
CS 5412/LECTURE 23
FAULT TOLERANCE

Ken Birman
Spring, 2022

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 1

BREAKDOWN OF OUR TOPIC

What does the theory tell us?

How do individual systems like HDFS self-repair after failure?

What happens when systems are built in layers? Do new inter-layer
coordination issues arise? How can a “restarted” layer be sure that the
storage layers it depends on are already fully repaired and correct?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 2

IS FAILURE HANDLING “IMPOSSIBLE?”

This topic has a mix of a new perspective (based on theory) with practical
material that revisits something we heard about earlier.

The theory emerges from work to formalize “tolerating a failure.”

The practical example we will consider is the fault recovery feature used
in the Apache architecture, where it reruns failed tasks.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 3

FIRST A 1000-FOOT REVIEW: WHERE
DOES FAULT-TOLERANCE ARISE?

This is a kind of introduction and
also a reminder of previous
lectures where we touched on
the topic

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 4

HOW DO APACHE SERVICES HANDLE FAILURE?

We’ve heard about some of the main “tools”

 Zookeeper, to manage configuration

 HDFS file system, to hold files and unstructured data

 HBASE to manage “structured” data

 Hadoop to run massively parallel computing tasks

 Hive and Pig to do NoSQL database tasks over HBASE, and then to
create a nicely formatted (set of) output files

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 5

THREE KINDS OF ISSUES TO THINK ABOUT

How does each element work when things are healthy?

How does each element detect failures, and if needed, repair itself to
recover from damage the fault might have caused (such as a file that
wasn’t fully written, and should be deleted and regenerated)?

How do the layers synchronize? If layer A lives on layer B, when layer A is
ready to restart after a crash, can it be sure that B is already repaired?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 6

APACHE: KEY ASPECTS

What do applications in the Apache platform do to “detect” failures?

What if a failure is just some form of transient overload and self-corrects?

 How would the component realize it was dropped by everyone else?

How can Apache self-repair the damaged components, and resume?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 7

AS A TIME-LINE

Any system needs to go through a series of stages to deal with failues

If the failure could have damaged data or left an execution in a disrupted
state, cleaning up will be important.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 8

Healthy system
doing work Failure occurs

and is detected

New work will
have to wait! Healthy

again!
Healthy system resumes normal work

HOW TO DETECT A FAILURE It isn’t as easy as you might
expect

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 9

WAYS TO DETECT FAILURES

Something segment faults or throws an exception, then exits

A process freezes up (like waiting on a lock) and never resumes

A machine crashes and reboots

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 10

?

SOME REALLY WEIRD EXAMPLES

Suppose we just trust TCP timeouts, but have 2 connections to a process.

 What if one connection breaks but the other doesn’t?

… can you think of a way to easily cause this?

 What if A thinks B is down, and B thinks A is down?

When clocks “resynchronize” they can jump ahead or
backwards by many seconds or even several minutes.

 What would that do to timeouts?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 11

THE FAMOUS FLP THEOREM Inconceivable!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 12

SLOW NETWORK LINKS CAN MIMIC CRASHES

MIT Theoreticians Fischer, Lynch and Paterson modelled fault-tolerant
agreement protocols (consensus on a single bit, 0/1). This is easy with
perfect failure detection, but can we implement perfect detection?.

They proved that in an asynchronous network (like an ethernet), any
consensus algorithm that is guaranteed to be correct (consistent) will run
some tiny risk of indefinitely stalling and never picking an output value.

One implication: on an ethernet, perfect failure sensing is impossible!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 13

HOW DOES THE “FLP” PROOF WORK?

They look at agreeing on consensus via messages, with no deadlines on
message delivery.

Their proof first shows that there must be some input states in which there is
a mix of 0 and 1’s proposed by the members, and where both are
possible outcomes (thinking of an election, with two candidates).

They call this a “bivalent” state, meaning “two possible vote outcomes”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 14

EXAMPLE OF A BIVALENT STATE

Suppose we are running an election and 0 represents voting for John Doe,
whereas 1 represents a vote for Sally Smith. Majority wins. But N=50. To
cover the risk of ties, we flipped a coin: in a tie, Sally wins.

 Suppose half vote John, half for Sally, but one voter has a “connectivity
problem”. If that vote isn’t submitted on time, it won’t be tallied.

