
CS5412 / Lecture 22
Apache Tools – Part 2

Ken Birman & Kishore 
Pusukuri, Spring 2022

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 1



PUTTING IT ALL TOGETHER

Reminder: Apache Hadoop Ecosystem (bottom to top)

➢ HDFS (Distributed File System, implemented as a sharded KVS)
➢ HBase (Distributed NoSQL Database  -- distributed map)
➢ YARN (Resource Manager)
➢ MapReduce (Data Processing Framework)
➢ Zookeeper (Monitoring and configuration management). 
➢ Ceph:  Added later, a specialist file system for object storage.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 2



Hadoop Ecosystem: Processing

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 3

Yet Another Resource 
Negotiator (YARN)

Map 
Reduce Hive

Spark 
Stream

Other 
Applications

Data Ingest 
Systems

e.g., 
Apache 
Kafka, 

Flume, etcHadoop NoSQL 
Database (HBase)

Hadoop Distributed 
File System (HDFS)

PigProcessing



Apache Hive: SQL on MapReduce

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 4

Hive is an abstraction layer on top of Hadoop (MapReduce/Spark)

Use Cases:

 Data Preparation 
 Extraction-Transformation-Loading Jobs (Data Warehousing)
 Data Mining



Apache Hive: SQL on MapReduce

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 5

Hive is an abstraction layer on top of Hadoop (MapReduce/Spark)

➢ Hive uses a SQL-like language called HiveQL

➢ Facilitates reading, writing, and managing large datasets residing in 
distributed storage using SQL-like queries

➢ Hive executes queries using MapReduce (and also using Spark)
○ HiveQL queries →  Hive  → MapReduce Jobs  



Apache Hive

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 6

➢ Structure is applied to data at time of read →  No need to worry about 
formatting the data at the time when it is stored in the Hadoop cluster

➢ Data can be read using any of a variety of formats:
○ Unstructured flat files with comma or space-separated text
○ Semi-structured JSON files (a web standard for event-oriented data such

as news feeds, stock quotes, weather warnings, etc)
○ Structured HBase tables

➢ Hive is not designed for online transaction processing.  Hive should be 
used for “data warehousing” tasks, not arbitrary transactions.



Apache Pig: Scripting on MapReduce

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 7

Pig is an abstraction layer on top of Hadoop (MapReduce/Spark)

➢Use Cases:
○ Data Preparation 
○ ETL Jobs (Data Warehousing)
○ Data Mining



Apache Pig: Scripting on MapReduce

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 8

Pig is an abstraction layer on top of Hadoop (MapReduce/Spark)

➢ Code is written in Pig Latin “script” language (a data flow language)
➢ Facilitates reading, writing, and managing large datasets residing in 

distributed storage 
➢ Pig executes queries using MapReduce (and also using Spark)

○ Pig Latin scripts →  Pig  → MapReduce Jobs  



Apache Hive & ApachePig

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 9

➢ Instead of writing Java code to implement MapReduce, one can opt 
between Pig Latin and Hive SQL to construct MapReduce programs

➢Much fewer lines of code compared to MapReduce, which reduces 
the overall development and testing time



Apache Hive   vs     Apache Pig

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 10

➢ Declarative SQL-like language 
(HiveQL)

➢ Operates on the server side of any 
cluster

➢ Better for structured Data
➢ Easy to use, specifically for 

generating reports
➢ Data Warehousing tasks
➢ Facebook

➢ Procedural data flow language (Pig Latin)
➢ Runs on Client side of any cluster
➢ Best for semi structured data
➢ Better for creating data pipelines

○ allows developers to decide where to 
checkpoint data in the pipeline

➢ Incremental changes to large data sets 
and also better for streaming

➢ Yahoo



Apache Hive vs ApachePig: example

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 11

insert into ValuableClicksPerDMA
select dma, count(*)
from geoinfo join (
select name, ipaddr
from users join clicks on                                   
(users.name = clicks.user)                         
where value > 0;
) using ipaddr
group by dma;

Users    = load 'users' as (name, age, ipaddr);
Clicks   = load 'clicks' as (user, url, value);
ValuableClicks = filter Clicks by value > 0;
UserClicks = join Users by name, ValuableClicks by user;
Geoinfo = load 'geoinfo' as (ipaddr, dma);
UserGeo = join UserClicks by ipaddr, Geoinfo by ipaddr;
ByDMA = group UserGeo by dma;
ValuableClicksPerDMA = foreach ByDMA generate group, 
COUNT(UserGeo);
store ValuableClicksPerDMA into 'ValuableClicksPerDMA';

Job: Get data from sources users and clicks is to be joined and filtered, and then joined 
to data from a third source geoinfo and aggregated and finally stored into a table 
ValuableClicksPerDMA



Comment: “Client side”??

