
CS5412: LECTURE 4
IMPLEMENTING A SMART FARM

Ken Birman
Spring, 2022

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 1



THE WORLD IS GENERATING A NEW WAVE OF 
IOT/ML PIPELINES… THERE ARE MANY USE CASES

Data sources                          Federated ML                 Smart 
Distributed AI                Queries

KEN BIRMAN (KEN@CS.CORNELL.EDU)                                 2

How much should I 
budget for raw milk 

purchases in March for 
my yoghurt factory?”



… “MACHINE INTELLIGENCE FOR FARMING”

The Cornell CIDA initiative is a campus-wide effort in this area

Profs Giordano and Birman decided to collaborate through CIDA.

 ANSC 3150: Cutting edge ideas for dairy management

 CS 5412: How to build effective cloud computing solutions

By pooling ideas, we can advance both our teaching and research

KEN BIRMAN (KEN@CS.CORNELL.EDU)                                 3



IOT USES THE CLOUD, BUT ISN’T QUITE THE 
SAME AS “WEB SUPPORT”

“Where is 164 Morrison Hall?  Is there a nearby dining hall?”

“Is Jennifer Lopez happy to be back with Ben Affleck?”

Twitter, Reddit, Google, Amazon, Tik Tok – all are cloud apps.

KEN BIRMAN (KEN@CS.CORNELL.EDU)                                 4



DO WE JUST NEED DIFFERENT µ-SERVICES?

The cloud architecture used for the web, today, is a kind of graphical 
pipeline centered on:

 Rapid responses to web queries, like from Facebook

 Batched updates which accumulate as they are passed “inward” and 
will be done later.  Eventually the effects propagate up to the first tier.

For IoT edge settings, we generally need immediate reactions.  And we 
also need to deal with challenges like data errors.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 5



EXAMPLES OF HOW DATA MIGHT BE BAD

You have to tell it what to do – it won’t guess.  And you may need to clean 
up bad data: that would confuse the analysis. 

Coding is generally needed, at some steps.

Real dairy examples: 

“Cow 1281 was inseminated on January 2019 and had her 
calf in July 2021.”  

“Cow 8711 body temp 0, weight 0 on Jan 5, 2022”.

“Farmer Jones was last located at <invalid-GPS-coordinates>”

KEN BIRMAN (KEN@CS.CORNELL.EDU)                                 6



Streaming image frames through TCP portal
Farm server

DAIRY INTELLIGENCE PLATFORM WE CREATED
Date cow_id daily_yield daily_fat … daily_protein

12/3/20 1 14 3.96 … 2.89

… … … … … …

1/10/21 237 20 4.42 … 4.55

Filtered image frames

External Client to Cascade

Upload daily date to Azure Blob Storage

Date cow_id …

12/3/20 1 …

… … …

12/3/20 237 …

Integrate daily data

Cascade backend

<field>/<cow_id>{<ts(ver)>}
daily_protein/cow_id1{ver_1} = 2.89

daily_fat/cow_id237{ver_38} = 4.42

CV model
Image analysis

Download blobs from Azure & 
Store to Cascade VCSS subgroup

cow id: 127

LINQ query to retrieve data of most recent 10 days from Cascade about cow 128

ML Model
birth prediction

Probability of calving
in next 8h is: 80%

Store to subgroup VCSS
Trigger image analysis

Action = black_cow_infer



INTERNET OF THINGS (IOT)

Today’s cloud has been enlarged in recent years so that we can connect 
devices to the cloud, very much in the same way as we attach clients.

The idea is to create a device (say, a smart thermostat) so that it produces 
web pages in the same format used when a web browser talks to the 
cloud.  Now the sensor can “talk to the cloud” to upload new data.

Same for things that take actions (“actuators”).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 8



WHAT IS IOT BEST AT, TODAY?

Suppose a company wants to implement a good physical security solution.

This could include swipe cards, facial recognition, etc at various doorways.

