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MapReduce pattern: Sharded data set
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MapReduce:  Map step

The leader maps some task over the n workers.  This can be done in any 
way that makes sense for the application.

Each worker performs its share of the work by applying the requested 
function to the data in its shard.  

When finished, each worker will have a list of new (key,value) pairs as its 
share of the result.
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MapReduce pattern: Sharded data set
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MapReduce pattern: Map (first step)
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MapReduce: Shuffle exchange

Each worker breaks its key-value result set into n parts by applying 
the sharding rule to the keys.  

• Now it ha s one  subse t (perha ps empty) for ea ch other worker.
• It ha nds tha t subse t to corresponding worker.

Every worker wa its  until it ha s its  one  messa ge  from ea ch worker.

Now it ca n merge  the  n “pieces”, sort them, group by key

It now ha s a  lis t of (key, {se t-of-va lues}) tuples.  It ca lls  reduce  one  by one  on these .
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MapReduce pattern: Map (first step)
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MapReduce pattern: Map (first step)
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MapReduce pattern: Map (first step)
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MapReduce pattern: Shuffle
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MapReduce pattern: Sort

Cornell CS4414 - Fall 2021. 11

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3Subset 2Subset 1
Subset 3Subset 2Subset 1

Subset 3Subset 2Subset 1

Not shown: There are additional messages being sent from A to B and C, from B to 
A and C, and from C to A and B.  This “shuffles” the data



MapReduce pattern: Map (first step)
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MapReduce pattern: Shuffle
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MapReduce pattern: Sort
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MapReduce pattern: reduce
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Example: Word Count 

The use case scenario:  Start with standard WC for one file.

We have a large file of documents (the input elements) 
Documents  a re  words  separa ted  by  whi tespace .
Count the number of times each distinct word appears in the file.

… with MapReduce we can extend this concept to huge numbers of files.
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Example: Word Count 
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Why Do We Care About Counting Words?

➢ NLP systems train on n-grams: counts of n-word sequences

➢Word or n-gram count is challenging over massive amounts of data
○ Using a single compute node would be too time-consuming
○ Using distributed nodes requires moving data
○ Number of unique words can easily exceed available memory -- would need to store to disk

➢Many common tasks are very similar to word count, e.g., log file analysis 
where we might look for the storage devices with the highest error rates, 
to service the ones that are most likely to fail soon



Word Count Using MapReduce 
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map(key, value):
// key: document ID; value: text of 
document

for (each word w in value)
emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers

result = 0;
for (each integer v on value-list)

result += v;
emit(key, result);



Word Count Using MapReduce 
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the cat sat on the mat

the aardvark sat on the sofa

Map & Reduce
aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Input
Result



Sharded Word Count: Ma p
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the 1
cat 1
sat 1
on 1
the 1
mat 1

Input

the cat sat on the mat

the aardvark sat on the sofa

Map, 
run on 
shard 1

Map, 
run on 
shard 2

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1



Shuffle & Sort
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the 1
cat 1
sat 1
on 1
the 1
mat 1

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

Mapper 
Output

aardvark 1
cat 1

sat 1, 1
sofa 1

Shuffle & Sort

Intermediate Data

on 1,1
mat 1

the 1,1,1,1

Keys that mapped to shard 1 
are still on shard 1.  The sort 
was internal to shard 1

Keys that mapped to shard 2



Word Count: Reducer
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Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Result
aardvark 1

cat 1
sat 2

sofa 1

on 2
mat 1
the 4

aardvark 1
cat 1

sat 1, 1
sofa 1

on 1,1
mat 1

the 1,1,1,1



Notice that…
D a t a  s t a y s  sha rded a t a ll times.  Origina lly, or document na mes de te rmined which 
document wa s on which sha rd.  Now, a fte r the  shuffle  excha nge , the  words themselves 
a re  the  keys, a nd de te rmined which sha rd tha t word count will be  on

Keys are sorted and grouped shard -by-sha rd.  We never merge  a nd sort the  full da ta  se t

Reduce runs on (key, {v1, …. vk}) a nd outputs (key,reduced-va lue), once  per key

Output is never collected to one place:  We retain it in a sha rded form
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Who uses Ma pReduce?

