THE RESCUE!

When people first raised these concerns, Leslie didn’t really respond.

Leslie explained that at the end of the day, he is a theoretical computer 
scientist… not an engineer.

Leslie felt that although his work does define “building blocks” for state 
machine replication, practical issues were beyond his scope.
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FRED SCHNEIDER TO THE RESCUE!

But Fred Schneider saw this as an opportunity

Working with Leslie, he gradually identified a wide range of ways to 
actually implement state machine replication solutions.  He didn’t 
implement them, but he created a tutorial on how to approach the issue.

This work showed that state machine replication could be useful
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A FEW BIG TAKEWAYS

One is that state machine replication is way more complex to actually 
deploy in a real system than anyone initially realized.

We can simplify some aspects by breaking out modules and applying the 
model only within those modules.  A non-deterministic program could still 
have a state-machine replicated “component” inside it.

But the needed code can be quite substantial!
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… WHICH IS WHERE KEN CAME IN!

When I first came to Cornell my initial
research project focused on implementations of 
state machine replication in object oriented computing 
frameworks – like Java.

The Isis Toolkit became widely used and pretty famous.  This is how I 
earned tenure.
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WHY ISIS?

Reference to Egyptian mythology.  

When Osiris was torn to pieces by Set, Isis gathered all the pieces and 
wrapped them in linen.   Osiris came back to life.   Their son, Horus, went 
on to defeat Set, who was then banished from Egypt and the underworld.

The Isis Toolkit was created to pick up the pieces of your messed up system 
and bring it back to life.
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VIRTUAL SYNCHRONY

One feature Isis introduced was a practical form of self-managed group 
and shard membership tracking.

We called this model virtual synchrony.  It combines with atomic multicast 
and durable state machine replication.
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SPLIT-BRAIN CONCERN

Suppose your µ-service plays a key role, like air traffic control.  There 
should only be one “owner” for a given runway or airplane.

But when a failure occurs, we want to be sure that control isn’t lost.  So in 
this case, the “primary controller” role would shift from process P to some 
backup process, Q.

The issue: With networks, we lack an accurate way to sense failures, 
because network links can break and this looks like a crash.  Such a 
situation risks P and Q both trying to control the runway at the same time!
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WHY IS THIS IMPORTANT?

Think about air traffic control (a setting that actually does use Isis!)

A plane needs permission to land.  Suppose that the computer system tells 
two different air traffic controllers to take charge of the single runway.
 One says “Flight US 270 you are cleared for landing.”
 The other says “Flight US 270, wait.  Flight Delta 110 clear for takeoff”.

This would be a very dangerous inconsistency!
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WHAT CAUSED THE PROBLEM?

This is an inconsistency related to who is the “leader”

It can be reduced to the same inconsistencies that CAP is introducing.  So if 
we are going to do things “like” air traffic control, we need consistency.

Key idea: Maybe we can have C+A and not even need P.  P matters if a 
service is really caching data from some other service.  If  each service is 
self-contained and fault-tolerant – and consistent – we won’t need P.
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IOT SYSTEMS WILL HAVE MANY ISSUES LIKE 
THIS EXAMPLE
With IoT we will need consistency from the start!

… drones, and cars, and smart power grids all need consistency!

Virtual synchrony membership eliminates the split-brain problem and 
makes it easier to implement state machine replication.  In effect, by 
having “C” include agreement on membership, our job gets easier!
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SOLVING THE SPLIT BRAIN PROBLEM

We use a “quorum” approach.

Our system has N processes and only allows progress if more than half 
agree on the next membership view.  Example: if N=5, we say that after a 
failure, we need 3 or more of the original N to resume.

Since there can’t be two subsets that both have more than half, it is 
impossible to see a split into two subservices.  
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GROUP MEMBERSHIP SERVICE INSIDE ISIS

In Ken’s Isis Toolkit (1985) there was a special subsystem to keep track of 
group membership, using a quorum method to prevent split brain issues.

Members could join… leave… fail (crash), and Isis would track the state of 
the system automatically, reporting changes to all the remaining members.

This was enough to enable them to automatically reconfigure and even to 
self-repair.  If too many members failed, the system gracefully shuts down.
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VIRTUAL SYNCHRONY MODEL

The term relates to how this was integrated with state machine replication.

In virtual synchrony, we use state machine replication when the membership 
is stable – not changing.   

But we pause the state machine replication layer and reconfigure 
membership if a join, leave or failure occurs.    This is done to make it look 
as if membership changes were atomic and instantaneous.
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VIRTUAL SYNCHRONY: MANAGED GROUPS

Epoch: A period from one membership view until the next one.

Joins, failures are “clean”, state is transferred to joining members

Multicasts reach all members, delay is minimal, and order is identical…
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VIRTUAL SYNCHRONY: MANAGED GROUPS

Epoch: A period from one membership view until the next one.

Joins, failures are “clean”, state is transferred to joining members

Multicasts reach all members, delay is minimal, and order is identical…
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A FEW FAMOUS WAYS OF “PUTTING IT ALL 
TOGETHER” INTO A PLATFORM
I’ll show you one: Chain Replication (Fred Schneider and Robbert van 
Renesse created this… it is very simple)

In the next lecture we will see others.  They include

 Paxos, a family of protocols Leslie designed for atomic multicast (he
calls this “vertical Paxos”) and for persistent logging (“classic Paxos”)

 Derecho, Cornell’s newest solutions.  These are the world’s fastest!
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EXAMPLE:
CHAIN REPLICATION
A common approach is “chain replication”, used to make copies of application 
data in a small group.  It assumes that we know which processes participate.

Once we have the group, we just form a chain and send updates to the head.

The updates transit node by node to the tail, and only then are they applied: 
first at the tail, then node by node back to the head.

Queries are always sent to the tail of the chain: it is the most up to date.
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DOES CHAIN REPLICATION SATISFY STATE 
MACHINE REPLICATION?
In some ways, but it is an incomplete story.

This is actually why Lamport felt that a formal model (a mathematical one) 
and a methodology for proving things about protocols was needed.

Chain replication is provably correct, but it assumes a membership 
mechanism, which it does not include.  Without it, the chain replication 
scheme is not quite as strong as Paxos.
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WHAT ABOUT A SHARDED DHT?

This is an image from one of our recent slide sets

Could we just use chain replication on a shard-by-shard basis?  Some 
systems do this, but as noted, integration with membership tracking matters
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One µ-service spanning many machines, split into 
shards with two machines per shard.



SUMMARY:

CAP says “relax consistency and don’t stress about it” but in IoT settings, we do 
worry about consistency.   The air traffic control example illustrates the concern. 
Many systems need consistency.

In a key -value store we might see this when replicating updates in a shard.

With Leslie Lamport’s state machine replication model as a building block we 
can work from.   Virtual synchrony is a model for managing dynamically 
evolving system membership.  Given these conceptual tools there are simple 
solutions, like chain replication, that implement consistency.
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