 Swipe sensor to function server: {NewSwipe, Name=Ken_Birman, ….}

 Camera to function server: {NewImage,     }

 Function server to audit-log: {Tuesday, 10:05am, Ken_Birman, …}

 Function server to door-lock: {Say=“You are approved to enter”, Unlock}
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 9



… BUT THE FUTURE IS THRILLING!

Smart Homes

Smart Farms

Smart Grid

Smart Highways

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 10

These are just a few 
examples of future 

cloud IoT opportunities

10



IOT EDGE VERSUS IOT CLOUD

Many devices need even lower latency than 100ms.  For example, a drone 
flying over a farm may need continuous directions on where to fly.

To solve this, vendors have created specialized “mini-clouds” that run on a 
machine or a small cluster close to the devices: in the home, or office building, or 
on the farm, or even in a truck that can go from place to place.

This is called an IoT Edge approach.  The IoT Edge connects back to the IoT
cloud, where more of the heavy-lifting can occur, but handles “easy” tasks.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 11



A DRONE, AN IOT EDGE, AND A CLOUD

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 12

IoT Edge Server runs a stripped-
down set of cloud functionality, 

but close to the device.

Internet link (might not always be 
up, and may be slow).

Full cloud datacenter



EXAMPLE WE WILL REVISIT OFTEN

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 13

First tier: inexpensive 
computation on meta-data

Key-value object store holds specialized knowledge 
models for categories (cows, pigs, dogs, trees…)

Cow p=.85
Pig p=.6

Cows
Pigs

Cow:Bessie p=.97
Pig:Wilber p=.04

Cow:Bessie

IoT Cloud Infrastructure

Most likely a cow!

What’s that?



UNFORTUNATELY… THIS IS OVERSIMPLIFIED

This animation showed the “important aspects” but left out a lot of details.

Let’s look at it a second time and show some of the missing parts.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 14



SUPPOSE A COW STUMBLES. IS IT HURT?

15

IoT Devices

Google GRPC 
Slow but universal

Blob 
Store

NoSQL 
Database

Image 
processing 

engine
. . .

Image upload path

Vendor-supplied services (fairly rigid)

No Hardware Accelerators

Azure IoT Hub

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



IoT Devices

Today: Functions do lightweight computing and interact 
purely with vendor-supplied (standardized) services.

Blob 
Store

NoSQL 
Database

Image 
processing 

engine
. . .

SUPPOSE A COW STUMBLES. IS IT HURT?

16

Ken’s research: Tools to build these smart µ-Services

Google GRPC
Slow but universal

Image upload path

Azure IoT Hub

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

Cow hoof-health evaluation 
microservice



Blob 
Store

NoSQL 
Database

Image 
processing 

engine
. . .

REVISITING OUR EDGE IOT EXAMPLE

17

Google GRPC 
Slow but universal

IoT Devices

Image upload path

Hardware Accelerators and 
Machine-Learned Models Available.

Managed by the “App Service”

Azure IoT Hub

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



MANY STEPS INVOLVED!

We needed to send a drone to watch the herd.  Fields are big… it had to 
find them first.

It figured out which cow is which

It noticed that Bessie walked unevenly

It asked “Is she hurt?  Or was she just walking on rough terrain?”

We decided to call a vet and have her check Bessie’s right front foot.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 18



MANY COMPONENTS WERE INVOLVED

Azure Blob Upload: For putting photos into the Binary Large Objects store.

Cosmos DB: A general-purpose NoSQL database with “processing” power.

Azure image processing service:  Can do many “photoshop” tasks.

Azure IoT Hub: Secure connectivity to our drone.

Azure IoT Edge: Wasn’t even shown, but it was on the prior slide (“mini-cloud 
close to the IoT device or drone”).

Azure Function Service: Lightweight container launching.

Specialized µService with GPU accelerator: You can build these and manage 
them with the Azure Hybrid Cloud layer, which includes the Azure App Service.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 19



CONCEPT: CRITICAL PATH

The pathway in your system that shapes performance for some task.