 With 25 each, Sally is picked. But if just one Sally vote is delayed, then
the exact same election comes out 25 for John, 24 for Sally… John wins

 Can we safely make a decision here?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 15

CORE OF FLP RESULT

Now they will show that from this bivalent state we can force the system to
do some work and yet still end up in an equivalent bivalent state. Then
they repeat this procedure

Effect is to force the system into an infinite loop!
 And it works no matter what correct consensus protocol you used.
 This makes the result very general

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 16

BIVALENT STATE

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S* denotes bivalent state
S0 denotes a decision 0 state
S1 denotes a decision 1 state

Sooner or later all executions
decide 0

Sooner or later all executions
decide 1

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

17

BIVALENT STATE

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

e

e is a critical event that takes
us from a bivalent to a

univalent state: eventually
we’ll “decide” 0

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 18

BIVALENT STATE

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

They delay e and show that
there is a situation in which the
system will return to a bivalent

state

S’
*

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 19

BIVALENT STATE

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0 S’

*

In this new state they show that
we can deliver e and that now,

the new state will still be
bivalent!

S’’
*

e

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 20

BIVALENT STATE

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0 S’

*

Notice that we made the system
do some work and yet it ended
up back in an “uncertain” state.
We can do this again and again

S’’
*

e

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 21

CORE OF FLP RESULT IN WORDS

In an initially bivalent state, they look at some execution that would lead to
a decision state, say “0”
 At some step this run switches from bivalent to univalent, when some

process receives some message m
 They now explore executions in which m is delayed

It turns out that if m is delayed, the system always reaches some other
bivalent state before any decision can be reached.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 22

CORE OF FLP RESULT

Now they show that there is actually a bivalent state in which they can
deliver m, the delayed message, and no decision will occur.

This form of delayed delivery
 Forced the system to do some work
 Left it in a bivalent state, just like it started.

They just loop and do this again and again. No decision is ever reached!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 23

IMPLICATION?

If you have a fault-tolerant protocol able to solve consensus, like Derecho
or Paxos or Chain Replication…

… and you have an all-powerful adversary who attacks the system

… it can be prevented from ever reaching a decision!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 24

BUT WHAT DID “IMPOSSIBILITY” MEAN?

In effect, “fault tolerant consensus is impossible.”

But do you believe this statement?

Or do you feel as if it is using a tortured concept of “possible” and
“impossible” to come up with a cute claim?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 25

AT THE CENTER OF IT: THE ADVERSARY

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 26

A very clever adversarial attack.

This is like one of those horror movies where the evil spirit can do the worst
possible thing at the worst possible moment.

In practice, no adversary ever has this much control

WE LIVE IN THE REAL WORLD, NOT A MOVIE!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 27

This is a problem!

FLP is clearly a “real” risk.

And yet the kind of attack it imagines cannot really arise! In fact it is easy
to show that a system like Derecho or any Paxos protocol will make
progress even with really simple added assumptions about message
delays being “random” and not “controlled”

SO...

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 28

In fact the fault is in the theoretical model! It gives too much power to the
attacker.

Yet at the same time, because partitioning failures can cause Paxos or
Derecho to freeze up (they can lose quorum), in some sense a result similar
to FLP applies in any case!

With real systems, freeze-up is a real risk… even if not due to FLP attacks!

WHAT DOES THIS SAY ABOUT ELECTIONS?

Think back to the John and Sally election scenario

In a real election, sooner or later we call a halt and count the votes that
are in hand.

At that point the “votes” are immutable and the set of votes is known. It
just becomes an exercise in counting – nothing more. Even the tie-breaking
rule, and the outcome of the coin flip, become immutable.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 29

DOES FLP MATTER?

FLP is often cited as a proof that “consistency is impossible” but in fact it
only tells us that any digital system could run into conditions where it jams.
We already knew that, due to partitioning.

On the other hand, it also has a problematic “implication”. It makes it very
hard to prove the correctness of real systems using a pure logic
formulation. We need probabilistic assumptions and goals, and only can
show some high likelihood of progress.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 30

IMPLICATION?

If we can’t do perfect failure sensing, we need to make do with something
imperfect.

This ties back to the idea of a system that manages its own membership.

If the manager layer can’t be sure that some process is healthy, it is
allowed to just declare that the process has failed!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 31

HOW TO “WORK AROUND” FLP It was very simple.
I poisoned both
glasses of wine.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 32

HOW DOES DERECHO DO IT?

It has a virtually synchronous self-managed membership service, sort of
like Zookeeper.

Recall that we discussed the term virtual synchrony at the time: it centers on
ordering of membership views (epochs), state transfers and multicast.