Over the past decade, much of the parallel computing needed for big 
da ta  a na lytics a nd ma chine  lea rning ha s shifted towa rds Ma pReduce
fra meworks.

On high performance computing (HPC) systems, people use AllReduce in 
the  MPI (messa ge  pa ssing inte rfa ce) libra ry.

As a result ,  Ma pReduce is the  workhorse  of modern cloud computing.
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Spark Project

Under taken  a t  UC Berke ley

Goal was to speed Ma pReduce up, focusing on the  Ha doop version

Part of the Berkeley “View from the clouds” vision for cloud computing 
resea rch, a uthored by Ion Stoica
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Spark Ecosystem: A Unified Pipeline

26

Note: Spark is not designed for IoT real-time.  The streaming layer is used for 
continuous input streams like financial data from stock markets, where events occur 
steadily and must be processed as they occur.  But there is no sense of direct I/O 
from sensors/actuators.  For IoT use cases, Spark would not be suitable.
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Key ideas

In Hadoop, each developer tends to invent his or her own style of work

With Spark, serious effort to standardize around the idea that people are 
writing pa ra lle l code  tha t often runs for ma ny “cycles” or “ite ra tions” in 
which a  lot of reuse  of informa tion occurs.

Spark centers on Resilient Distributed Dataset, RDDs, that capture the 
informa tion be ing reused.
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How this works

You express your application as a graph of RDDs.

The graph is only evaluated as needed, and they only compute the RDDs 
a ctua lly needed for the  output you ha ve  requested.

Then Spark can be told to cache the reusea ble informa tion e ither in 
memory, in SSD stora ge  or even on disk, ba sed on when it will be needed 
again, how big it is, and how costly it would be to recreate.

You write the RDD logic and control all of this via hints
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Spark Basics

29

There  a re  two wa ys to ma nipula te  da ta  in Spa rk
• Spa rk She ll:

 Inte ra ctive  – for lea rning or da ta  explora tion
 Python or Sca la

• Spa rk Applica tions
 For la rge  sca le  da ta  processing
 Python, Sca la , or J a va
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Spark Shell

30

The  Spa rk She ll provides inte ra ctive  da ta  explora tion 
(REPL)

REPL: Repeat/Evaluate/Print Loop
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Spark Fundamentals

31

•Spark Context

•Resilient Distributed 
Data

•Transformations

•Actions

Example of an 
application:
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Spark Context (1)

32

•Every Spark application requires a spark context: the main 
entry point to the Spark API

•Spark Shell provides a preconfigured Spark Context called “sc”
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Spark Context (2)

33

•Standalone applications  Driver code  Spark Context
•Spark Context holds configuration information and represents 
connection to a Spark cluster

Standalone Application 
(Drives Computation)
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Spark Context (3)

34

Spa rk context works a s a  c lient a nd represents connection to a  Spa rk cluste r
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Spark Fundamentals

35

•Spark Context

•Resilient Distributed 
Data

•Transformations

•Actions

Example of an application:
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Resilient Distributed Dataset (RDD)

36

The RDD(Resilient Distributed Dataset) is the fundamental unit of data in Spark: An 
Immutable collection of objects (or records, or elements) that can be operated on “in 
parallel” (spread across a cluster)
Resilient -- if data in memory is lost, it can be recreated

• Recover from node  fa ilures
• An RDD keeps its  linea ge  informa tion  it ca n be  recrea ted from 

pa rent RDDs
Distributed -- processed a cross the  cluste r

• Ea ch RDD is composed of one  or more  pa rtitions  (more  pa rtitions –
more  pa ra lle lism)

Dataset -- initia l da ta  ca n come from a  file  or be  crea ted
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RDDs

37

Key Idea: Write applications in terms of transformations 
on distributed datasets.  One RDD per transformation.