If you make the critical path faster, you accelerate the task.

But there might be a second critical path just a tiny bit slower than the one 
you are focused on, so fixing one might just reveal the other.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 20



Schedule the vet!

GPUGPU

CRITICAL PATH? MANY ELEMENTS!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 21

Photo 
upload

Key-hash

Sharded, replicated blob store

Done!

Event 
meta-data IoT Hub

Function

Key-hash

Sharded knowledge store

Hoof crack, p=.78

GPU-accelerated computation

Rough terrain, p=.03

router

Hoof crack, p=.78

2-node shard
N1 N2

replica

N3 N4
Function Svc

Thick line denotes “large objects”



FUNCTION MODEL

Each function is a small program that will be launched with arguments 
extracted from the event.

The function runs on some machine selected by the Function server, which 
has a pool of machines that it manages elastically.

To make things simple, the function and any files it needs are wrapped up 
into a container: a kind of virtual machine, very cheap to launch.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 22



HOW THE EVENT IS PASSED TO THE FUNCTION

When an event occurs, a new instance of the event handling function you 
registered will be launched in a “clean” state.

The event itself is available either as program arguments, or via an API

You can also register a shell script if you wish.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 23



EXAMPLE: PASSING PARAMETERS TO AZURE FUNCTIONS
(AWS LAMBDA IS QUITE SIMILAR)

In Azure, a function trigger defines how a function is invoked. A function 
must have exactly one trigger. Triggers have associated data, which is 
usually the payload that triggered the function.

Input and output bindings provide a declarative way to connect to external 
data or µ-services from within your code. Bindings are optional and a 
function can have multiple input and output bindings. 

Triggers and bindings let you avoid hardcoding many details that would 
involve complicated “boilerplate.”   You can arrange to receive data (for 
example, the content of a queue message) via parameters in the trigger.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 24



WHAT IF A DEVICE CAN GENERATE MANY KINDS OF 
EVENTS?

A single “function program” will handle all of them: 
switch(event-type) { …. }

The event type would be passed as one of the event parameters.  This 
way there is still just one trigger for the function.

Your logic for dealing with a single event should be short and simple.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 25



HOW DO FUNCTIONS TALK TO µ-SERVICES?

Just like with web pages, there are three main options:

 Remote method invocation (for example over the RESTful RPC layer,
or JNI, or WCF).  Google GRPC would work here too, but Microsoft
prefers for you to use Azure’s own solutions.

 Via a message “bus”  (no storage: like a “broadcast”)

 Via a message “queue” (stores messages, like an email)

Use the remote method approach for immediate actions with immediate 
responses.  The other two “decouple” the source and receiver.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 26



FANCIER CASE: POINT, FOCUS AND SHOOT

Suppose that some event occurs: “Animal motion detected”.

This might require us to swivel the camera or point the drone.

After the camera is pointed towards the location, focus the lens.

When the focus converges, we shoot a photo.

Now the thumbnail is sent to the server.

If the photo is considered interesting, we’ll download it.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 27



THIS IS A FORM OF STATE MACHINE!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 28

Idle

Swivel

Focus

Take Photo

Handle various mundane events

Movement sensed!  Point the camera Send swivel command to Camera {args…}
Motion event {args…}

Pointed!  Focus the camera Send focus command to Camera {args…}

Camera movement done {args…}

Focused!  Take a photo Send photo command to Camera {args…}

Focus operation done {args…}

Captured photo {info,           }

Orange: “camera to Azure IoT” Green: “Azure IoT to camera”



DEFINITION: STATE MACHINE

A state machine is a program that is in some “state”, corresponding to the 
nodes in the figure.  The states form a directed graph.

Events cause some action (label on the arrow) and also a transition to the 
same state (loop back) or some other state.

