
CS5412 / Lecture 21
Apache Spark and RDDs

Kishore Pusukuri,
Spring 2021

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 1

MapReduce pattern: Sharded data set

Cornell CS4414 - Fall 2021. 2

Leader Worker threads

Shard A Shard B Shard C

MapReduce: Map step

The leader maps some task over the n workers. This can be done in any
way that makes sense for the application.

Each worker performs its share of the work by applying the requested
function to the data in its shard.

When finished, each worker will have a list of new (key,value) pairs as its
share of the result.

Cornell CS4414 - Fall 2021. 3

MapReduce pattern: Sharded data set

Cornell CS4414 - Fall 2021. 4

Leader Worker threads

Shard A Shard B Shard C

MapReduce pattern: Map (first step)

Cornell CS4414 - Fall 2021. 5

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

MapReduce: Shuffle exchange

Each worker breaks its key-value result set into n parts by applying
the sharding rule to the keys.

• Now it ha s one subse t (perha ps empty) for ea ch other worker.
• It ha nds tha t subse t to corresponding worker.

Every worker wa its until it ha s its one messa ge from ea ch worker.

Now it ca n merge the n “pieces”, sort them, group by key

It now ha s a lis t of (key, {se t-of-va lues}) tuples. It ca lls reduce one by one on these .

Cornell CS4414 - Fa ll 2021. 6

MapReduce pattern: Map (first step)

Cornell CS4414 - Fall 2021. 7

Leader Worker threads

Shard A Shard B Shard C

MapReduce pattern: Map (first step)

Cornell CS4414 - Fall 2021. 8

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

MapReduce pattern: Map (first step)

Cornell CS4414 - Fall 2021. 9

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

MapReduce pattern: Shuffle

Cornell CS4414 - Fall 2021. 10

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

MapReduce pattern: Sort

Cornell CS4414 - Fall 2021. 11

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3Subset 2Subset 1
Subset 3Subset 2Subset 1

Subset 3Subset 2Subset 1

Not shown: There are additional messages being sent from A to B and C, from B to
A and C, and from C to A and B. This “shuffles” the data

MapReduce pattern: Map (first step)

Cornell CS4414 - Fall 2021. 12

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

MapReduce pattern: Shuffle

Cornell CS4414 - Fall 2021. 13

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

Subset 3
Subset 2

Subset 1

MapReduce pattern: Sort

Cornell CS4414 - Fall 2021. 14

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Subset 3Subset 2Subset 1
Subset 3Subset 2Subset 1

Subset 3Subset 2Subset 1

MapReduce pattern: reduce

Cornell CS4414 - Fall 2021. 15

Leader Worker threads

Shard A Shard B Shard C

Result A Result B Result C

Reduced results A Reduced results B Reduced results C

Example: Word Count

The use case scenario: Start with standard WC for one file.

We have a large file of documents (the input elements)
Documents a re words separa ted by whi tespace .
Count the number of times each distinct word appears in the file.

… with MapReduce we can extend this concept to huge numbers of files.

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 16

Example: Word Count

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 17

Why Do We Care About Counting Words?

➢ NLP systems train on n-grams: counts of n-word sequences

➢Word or n-gram count is challenging over massive amounts of data
○ Using a single compute node would be too time-consuming
○ Using distributed nodes requires moving data
○ Number of unique words can easily exceed available memory -- would need to store to disk

➢Many common tasks are very similar to word count, e.g., log file analysis
where we might look for the storage devices with the highest error rates,
to service the ones that are most likely to fail soon

Word Count Using MapReduce

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 18

map(key, value):
// key: document ID; value: text of
document

for (each word w in value)
emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers

result = 0;
for (each integer v on value-list)

result += v;
emit(key, result);