When we say “runs on client side” we don’t mean “runs on the
iPhone”.  Here the client is any application using Hadoop.

So the “client side” is just “inside the code that consumes the 
Pig output”

In contrast, the “server side” lives “inside the Hive/HDFS layer”

12HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



Hadoop Ecosystem: Data Ingestion

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 13

Yet Another Resource 
Negotiator (YARN)

Map 
Reduce Hive

Spark 
Stream

Other 
Applications

Data Ingest 
Systems

e.g., 
Apache 
Kafka, 

Flume, etcHadoop NoSQL 
Database (HBase)

Hadoop Distributed 
File System (HDFS)

Pig



Data Ingestion Systems/Tools (1)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 14

Hadoop typically ingests data from many sources and in many formats:

➢ Traditional data management systems, e.g. databases
➢ Logs and other machine generated data (event data)
➢ e.g., Apache Sqoop, Apache Fume, Apache Kafka (focus of this class)

Stora geData Ingest 
Systems

HBase

HDFS



Data Ingestion Systems/Tools (2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 15

➢ Apache Sqoop
○ High speed import to HDFS from Relational Database (and vice versa)
○ Supports many database systems,

e.g. Mongo, MySQL, Teradata, Oracle

➢ Apache Flume
○ Distributed service for ingesting streaming data
○ Ideally suited for event data from multiple systems, for example, log files



Concept: “Publish-Subscribe” tool

The Apache ecosystem is pretty elaborate.  It has many “tools”, 
and several are implemented as separate μ-services.

The μ-services run in pools:  we configure the cloud to 
automatically add instances if the load rises, reduce if it drops

So how can individual instances belonging to a pool cooperate?

16HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



Models for cooperation

One can have explicit groups, the members know one-another, 
and the cooperation is scripted and deterministic as a function of a 
consistent view of the task pool and the membership (Zookeeper)

But this is a more complex model than needed.  In some cases, we 
prefer more of a loose coordination, with members that take tasks 
from some kind of list, perform them, announce completion.

17HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



Concept: “Publish-Subscribe” tool

This is a model in which we provide middleware to glue requestors 
to workers, with much looser coupling.

The requests arrive as “published messages”, on “topics”

The workers monitor topics (“subscribe”) and then an idle worker 
can announce that it has taken on some task, and later, finished it.

18HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



Apache Kafka

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 19

➢ Functions like a distributed publish-subscribe messaging system (or a 
distributed streaming platform)
○ A high throughput, scalable messaging system
○ Distributed, reliable publish-subscribe system
○ Design as a message queue & Implementation as a distributed log service

➢ Originally developed by LinkedIn, now widely popular

➢ Features: Durability, Scalability, High Availability, High Throughput

➢ Check out the awesome Kafka “intro” video here.

https://youtu.be/06iRM1Ghr1k


What is Apache Kafka used for? (1)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 20

➢ The original use case (@LinkedIn):
○ To track user behavior on websites.

○ Site activity (page views, searches, or other actions users might take) is 
published to central topics, with one topic per activity type.

➢ Effective for two broad classes of applications:
○ Building real-time streaming data pipelines that reliably get data between 

systems or applications
○ Building real-time streaming applications that transform or react to the 

streams of data



What is Apache Kafka used for? (2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 21

➢ Lets you publish and subscribe to streams of records, similar to a 
message queue or enterprise messaging system

➢ Lets you store streams of records in a fault-tolerant way

➢ Lets you process streams of records as they occur

➢ Lets you have both offline and online message consumption



Apache Kafka: Fundamentals

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 22

➢ Kafka is run as a cluster on one or more servers

➢ The Kafka cluster stores streams of records in categories called topics

➢ Each record (or message) consists of a key, a value, and a timestamp

➢ Point-to-Point: Messages persisted in a queue, a particular message is 
consumed by a maximum of one consumer only

➢ Publish-Subscribe: Messages are persisted in a topic, consumers can 
subscribe to one or more topics and consume all the messages in that topic



Apache Kafka: Components

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 23

Logical Components:
➢ Topic: The named destination of partition
➢ Partition: One Topic can have multiple partitions and it is an unit of parallelism
➢ Record or Message: Key/Value pair (+ Timestamp)

Physical Components:
➢ Producer: The role to send message to broker
➢ Consumer: The role to receive message from broker
➢ Broker: One node of Kafka cluster
➢ ZooKeeper: Coordinator of Kafka cluster and consumer groups



Apache Kafka: Topics & Partitions (1)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 24

➢ A stream of messages belonging to a particular category is called a
topic (or a feed name to which records are published)

➢ Data is stored in topics.
➢ Topics in Kafka are always multi-subscriber -- a topic can have

zero, one, or many consumers that subscribe to the data written to it
➢ Topics are split into partitions. Topics may have many partitions, so

it can handle an arbitrary amount of data



Apache Kafka: Topics & Partitions (2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 25

➢ For each topic, the Kafka cluster
maintains a partitioned log that
looks like this:

➢ Each partition is an ordered,
immutable sequence of records
that is continually appended to -- a
structured commit log.