In an IoT setting, we favor deterministic state machines: The same events, 
handed to the state machine in the same state, produce the same effect.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 29



… THAT STATE IS HELD IN A KEY-VALUE STORE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 30

The function loads it, mutates it, then stores it back.

An atomicity issue arises if concurrent events trigger two functions that try  
to make conflicting updates to the state machine state.

If we solve this by adding locks to the key-value store, Jim Gray’s  
scalability warning applies! To avoid locks, we use a kind of “atomic”  
conditional key-value put.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



STATEFUL BEHAVIOR WITH A FUNCTION
NORMAL CASE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 31

Current State: Data in 
the (key,value) store 

can hold any 
information you like

Version=17

New Event

Function 
launched to 

handle it

Triggered action
(issued after successful state update)

Updated state 
replaces prior state 

(“Replace state 
version 17 with state 

version 18”)

1

2

3

4

5



STATEFUL BEHAVIOR WITH A FUNCTION
CONCURRENCY CONFLICT

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 32

Current State: Data in 
the (key,value) store 

can hold any 
information you like

Version=17

New Event

Function 
launched to 

handle it

Must retry!

Tries to update 
version 17, but 

discovers that version 
has already been 
changed to 18…

1

2

3

4

5



STATEFUL BEHAVIOR WITH A FUNCTION
RETRY CASE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 33

Current State: Data in 
the (key,value) store 

can hold any 
information you like

Version=18

New Event

Function 
launched to 

handle it

Triggered action
(issued after successful state update)

Updated state 
replaces prior state 

(“Replace state 
version 18 with state 

version 19”)

1

6

7

8

9



FUNCTIONS VERSUS µ-SERVICES

Use functions for simple read-only actions (the function can still fetch the 
data from some set of µ-services).  Pass updates to µ-services.
Limit multi-step functions to simple state-machine logic.

Use µ-services for complex or stateful tasks.
 Ideally, find some way to leverage existing µ-services.  They often have

magic superpowers, like access to hardware accelerators.
 Build your own µ-services if there are no existing options that match.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 34



MICROSOFT FARMBEATS

Quick reminder of some smart farming ideas:
 Drones that would survey fields and help with intelligent decisions about

seed choices, irrigation, fertilizers, pesticide/fungicide use, etc.
 BlockChain style audit trails of actions in dairy or similar situations
 Real-time monitoring of animal health and related tasks, like milking
 Systems to recycle farm waste into useful products like bio-oil
 Maybe a “smart calendar” for the farmer’s wall, showing upcoming 

tasks, explaining the reasoning, like an iPad but for the farm

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 35



MICROSOFT FARMBEATS

Farmbeats was a research project aimed at prototyping solutions to those 
kinds of problems.

It evolved and became a new product from Microsoft – a kind of “app 
platform” that runs on Azure IoT Edge and IoT Cloud and is intended to 
support more and more farming use-cases over time.

There is some duplication of functionality because Farmbeats existed 
before they ported it to start to use more of Azure cloud’s IoT approach.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 36



MICROSOFT FARMBEATS

We can actually use this platform to work with drones

It has great software for drone flight control, photo upload, other similar 
tasks.

Microsoft has used to build up soil “maps” showing humidity and other 
important properties for farms.  Then, using NOAA weather databases, we 
can predict how the farm conditions may look over the coming months and 
event select seeds parcel by parcel to optimize for the specific setting.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 37



WHERE DOES COMPUTING OCCUR?

The offline training involves “big data analytics” and need to be done on 
massive data centers with huge compute and storage resources.

But the dynamic form of control and learning needs to occur in real-time, 
on the IoT Edge: a cluster of computers “near” the farm.  

The IoT Edge system might dynamically update a model that was mostly 
created offline on the IoT Cloud, but still needs additional “tuning”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 38

IoT Edge inside!



DYNAMIC UPDATES

What would be examples of dynamic updates?

The drones will discover today’s wind patterns and output a learned 
model that they steadily refine as they scan the field.