Word Count Using MapReduce

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 19

the cat sat on the mat

the aardvark sat on the sofa

Map & Reduce
aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Input
Result

Sharded Word Count: Ma p

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 20

the 1
cat 1
sat 1
on 1
the 1
mat 1

Input

the cat sat on the mat

the aardvark sat on the sofa

Map,
run on
shard 1

Map,
run on
shard 2

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

Shuffle & Sort

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 21

the 1
cat 1
sat 1
on 1
the 1
mat 1

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

Mapper
Output

aardvark 1
cat 1

sat 1, 1
sofa 1

Shuffle & Sort

Intermediate Data

on 1,1
mat 1

the 1,1,1,1

Keys that mapped to shard 1
are still on shard 1. The sort
was internal to shard 1

Keys that mapped to shard 2

Word Count: Reducer

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 22

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Result
aardvark 1

cat 1
sat 2

sofa 1

on 2
mat 1
the 4

aardvark 1
cat 1

sat 1, 1
sofa 1

on 1,1
mat 1

the 1,1,1,1

Notice that…
D a t a s t a y s sha rded a t a ll times. Origina lly, or document na mes de te rmined which
document wa s on which sha rd. Now, a fte r the shuffle excha nge , the words themselves
a re the keys, a nd de te rmined which sha rd tha t word count will be on

Keys are sorted and grouped shard -by-sha rd. We never merge a nd sort the full da ta se t

Reduce runs on (key, {v1, …. vk}) a nd outputs (key,reduced-va lue), once per key

Output is never collected to one place: We retain it in a sha rded form

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 23

Who uses Ma pReduce?

Over the past decade, much of the parallel computing needed for big
da ta a na lytics a nd ma chine lea rning ha s shifted towa rds Ma pReduce
fra meworks.

On high performance computing (HPC) systems, people use AllReduce in
the MPI (messa ge pa ssing inte rfa ce) libra ry.

As a result , Ma pReduce is the workhorse of modern cloud computing.

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 24

Spark Project

Under taken a t UC Berke ley

Goal was to speed Ma pReduce up, focusing on the Ha doop version

Part of the Berkeley “View from the clouds” vision for cloud computing
resea rch, a uthored by Ion Stoica

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 25

Spark Ecosystem: A Unified Pipeline

26

Note: Spark is not designed for IoT real-time. The streaming layer is used for
continuous input streams like financial data from stock markets, where events occur
steadily and must be processed as they occur. But there is no sense of direct I/O
from sensors/actuators. For IoT use cases, Spark would not be suitable.

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Key ideas

In Hadoop, each developer tends to invent his or her own style of work

With Spark, serious effort to standardize around the idea that people are
writing pa ra lle l code tha t often runs for ma ny “cycles” or “ite ra tions” in
which a lot of reuse of informa tion occurs.

Spark centers on Resilient Distributed Dataset, RDDs, that capture the
informa tion be ing reused.

27HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

How this works

You express your application as a graph of RDDs.

The graph is only evaluated as needed, and they only compute the RDDs
a ctua lly needed for the output you ha ve requested.

Then Spark can be told to cache the reusea ble informa tion e ither in
memory, in SSD stora ge or even on disk, ba sed on when it will be needed
again, how big it is, and how costly it would be to recreate.

You write the RDD logic and control all of this via hints
28HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Basics

29

There a re two wa ys to ma nipula te da ta in Spa rk
• Spa rk She ll:

 Inte ra ctive – for lea rning or da ta explora tion
 Python or Sca la

• Spa rk Applica tions
 For la rge sca le da ta processing
 Python, Sca la , or J a va

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Shell

30

The Spa rk She ll provides inte ra ctive da ta explora tion
(REPL)

REPL: Repeat/Evaluate/Print Loop

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Fundamentals

31

•Spark Context

•Resilient Distributed
Data

•Transformations

•Actions

Example of an
application:

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Context (1)

32

•Every Spark application requires a spark context: the main
entry point to the Spark API

•Spark Shell provides a preconfigured Spark Context called “sc”

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Context (2)

33

•Standalone applications Driver code Spark Context
•Spark Context holds configuration information and represents
connection to a Spark cluster

Standalone Application
(Drives Computation)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Context (3)

34

Spa rk context works a s a c lient a nd represents connection to a Spa rk cluste r