• Orga nize  the  RDDs into a  DAG showing how da ta  flows.
• RDD ca n be  sa ved a nd reused or recomputed.  Spa rk ca n 

sa ve  it to disk if the  da ta se t does not fit in memory
• Built through pa ra lle l tra nsforma tions (ma p, filte r, group-by, 

join, e tc).  Automa tica lly rebuilt on fa ilure
• Controlla ble  persistence  (e .g. ca ching in RAM)
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RDDs are designed to be “immutable”

38

• Crea te  once , then reuse  without cha nges.  Spa rk knows 
linea ge   ca n be  recrea ted a t a ny time   Fa ult-tole ra nce

• Avoids da ta  inconsistency problems (no simulta neous 
upda tes)  Correctness

• Ea sily live  in memory a s on disk  Ca ching  Sa fe  to sha re  
a cross processes/ta sks  Improves performa nce

• Tra deoff: (Fault-tolerance & Correctness)  vs (Disk Memory & CPU)
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Creating a RDD

39

Three  wa ys to crea te  a  RDD
• From a  file  or se t of files
• From da ta  in memory
• From a nother RDD
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Example: A File-ba sed RDD
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Spark Fundamentals

41

•Spark Context

•Resilient Distributed 
Data

•Transformations

•Actions

Example of an application:
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RDD Operations

42

Two types of operations
Transformations: Define a 
new RDD based on current 
RDD(s)
Actions: return values
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RDD Transformations

43

•Set of operations on a RDD that define how they should 
be transformed

•As in relational algebra, the application of a 
transformation to an RDD yields a new RDD (because 
RDD are immutable)

•Transformations are lazily evaluated, which allow for 
optimizations to take place before execution

•Examples: map(), filter(), groupByKey(), sortByKey(), 
etc.
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Example: map and filter Transformations
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RDD Actions

45

•Apply transformation chains on RDDs, eventually performing 
some additional operations (e.g., counting)

•Some actions only store data to an external data source (e.g. 
HDFS), others fetch data from the RDD (and its transformation 
chain) upon which the action is applied, and convey it to the 
driver

•Some common actions
count() – return the number of elements
take(n) – return an array of the first n elements
collect()– return an array of all elements
saveAsTextFile(file) – save to text file(s)
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Graph of RDDs

 A collection of RDDs ca n be  understood a s a  gra ph

 Nodes in the  gra ph a re  the  RDDs, which mea ns the  code  but a lso the  
a ctua l da ta  object tha t could would crea te  a t runtime when executed on 
specific  pa ra meters + da ta .  Reminder: Ha doop is a  “rea d only” model, so 
we ca n “ma teria lize” a n RDD a ny time we like .

 Edges represent how da ta  objects a re  a ccessed: RDD B might consume 
the  object crea ted by RDD A.  This gives us a  directed edge  A → B
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Lazy Execution of RDDs (1)

47

Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (2)

48

Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (3)

49

Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (4)

50

Data in RDDs is not processed 
until an action is performed
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Lazy Execution of RDDs (5)

51

Data in RDDs is not processed 
until an action is performed

Output Action “triggers” computation, pull model
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Opportunities This Enables

 On-demand optimization : Spark can behave like a compiler by first building a 
potentially complex RDD graph, but then trimming away unneeded 
computations that for today’s purpose, won’t be used.    

 Caching for later reuse.
 Graph transformations : A significant amount of effort is going into this area.  It 

is a lot like compiler-managed program transformation and aims at simplifying 
and speeding up the computation that will occur.

 Dynamic decisions about what to schedule and when .  Concept: minimum 
adequate set  of input objects: RDD can run if all  its inputs are ready
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Example: Mine error logs

53

Loa d e rror messa ges from a  log into memory, then inte ra ctive ly 
sea rch for va rious pa tte rns:

lines = spark.textFile(“hdfs://...”)  HadoopRDD

errors = lines.filter(lambda s: s.startswith(“ERROR”)) FilteredRDD

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()

Result: full-text sea rch of Wikipedia  in 0.5 sec (vs 20 sec for on-disk da ta )
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Key Idea: Elastic parallelism

RDDs operations are designed to offer embarrassing parallelism.

Spark  wi l l  spread  the  task  over  the  nodes  where  da ta  res ides ,  o f fe rs  a  h igh ly  
concurrent execution tha t minimizes de la ys.  Term: “pa rtitioned computa tion” .