The drones may discover a very dry area, or a muddy one.  Crop issues in 
that whole area would probably be associated with irrigation issues, even 
if they “show up” as brown spots, or as fungal breakouts on the leaves.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 39



USING DYNAMIC UPDATES TO UPDATE PLANS

With dynamically learned updates, a control system might realize that it 
can triple battery lifetime by switching to a new drone flight plan that sails 
on the breezes in a particular way.

So here we would have a system that recomputes the flight plan,  uploads 
the new plans (but without activating them), then tells all the drones to 
pause briefly, then allows all to start using the new plans.

Question: Why upload, then pause, and only then switch to the new plan?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 40



… BECAUSE WE PREFER NOT TO SEE THIS!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 41

Still using search 
plan A

Starting to use 
insecticide spraying 
policy from plan B



FUNCTIONS?  OR µ-SERVICES?

We actually could implement everything as a giant state machine with a large 
amount of state in our Azure key-value store.

But would that be the best plan?

 It might be very hard to debug such a complex function application.

 The logic itself might be very complicated, especially since everything
will be event driven.

 As we “learn current conditions” we run into a big-data problem.  
A function server isn’t intended for such cases.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 42



SHOULD EVERYTHING BE IN µ-SERVICES?

Historically this was the most popular approach.

But we end up with ultra-specialized services, and they run all the time, so 
they might not be very cost-effective.

The nice feature of the function model is that it offers such a simple way to 
handle large numbers of events elastically.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 43



APPROACH THIS LEADS TOWARDS

Use the functions for “lightweight” tasks and actions

 Ideal for read-only actions like making a quick decision

 OK for reporting events that go into some kind of record or log

 But don’t use functions for serious computing.

Then build new µ-services for the heavy-weight tasks, like learning a new
machine-learned model, or computing the optimal search path with wind.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 44



SUMMARY OF THE PROS AND CONS
Functions µ-Service

Length of a typical “action” Typically a single “RPC” or 
some other event from a client 
or sensor.  Execution time is 
often very short: milliseconds

Long-running, could continuously evolve some 
form of knowledge base using background 
computation that might be quite slow/costly.

Long-term state Lives outside the functions, like 
in a key-value store

Could be in memory, or in local files, or could 
be in other µ-Services.

Resource footprint Long-term state is small, 
function itself runs in a 
lightweight container

Long-term state might be huge, computation 
runs on heavier-weight compute nodes 
dedicated to the role for long periods of time

Access to accelerators Probably not. If needed, yes.

Cost to own & operate Pay only for cycles you use. Can be very costly, but amortized over many 
clients.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 45



HOW TO CREATE NEW FUNCTIONS

Register the corresponding event (or class of events).

Tell the function server to run your container for the specific events it will 
handle.

Develop code using cloud-vendor supplied tool that will provide a 
skeleton.  You might write just a few lines to specialize it for your events.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 46



HOW TO CREATE NEW µ-SERVICES?

Architecture can be fairly complex, so you’ll start by really thinking hard 
about functionality, data representations, API.

Many services have a non-trivial internal structure: a top-level group but 
with several subgroups inside it, playing distinct roles.

Usually developed on a cluster of Linux servers using libraries that help 
with hard aspects.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 47



HOW TO CREATE NEW µ-SERVICES?

We can start with Jim Gray’s suggestion: key-value sharding from the outset.

Within a shard, data will need to be replicated.  This leads to what is called the 
“state machine replication model”, which involves

 A group of replicas (and a membership service to track the set)

 Each update occurs as a message delivered to all replicas

 The updates are in the identical order

 No matter what happens (failures, restarts) “amnesia” won’t occur.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 48



WILL THIS SCALE?

Jim Gray’s analysis told us that general database transactions won’t scale.

But this simple key-value approach would scale very well provided that 
updates and queries run on a single shard at a time.