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Fundamentals

35

•Spark Context

•Resilient Distributed
Data

•Transformations

•Actions

Example of an application:

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Resilient Distributed Dataset (RDD)

36

The RDD(Resilient Distributed Dataset) is the fundamental unit of data in Spark: An
Immutable collection of objects (or records, or elements) that can be operated on “in
parallel” (spread across a cluster)
Resilient -- if data in memory is lost, it can be recreated

• Recover from node fa ilures
• An RDD keeps its linea ge informa tion it ca n be recrea ted from

pa rent RDDs
Distributed -- processed a cross the cluste r

• Ea ch RDD is composed of one or more pa rtitions (more pa rtitions –
more pa ra lle lism)

Dataset -- initia l da ta ca n come from a file or be crea ted

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDDs

37

Key Idea: Write applications in terms of transformations
on distributed datasets. One RDD per transformation.

• Orga nize the RDDs into a DAG showing how da ta flows.
• RDD ca n be sa ved a nd reused or recomputed. Spa rk ca n

sa ve it to disk if the da ta se t does not fit in memory
• Built through pa ra lle l tra nsforma tions (ma p, filte r, group-by,

join, e tc). Automa tica lly rebuilt on fa ilure
• Controlla ble persistence (e .g. ca ching in RAM)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDDs are designed to be “immutable”

38

• Crea te once , then reuse without cha nges. Spa rk knows
linea ge ca n be recrea ted a t a ny time Fa ult-tole ra nce

• Avoids da ta inconsistency problems (no simulta neous
upda tes) Correctness

• Ea sily live in memory a s on disk Ca ching Sa fe to sha re
a cross processes/ta sks Improves performa nce

• Tra deoff: (Fault-tolerance & Correctness) vs (Disk Memory & CPU)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Creating a RDD

39

Three wa ys to crea te a RDD
• From a file or se t of files
• From da ta in memory
• From a nother RDD

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Example: A File-ba sed RDD

40HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Fundamentals

41

•Spark Context

•Resilient Distributed
Data

•Transformations

•Actions

Example of an application:

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD Operations

42

Two types of operations
Transformations: Define a
new RDD based on current
RDD(s)
Actions: return values

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD Transformations

43

•Set of operations on a RDD that define how they should
be transformed

•As in relational algebra, the application of a
transformation to an RDD yields a new RDD (because
RDD are immutable)

•Transformations are lazily evaluated, which allow for
optimizations to take place before execution

•Examples: map(), filter(), groupByKey(), sortByKey(),
etc.

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Example: map and filter Transformations

44HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD Actions

45

•Apply transformation chains on RDDs, eventually performing
some additional operations (e.g., counting)

•Some actions only store data to an external data source (e.g.
HDFS), others fetch data from the RDD (and its transformation
chain) upon which the action is applied, and convey it to the
driver

•Some common actions
count() – return the number of elements
take(n) – return an array of the first n elements
collect()– return an array of all elements
saveAsTextFile(file) – save to text file(s)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Graph of RDDs

 A collection of RDDs ca n be understood a s a gra ph

 Nodes in the gra ph a re the RDDs, which mea ns the code but a lso the
a ctua l da ta object tha t could would crea te a t runtime when executed on
specific pa ra meters + da ta . Reminder: Ha doop is a “rea d only” model, so
we ca n “ma teria lize” a n RDD a ny time we like .

 Edges represent how da ta objects a re a ccessed: RDD B might consume
the object crea ted by RDD A. This gives us a directed edge A → B

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 46

Lazy Execution of RDDs (1)

47

Data in RDDs is not processed
until an action is performed

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lazy Execution of RDDs (2)

48

Data in RDDs is not processed
until an action is performed

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lazy Execution of RDDs (3)

49

Data in RDDs is not processed
until an action is performed

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lazy Execution of RDDs (4)

50

Data in RDDs is not processed
until an action is performed

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lazy Execution of RDDs (5)

51

Data in RDDs is not processed
until an action is performed

Output Action “triggers” computation, pull model

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Opportunities This Enables

 On-demand optimization : Spark can behave like a compiler by first building a
potentially complex RDD graph, but then trimming away unneeded
computations that for today’s purpose, won’t be used.