➢ Partition offset: The records in the
partitions are each assigned a
sequential id number called the
offset that uniquely identifies each
record within the partition.



Apache Kafka: Topics & Partitions (3)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 26

➢ The only metadata retained on a per-
consumer basis is the offset or
position of that consumer in the log.

➢ This offset is controlled by the
consumer -- normally a consumer will
advance its offset linearly as it reads
records (but it can also consume
records in any order it likes)



Apache Kafka: Topics & Partitions (4)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 27

The partitions in the log serve several purposes:
➢ Allow the log to scale beyond a size that will fit on a single server.

➢ Handles an arbitrary amount of data -- a topic may have many partitions

➢ Acts as the unit of parallelism



Apache Kafka: Distribution of Partitions(1)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 28

➢ The partitions are distributed over the servers in the Kafka cluster and each
partition is replicated for fault tolerance

➢ Each partition has one server acts as the “leader” (broker) and zero or more
servers act as “followers” (brokers).

➢ The leader handles all read and write requests for the partition

➢ The followers passively replicate the leader. If the leader fails, one of the
followers will automatically become the new leader.

➢ Load Balancing: Each server acts as a leader for some of its partitions and a
follower for others within the cluster.



Apache Kafka: Distribution of Partitions (2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 29

Here, a topic is configured into 
three partitions.

Partition 1 has two offset factors 0 
and 1.

Partition 2 has four offset factors 0, 
1, 2, and 3.

Partition 3 has one offset factor 0.

The id of the replica is same as the 
id of the server that hosts it.



Apache Kafka: Components

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 30

Logical Components:
➢ Topic: The named destination of partition
➢ Partition: One Topic can have multiple partitions and it is an unit of parallelism
➢ Record or Message: Key/Value pair (+ Timestamp)

Physical Components:
➢ Producer: The role to send message to broker
➢ Consumer: The role to receive message from broker
➢ Broker: One node of Kafka cluster
➢ ZooKeeper: Coordinator of Kafka cluster and consumer groups



Apache Kafka: Producers

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 31

➢ Producers publish data to the topics of their choice. 

➢ The producer is responsible for choosing which record to assign to 
which partition within the topic.

➢ Record to Topic: In a round-robin fashion simply to balance load or 
can be done according to some semantic partition function



Apache Kafka: Consumers

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 32

➢ Consumer group: Balance consumers to partitions

➢ Consumers label themselves with a consumer group name 

➢ Each record published to a topic is delivered to one consumer 
instance within each subscribing consumer group

➢ If all the consumer instances have the same consumer group, then the 
records will effectively be load balanced over the consumer instances.

➢ If all the consumer instances have different consumer groups, then 
each record will be broadcast to all the consumer processes.



Apache Kafka: Producers & Consumers

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 33

Example: 
A two server Kafka cluster hosting four 
partitions (P0 to P3) with two consumer 
groups (A & B). Consumer group A has 
two consumer instances (C1 & C2) and 
group B has four (C3 to C6).



Apache Kafka: Design Guarantees (1)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 34

➢ Records (or Messages) sent by a producer to a particular topic partition 
will be appended in the order they are sent. 

➢ A consumer instance sees records in the order they are stored in the log.

➢ For a topic with replication factor N, we will tolerate up to N-1 server 
failures without losing any records committed to the log.



Apache Kafka: Design Guarantees (2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 35

Message Delivery Semantics:
➢ At most once: Messages may be lost but are never redelivered.

➢ At least once: Messages are never lost but may be redelivered.

➢ Exactly once: Each message is delivered once and only once



Apache Kafka: Four Core APIs (1)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 36

Producer API:  Allows an application to publish a 
stream of records to one or more Kafka topics

Consumer API:  Allows an application to 
subscribe to one or more topics and process the 
stream of records produced to them

Streams API:  Allows an application to act as a 
stream processor -- consuming an input stream 
from one or more topics and producing an output 
stream to one or more output topics



Apache Kafka: Four Core APIs (2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 37

Connector API: 
Allows building and running producers or 
consumers that connect Kafka topics to existing 
applications or data systems. 