This was a sweet spot in Jim’s model.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 49



SO, BACK TO OUR FARMBEATS DRONES

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 50

Azure Function 
Server

Functions: Lightweight, event-triggered 
programs in containers, “pay for what you 

use” resource model

Message bus or queue

µ-Services: some Azure 
provided, some “new”



HOW MIGHT WE TACKLE THE CASES 
MENTIONED EARLIER?
Consider one example: 

“Image analysis: “Are these plants healthy or diseased?”

How might we solve such a problem using modern machine learning?

How would we turn our solution into a µ-service?

How would a function in a function server interact with it?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 51



IMAGE KNOWLEDGE BASE

We could start with labeled data: photos from drones that are hand-
labeled to tag crop damage and identify possible causes.

Use this to train a computer-vision model (perhaps, a convolutional neural 
network – a CNN).

The resulting models will be large tensors.  Copy them to our µ-service.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 52



IMAGE KNOWLEDGE

We might have two cases: one for initial thumbnail images (small, low-
resolution) and a second for follow-up detail imaging (ultra-high resolution)

Now our µ-service could have an API with operations such as “classify new 
thumbnail”, “analyze follow-up imagery”.

The function server would take a drone event and just turn around and 
make a call into the µ-service 

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 53



SECONDARY ACTIONS

The µ-service would then be able to “tell” the function what action to take.  This 
avoids having to talk directly to the drones: the functions become specialists in 
drone operations, while the µ-service plays general roles.

Similarly for requesting “follow-up detail”: the µ-service can request this in its 
reply to the function layer, and then the function would turn to the µ-service that 
plans detailed imaging studies for advice on camera angles and image settings 
to use.

Functions aren’t doing much, but they glue the heavy lifters together.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 54



SUMMARY

An IoT system like a smart farm has a lot of “moving parts”!

Even so, we can break the tasks down and map them to a µ-services 
model, using a KVS to store any needed state.

Some tasks look tricky at first, but once you see how key-value versioning
works, it enables exactly the kind of atomic operations we seem to need.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 55


	CS5412: Lecture 4�implementing a smart Farm
	The world is generating a new wave of IoT/ML pipelines… there are many use cases
	… “Machine Intelligence for Farming”
	IoT uses the cloud, but isn’t quite the same as “web support”
	Do we just need different -services?
	Examples of how data might be bad
	Slide Number 7
	Internet of things (IoT)
	What is IoT best at, today?
	… But the future is thrilling!
	IoT Edge versus IoT Cloud
	A drone, an IoT Edge, and a cloud
	Example we will revisit often
	Unfortunately… this is oversimplified
	Suppose a cow stumbles. Is it hurt?
	Suppose a cow stumbles. Is it hurt?
	Revisiting our Edge IoT Example
	Many steps involved!
	Many components were involved
	Concept: Critical Path
	Critical Path? Many elements!
	Function Model
	How the event is passed to the function
	Example: Passing parameters to Azure Functions�(AWS Lambda is quite similar)
	What if a device can generate many kinds of events?
	How do functions talk to -Services?
	Fancier Case: Point, Focus and Shoot
	This is a form of state machine!
	Definition: State Machine
	… THAT STATE IS HELD IN A KEY-VALUE STORE
	Stateful behavior with a function�                   Normal Case
	Stateful behavior with a function�             Concurrency conflict
	Stateful behavior with a function�                   Retry Case
	Functions versus -services
	Microsoft FarmBeats
	Microsoft FarmBeats
	Microsoft FarmBeats
	Where does computing occur?
	Dynamic Updates
	Using Dynamic Updates to update plans
	… because we prefer not to see this!
	Functions?  Or -Services?
	Should everything be in -Services?
	Approach this leads towards
	Summary of the pros and cons
	How to create new functions
	How to create new -Services?
	How to create new -Services?
	Will this scale?
	So, back to our FarmBeats Drones
	How might we tackle the cases mentioned earlier?
	Image knowledge base
	Image knowledge
	Secondary actions
	Summary