 Caching for later reuse.
 Graph transformations : A significant amount of effort is going into this area. It

is a lot like compiler-managed program transformation and aims at simplifying
and speeding up the computation that will occur.

 Dynamic decisions about what to schedule and when . Concept: minimum
adequate set of input objects: RDD can run if all its inputs are ready

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 52

Example: Mine error logs

53

Loa d e rror messa ges from a log into memory, then inte ra ctive ly
sea rch for va rious pa tte rns:

lines = spark.textFile(“hdfs://...”) HadoopRDD

errors = lines.filter(lambda s: s.startswith(“ERROR”)) FilteredRDD

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()

Result: full-text sea rch of Wikipedia in 0.5 sec (vs 20 sec for on-disk da ta)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Key Idea: Elastic parallelism

RDDs operations are designed to offer embarrassing parallelism.

Spark wi l l spread the task over the nodes where da ta res ides , o f fe rs a h igh ly
concurrent execution tha t minimizes de la ys. Term: “pa rtitioned computa tion” .

If some component crashes or even is just slow, Spark simply kills that task and
la unches a substitute .

54HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD and Partitions (Parallelism example)

55HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDD Graph: Data Set vs Partition Views

56

Much like in Hadoop MapReduce, each RDD is associated to
(input) partitions

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDDs: Data Locality

57

•Data Locality Principle
 Keep high-value RDDs precomputed, in cache or SDD
 Run tasks that need the specific RDD with those same inputs

on the node where the cached copy resides.
 This can maximize in-memory computational performance.

Requires cooperation between your hints to Spark when you
build the RDD, Spark runtime and optimization planner, and the
underlying YARN resource manager.

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

RDDs -- Summa ry

58

RDD a re pa rtitioned, loca lity a wa re , distributed
collections
 RDD a re immuta ble

RDD a re da ta structures tha t:
 Either point to a direct da ta source (e .g. HDFS)
 Apply some tra nsforma tions to its pa rent RDD(s) to

genera te new da ta e lements
Computa tions on RDDs
 Represented by la zily eva lua ted linea ge DAGs composed

by cha ined RDDs

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Lifetime of a Job in Spark

59HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Anatomy of a Spark Application

60

Cluster Manager
(YARN/Mesos)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Typical RDD pattern of use
Instead of doing a lot of work in each RDD, developers split
ta sks into lots of sma ll RDDs

These are then organized into a DAG.

Developer anticipates which will be costly to recompute a nd
hints to Spa rk tha t it should ca che those .

61HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Why is this a good strategy?

Spark tries to run tasks that will need the same intermediary data on the same
nodes.
If MapReduce jobs were arbitrary programs, this wouldn’t help because reuse
would be very ra re .
But in fact the MapReduce model is very repetitious and iterative, and often
a pplies the sa me tra nsforma tions a ga in a nd a ga in to the sa me input files.

 Those pa rticula r RDDs become grea t ca ndida tes for ca ching.
 Ma pReduce progra mmer ma y not know how ma ny ite ra tions will occur, but

Spa rk itse lf is sma rt enough to evict RDDs if they don’t a ctua lly ge t reused.

62HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Iterative Algorithms: Spark vs MapReduce

63HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Today’s Topics

64

•Motivation
•Spark Basics
•Spark Programming

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (1)

65

Crea ting RDDs
Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (2)

66

Ba sic Tra nsforma tions

nums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (3)

67

Ba sic Actions
nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums.take(2) # => [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x + y) # => 6

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (4)

68

Working with Key-Va lue Pa irs
Spark’s “distributed reduce” transformations operate on RDDs of
key-value pairs

Python: pair = (a, b)

pair[0] # => a

pair[1] # => b

Scala: val pair = (a, b)

pair._1 // => a

pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b);

pair._1 // => a

pair._2 // => b
HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark Programming (5)

69

Some Key-Va lue Opera tions

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y) # => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Example: Word Count

70

lines = sc.textFile(“hamlet.txt”)
counts = lines.flatMap(lambda line: line.split(“ “))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Example: Spark Streaming

71

Represents strea ms a s a se ries of RDDs over time (typica lly sub second inte rva ls, but it
is configura ble)

val spammers = sc.sequenceFile(“hdfs://spammers.seq”)
sc.twitterStream(...)