Originally used in Isis Distributed Toolkit in 1980’s, but then explored in
many papers and books.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 33

HOW DOES DERECHO DO IT?

Periodic “heartbeat” messages are sent by healthy processes.

Each process watches for these heartbeats. A timeout triggers “failure
suspicion”. Also, if a TCP connection breaks, the live process will
immediately deem the other endpoint as having crashed.

At the core is a form of Paxos. It prevents split-brain behavior if leader
failure is suspected. Zookeeper is very similar.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 34

BUT CAN VIRTUAL SYNCHRONY AVOID THE
FLP PROBLEM?
FLP is not directly applicable: in FLP, a healthy process must be allowed to
vote.

In systems like Zookeeper, a healthy process might be “killed” by accident,
but this keeps the system alive when it might otherwise freeze up).

Anyhow, this still leaves partitioning as a risk. We can’t evade the risk of
freezing up – we can only evade the FLP “scenario” for that happening.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 35

A THEORY PERSON WOULD ARGUE THAT NO
SOLUTION CAN EVADE THE FLP THEOREM
The distributed systems theory community considers the FLP theorem to be
the bottom line.

No system that can solve consensus is able to guarantee progress.

They also understand that in practical cloud settings, we may not be
worried about the FLP scenario, or even the partitioning scenario (we can
design a redundant network to minimize that risk…)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 36

A PRACTICAL PERSON… WOULD AGREE!

FLP is a law of nature.

But a practical person would then say that well, systems like Derecho and
Cascade and Paxos – and Zookeeper – aren’t guaranteeing progress.
They make a best effort

Both can freeze up if a system partitions and neither side has the majority
of the servers. Freezing up because of FLP is actually, far less likely!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 37

IN EFFECT, THEY DON’T AVOID FLP

The bottom line is that “fault tolerance is impossible” and yet “we solve it!”

It is almost as if we finesse the meaning of the word “impossible”, so that
we take it to mean “usually possible, but not always.”

This is good enough because after all, the whole data center could have a
leaky roof and shut down. Guaranteed progress isn’t always meaningful.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 38

WHAT ABOUT HADOOP? How does it deal with failures?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 39

HDFS USE OF ZOOKEEPER VIEWS

Recall that in HDFS every file has one or more replicas. It uses chain replication,
with Zookeeper tracking the chain members!

If a chain member fails, HDFS still has a healthy replica and reads can continue. It
restarts the failed member or launches some new node to take on the same role,
and copies data from a healthy replica if needed to repair the failed replica.

If all replicas fail, HDFS will wait for recoveries. But in the normal case, HDFS itself
stays available for reads.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 40

BIG CHALLENGE: HADOOP (MAPREDUCE)

Failures could cause some tasks to disappear.

MapReduce and Hadoop will automatically restart the failed task on some
other node (they will even run extra copies of very slow task, “just in case”)

Whichever task finishes first, successfully, is considered to have completed
that step and the others are terminated if any are still running. If they do
produce output, it is ignored.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 41

HADOOP IS “AT MOST ONCE” RELIABLE

This basic task fault handling ensures that each Hadoop task will be
performed at least once, but at most one output will be preserved.

What if a task fails while writing files?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 42

RECALL THAT HDFS IS APPEND-ONLY

We discussed the rule that HDFS uses for file updates: either create a
whole new file version or append to a file. You can’t update the middle of
a file – seek into the middle of an HDFS file will cause writes to fail.

… so, if some task has to be restarted, HDFS can just restore any files that
task was writing to back to the length they had before the task started!

This works well because in Hadoop, every object can be constructed from
some other object by some kind of repeatable (“idempotent”) computation

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 43

CHECKPOINTS

HDFS adds a “checkpoint” feature to what POSIX normally can support.

The checkpoint is just a file that contains the names, version numbers and
lengths of the files your Hadoop application is using. To “roll back” it just
truncates files back to the size they had and restores any deleted files.

This assumes that deleted file versions are kept around for a little while.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 44

VISUALIZING HADOOP FAILURES IN IMAGES

Normal case: A, B… E just run,
create output (key,value
collections in HDFS files), then
the reduce step can run.

Failure case (B crashes). Now
Hadoop just rolls back any
files B was appending to and
runs B’, to repeat the task.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 45

job Mapped tasks: A B C D E …

A.out

B.out

E.out

C.out

D.outB’

B.out

WHY SUCH A FOCUS ON FILES?