For example, a connector to a relational 
database might capture every change to a table.



Kafka ← Messaging + Storage + Streaming

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 38

➢ Messaging: 

○ The consumer group allows you to divide up processing over a 
collection of processes (as a queue) 

○ Allows you to broadcast messages to multiple consumer groups (as 
with publish-subscribe).

➢ Storage: Data written to Kafka is written to disk and replicated for fault-
tolerance. 

➢ Streaming: Takes continuous streams of data from input topics →  
Processing  →  Produces continuous streams of data to output topics.



Tricky aspects?

Using the publish-subscribe model for fault-tolerant request-reply 
interactions is actually not so simple.
Someone posts a request (easy), but now a random member of the 
worker pool wants to grab the request: a race condition.  
Kafka has a prepackaged mechanism for this, where a process 
can pick up a set of tasks, and nobody else will be  given the same 
ones “for a while”, but the work will be reassigned to some other 
process if somehow it never seems to finish

39HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



Tricky aspects? (cont)

Internally, this is a bit like “versioned object replace”.  Kafka 
implements it using a special internal form of published messages

… to break the tie, your server logic publishes an announcement:
Worker W has taken over task T.

Everyone trusts the first such announcement, ignores later ones.

Then when worker W finishes, it announces “Task T is complete”.
40HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



Why not use actual Zookeeper 
versioned files for this?

The Kafka developers could have done so, but wanted a higher performance 
solution.   They didn’t need a perfect solution.  

Kafka opts for “at least once” semantics.  There is a slightly complex way 
developers can enhance its properties, but doing so can cause it to freeze up 
during certain patterns of failure.

In choosing at least once, Kafka’s creators argue that in the web, requests get 
reissued for many reasons. Kafka doesn’t change the overall semantics.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 41



Tricky aspects?  (cont)

Now, we wire in a failure detector service, usually Apache 
Zookeeper.  We arrange to publish “Worker W has failed” or 
“Worker Z has joined the pool”.
With this, everyone will notice if W owned task T, but then crashed.  
T can be reactivated, or reissued.
So the problem is solved… but notice that it wasn’t transparent!

42HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



… a form of group membership!

We’ve previously seen group membership.  Here we have another 
case for that model!
This example is basically using Zookeeper + Apache to create 
virtual-synchrony groups, and the resulting semantics are basically 
identical to what Derecho does for Paxos (but much slower).
There is a whole mathematical theory, which we won’t cover, but it 
could be used to gain certainty that a solution is correct.

43HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP



SUMMARY

Many big data systems are built using the standard Apache 
tools.

We’ve now seen a number of them.  

The resulting systems are large and complex, often have many 
“moving parts”, and manage themselves.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 44


	CS5412 / Lecture 22�Apache Tools – Part 2
	PUTTING IT ALL TOGETHER
	Hadoop Ecosystem: Processing
	Apache Hive: SQL on MapReduce
	Apache Hive: SQL on MapReduce
	Apache Hive
	Apache Pig: Scripting on MapReduce
	Apache Pig: Scripting on MapReduce
	Apache Hive & ApachePig
	Apache Hive   vs     Apache Pig
	Apache Hive vs ApachePig: example
	Comment: “Client side”??
	Hadoop Ecosystem: Data Ingestion
	Data Ingestion Systems/Tools (1)
	Data Ingestion Systems/Tools (2)
	Concept: “Publish-Subscribe” tool
	Models for cooperation
	Concept: “Publish-Subscribe” tool
	Apache Kafka
	What is Apache Kafka used for? (1)
	What is Apache Kafka used for? (2)
	Apache Kafka: Fundamentals
	Apache Kafka: Components
	Apache Kafka: Topics & Partitions (1)
	Apache Kafka: Topics & Partitions (2)
	Apache Kafka: Topics & Partitions (3)
	Apache Kafka: Topics & Partitions (4)
	Apache Kafka: Distribution of Partitions(1)
	Apache Kafka: Distribution of Partitions (2)
	Apache Kafka: Components
	Apache Kafka: Producers
	Apache Kafka: Consumers
	Apache Kafka: Producers & Consumers
	Apache Kafka: Design Guarantees (1)
	Apache Kafka: Design Guarantees (2)
	Apache Kafka: Four Core APIs (1)
	Apache Kafka: Four Core APIs (2)
	Kafka ←  Messaging + Storage + Streaming
	Tricky aspects?
	Tricky aspects? (cont)
	Why not use actual Zookeeper versioned files for this?
	Tricky aspects?  (cont)
	… a form of group membership!
	SUMMARY