.filter(t => t.text.contains(“Santa Clara University”))

.transform(tweets => tweets.map(t => (t.user, t)).join(spammers))

.print()

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Spark: Combining Libraries (Unified Pipeline)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP 72

Load data using Spark SQL

points = spark.sql(“select latitude, longitude from tweets”)

Train a machine learning model

model = KMeans.train(points, 10)

Apply it to a stream

sc.twitterStream(...)

.map(lambda t: (model.predict(t.location), 1))

.reduceByWindow(“5s”, lambda a, b: a + b)

Spark: Setting the Level of Parallelism

73

All the pa ir RDD opera tions ta ke a n optiona l second
pa ra mete r for number of ta sks

words.reduceByKey(lambda x, y: x + y, 5)

words.groupByKey(5)

visits.join(pageViews, 5)

HTTP:/ /WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

Summary

Spark is a powerful “manager” for big data computing.
It centers on a job scheduler for Hadoop (MapReduce) that is smart
about where to run each task: co-locate task with data.
The data objects are “RDDs”: a kind of recipe for generating a file from
an underlying data collection. RDD caching allows Spark to run mostly
from memory-mapped data, for speed.

74

• Online tutorials: spark.apache.org/docs/latest
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2021SP

	CS5412 / Lecture 21�Apache Spark and RDDs
	MapReduce pattern: Sharded data set
	MapReduce: Map step
	MapReduce pattern: Sharded data set
	MapReduce pattern: Map (first step)
	MapReduce: Shuffle exchange
	MapReduce pattern: Map (first step)
	MapReduce pattern: Map (first step)
	MapReduce pattern: Map (first step)
	MapReduce pattern: Shuffle
	MapReduce pattern: Sort
	MapReduce pattern: Map (first step)
	MapReduce pattern: Shuffle
	MapReduce pattern: Sort
	MapReduce pattern: reduce
	Example: Word Count
	Example: Word Count
	Word Count Using MapReduce
	Word Count Using MapReduce
	Sharded Word Count: Map
	Shuffle & Sort
	Word Count: Reducer
	Notice that…
	Who uses MapReduce?
	Spark Project
	Spark Ecosystem: A Unified Pipeline
	Key ideas
	How this works
	Spark Basics
	Spark Shell
	Spark Fundamentals
	Spark Context (1)
	Spark Context (2)
	Spark Context (3)
	Spark Fundamentals
	Resilient Distributed Dataset (RDD)
	RDDs
	RDDs are designed to be “immutable”
	Creating a RDD
	Example: A File-based RDD
	Spark Fundamentals
	RDD Operations
	RDD Transformations
	Example: map and filter Transformations
	RDD Actions
	Graph of RDDs
	Lazy Execution of RDDs (1)
	Lazy Execution of RDDs (2)
	Lazy Execution of RDDs (3)
	Lazy Execution of RDDs (4)
	Lazy Execution of RDDs (5)
	Opportunities This Enables
	Example: Mine error logs
	Key Idea: Elastic parallelism	
	RDD and Partitions (Parallelism example)
	RDD Graph: Data Set vs Partition Views
	RDDs: Data Locality
	RDDs -- Summary
	Lifetime of a Job in Spark
	Anatomy of a Spark Application
	Typical RDD pattern of use
	Why is this a good strategy?
	Iterative Algorithms: Spark vs MapReduce
	Today’s Topics
	Spark Programming (1)
	Spark Programming (2)
	Spark Programming (3)
	Spark Programming (4)
	Spark Programming (5)
	Example: Word Count
	Example: Spark Streaming
	Spark: Combining Libraries (Unified Pipeline)
	Spark: Setting the Level of Parallelism
	Summary