In fact everything in Hadoop is kept in files, even key,value tuples created
by the tasks running on behalf of map, the shuffled data, the sorted
version that are input to reduce, and the output from reduce.

This makes it much easier to deal with MapReduce cleanup after a failure:
it just tracks what files are created by a task (it deletes the new version),
and what files were extended (it restores the old length, truncating any
extra data that was being written when the task failed).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 46

BUT TASKS CAN ALSO BE DISRUPTED BY
FAILURES
Apache also has to worry about Hadoop jobs that might be running
exactly when the failure occurred.

Very often such a job could be disrupted in some way, hence active tasks
shouldn’t be allowed to continue running “as is”.

Hadoop kills all the user-generated tasks, removes any files they may have
created and restores any then deleted, then reruns the failed tasks.
(Somehow, Hadoop must also be waiting for HDFS to self-repair)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 47

THIS CONCEPT WORKS IN ALL OF APACHE

The whole Apache infrastructure centers on mapping all forms of failure
handling to Zookeeper, HDFS files with this form of “rollback”, and task
restart!

It has similar effect to an abort/restart in a database system, but doesn’t
involve contention for locks and transactions, so Jim Gray’s observations
wouldn’t apply. Apache tools scale well (except for Zookeeper itself, but it
is fast enough for the ways it gets used).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 48

WHAT ABOUT AIR TRAFFIC CONTROL?

These systems have a system-wide virtual synchrony view manager.

The role of the view manager is to atomically report to all components
when any failure disrupts any component. When a view changes, all
components instantly “wedge” and adjust to the new view

The system briefly (seconds… not minutes) freezes up and repairs itself,
and when it resumes, every component is back to a healthy state.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 49

COMPARE WITH APACHE?

Air traffic control might have state in a few places, but it helps that the
flight plan records reside in a single database that every other process
simply mirrors, read-only.

The key thing is to ensure that we never have parts of the system using one
set of flight plans, or one set of configuration files, while the remainder is
using a different set. And this property is very carefully verified.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 50

BOTTOM LINE?

The cloud is highly available, because it has layers of backups – even
backup datacenters and backups at geographic scale.

IoT data managed by the cloud can be strongly consistent. This doesn’t
really reduce availability and in fact doesn’t even reduce performance.

It leads to a style of coding in which membership is managed for you. But
many parts of the existing cloud are using weaker consistency today, and
you need to be aware of the risks when you use those tools.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 51

EFFECTS OF BOTTOM LINE?

Today’s cloud is remarkably robust.

We use CAP and weaken consistency in outer layers, but this is partly
because doing so actually simplifies the solutions we create. Fault
tolerance is easy when you don’t worry about consistency.

Systems that do need consistency use the “timeline”: they have a standard
way to detect failure. Every component learns of any fault relevant to it.
Disrupted components pause their work queues while they self-repair.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 52

	 CS 5412/Lecture 23 �Fault Tolerance
	Breakdown of our topic
	Is Failure handling “impossible?”
	First a 1000-foot review: Where does fault-tolerance arise?
	How do Apache Services handle failure?
	Three kinds of issues to think about
	Apache: Key aspects
	As a time-line
	How to detect a failure
	Ways to detect failures
	Some really weird examples
	The Famous FLP Theorem
	slow network links can mimic crashes
	How does the “FLP” proof work?
	Example of a Bivalent state
	Core of FLP result
	Bivalent state
	Bivalent state
	Bivalent state
	Bivalent state
	Bivalent state
	Core of FLP result in words
	Core of FLP result
	Implication?
	But what did “impossibility” mean?
	At the center of it: The adversary
	We live in the real world, not a movie!
	So...
	What does this say about elections?
	Does FLP matter?
	Implication?
	How to “work around” FLP
	How does Derecho do it?
	How does Derecho do it?
	But can virtual synchrony avoid the FLP problem?
	a theory person would argue that no solution can evade the FLP Theorem
	A practical person… would agree!
	In effect, they don’t avoid FLP
	What about Hadoop?
	HDFS use of Zookeeper views
	Big challenge: Hadoop (mapReduce)
	Hadoop is “at most once” reliable
	Recall that HDFS is append-only
	Checkpoints
	Visualizing Hadoop failures in images
	Why such a focus on files?
	But tasks can also be disrupted by failures
	This concept works in all of Apache
	What about air traffic control?
	Compare with Apache?
	Bottom line?
	Effects of bottom line?