If some component crashes or even is just slow, Spark simply kills that task and 
la unches a  substitute .
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RDD and Partitions (Parallelism example)
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RDD Graph: Data Set vs Partition Views

56

Much like in Hadoop MapReduce, each RDD is associated to 
(input) partitions
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RDDs: Data Locality

57

•Data Locality Principle
 Keep high-value RDDs precomputed, in cache or SDD
 Run tasks that need the specific RDD with those same inputs 

on the node where the cached copy resides.
 This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you 
build the RDD, Spark runtime and optimization planner, and the 
underlying YARN resource manager.
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RDDs -- Summa ry

58

RDD a re  pa rtitioned, loca lity a wa re , distributed 
collections
 RDD a re  immuta ble

RDD a re  da ta  structures tha t:
 Either point to a  direct da ta  source  (e .g. HDFS)
 Apply some tra nsforma tions to its  pa rent RDD(s) to 

genera te  new da ta  e lements
Computa tions on RDDs
 Represented by la zily eva lua ted linea ge  DAGs composed 

by cha ined RDDs
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Lifetime of a Job in Spark
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Anatomy of a Spark Application

60

Cluster Manager 
(YARN/Mesos)
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Typical RDD pattern of use
Instead of doing a lot of work in each RDD, developers split 
ta sks into lots of sma ll RDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute a nd 
hints to Spa rk tha t it should ca che  those .
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Why is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the same 
nodes.
If MapReduce jobs were arbitrary programs, this wouldn’t help because reuse 
would be  very ra re .
But in fact the MapReduce model is very repetitious and iterative, and often 
a pplies the  sa me tra nsforma tions a ga in a nd a ga in to the  sa me input files.

 Those  pa rticula r RDDs become grea t ca ndida tes for ca ching.
 Ma pReduce progra mmer ma y not know how ma ny ite ra tions will occur, but 

Spa rk itse lf is  sma rt enough to evict RDDs if they don’t a ctua lly ge t reused.
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Iterative Algorithms: Spark vs MapReduce
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Today’s Topics

64

•Motivation
•Spark Basics
•Spark Programming
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Spark Programming (1)

65

Crea ting RDDs
# Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

# Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)
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Spark Programming (2)

66

Ba sic  Tra nsforma tions

nums = sc.parallelize([1, 2, 3])

# Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}

# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP



Spark Programming (3)

67

Ba sic  Actions
nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

# Return first K elements
nums.take(2) # => [1, 2]

# Count number of elements
nums.count() # => 3

# Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6
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Spark Programming (4)

68

Working with Key-Va lue  Pa irs
Spark’s “distributed reduce” transformations operate on RDDs of 
key-value pairs

Python:  pair = (a, b)

pair[0] # => a

pair[1] # => b

Scala:   val pair = (a, b)

pair._1 // => a

pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b);

pair._1 // => a

pair._2 // => b
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Spark Programming (5)

69

Some Key-Va lue  Opera tions

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y)    # => {(cat, 3), (dog, 1)}

pets.groupByKey()     # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey()      # => {(cat, 1), (cat, 2), (dog, 1)}
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Example: Word Count

70

lines = sc.textFile(“hamlet.txt”)
counts = lines.flatMap(lambda line: line.split(“ “))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)
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Example: Spark Streaming

71

Represents strea ms a s a  se ries of RDDs over time (typica lly sub second inte rva ls, but it 
is  configura ble)

val spammers = sc.sequenceFile(“hdfs://spammers.seq”)
sc.twitterStream(...)

.filter(t => t.text.contains(“Santa Clara University”))

.transform(tweets => tweets.map(t => (t.user, t)).join(spammers))

.print()
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Spark: Combining Libraries (Unified Pipeline)
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# Load data using Spark SQL

points = spark.sql(“select latitude, longitude from tweets”)

# Train a machine learning model

model = KMeans.train(points, 10)

# Apply it to a stream

sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))

.reduceByWindow(“5s”, lambda a, b: a + b)



Spark: Setting the Level of Parallelism

73

All the  pa ir RDD opera tions ta ke  a n optiona l second 
pa ra mete r for number of ta sks

words.reduceByKey(lambda x, y: x + y, 5)

words.groupByKey(5)

visits.join(pageViews, 5)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP



Summary

Spark is a powerful “manager” for big data computing.
It centers on a job scheduler for Hadoop (MapReduce) that is smart 
about where to run each task: co-locate task with data.
The data objects are “RDDs”:  a kind of recipe for generating a file from 
an underlying data collection.  RDD caching allows Spark to run mostly 
from memory-mapped data, for speed.

74

• Online tutorials: spark.apache.org/docs/latest
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP
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