
CS 5412/LECTURE 19:
MAKING THE CLOUD FRIENDLIER FOR

OBJECT-ORIENTED COMPUTING

Ken Birman
Spring, 2022

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 1

TODAY’S MAIN TOPIC

The cloud was built mostly from Linux systems, yet Linux was created to
support interactive computing applications in offices and hospitals,
databases (big files, but record-oriented), text editing.

As a result, object orientation has turned out to be an awkward match!

In Lecture 18 we talked about LINQ and how it extends the concept of a
collection of objects to support SQL inside languages like C++ and
Python. Today we will look at how big cloud systems deal with OO costs.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 2

TODAY’S TWO SUB-TOPICS

First half of the lecture: The Ceph object oriented
file system. Looks like a normal POSIX file system,
but optimized for object-oriented uses.

Second half: Costs of the object-oriented model in a
real air traffic control system (Ken worked on it…
another bad-news/good-news stories…)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 3

FIRST TOPIC Ceph File System

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 4

MODERN SYSTEMS ARE OBJECT ORIENTED

Coded in languages like Java or C++

Managing huge amounts of data by creating immense data structures

Modular: there may be multiple microservices that talk to one-another
through the key-value store, the file system, message buses and message
queues. These should be optimized for the use case.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 5

… ISSUES

There may be a LOT of files. Linux file systems aren’t so great for this (like
a directory with a billion objects in it).

Linux/POSIX lack suitable locking/synchronization API (POSIX had a
solution but it was never adopted broadly)

Objects tend to be very small or very large. The Linux file system is
optimized for Linux file size distributions and lifetime distributions.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 6

CEPH PROJECT

Created by Sage Weihl, a PhD student at U.C. Santa Cruz

Later became a company and then was acquired into Red Hat Linux

Now the “InkStack” portion of Linux offers Ceph plus various tools to
leverage it, and Ceph is starting to replace HDFS worldwide.

Ceph is similar in some ways to any standard cloud file system, but was
created separately. Many big data systems are migrating to Ceph.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 7

THREE PERSPECTIVES

First is the standard POSIX file system API. You can use Ceph in any
situation where you might use GFS, HDFS, NFS, etc.

Second is the Ceph MetaData layer. This is a subsystem with its own API
that manages objects… but doesn’t store data

Third is the RADOS object storage layer. It holds the data but doesn’t
know about the folders (directories) in which data is organized.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 8

OBJECT FORMATS ARE “INVISIBLE” TO CEPH

The actual format of the objects stored in the system are defined and
“owned” by the applications using Ceph, not by Ceph itself.

Ceph tries to be extremely efficient, but it still is seeing serialized data
(byte vectors), not objects with fields and methods it could invoke.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 9

CEPH: A SCALABLE, HIGH-PERFORMANCE
DISTRIBUTED FILE SYSTEM

Original slide set from OSDI 2006

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrel D. E. Long

10HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

CONTENTS

Goals

System Overview

Client Operation

Dynamically Distributed Metadata

Distributed Object Storage

Performance

11HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

GOALS

Scalability
 Storage capacity, throughput, client performance. Emphasis on HPC.

Reliability
 “…failures are the norm rather than the exception…”

Performance
Dynamic workloads

12HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

13HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

14HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

SYSTEM OVERVIEW

15HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

KEY FEATURES

Decoupled data and metadata
CRUSH
 Files striped onto predictably named objects
 CRUSH maps objects to storage devices

Dynamic Distributed Metadata Management
Dynamic subtree partitioning
 Distributes metadata amongst MDSs

Object-based storage
OSDs handle migration, replication, failure detection and recovery

16HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

CLIENT OPERATION

Ceph interface
Nearly POSIX
Decoupled data and metadata operation

User space implementation
 FUSE or directly linked

17

FUSE is a software allowing to
implement a file system in a user space

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

CLIENT ACCESS EXAMPLE

Client sends open request to MDS

MDS returns capability, file inode, file size and stripe information

Client read/write directly from/to OSDs

MDS manages the capability

Client sends close request, relinquishes capability, provides details to MDS

18HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

SYNCHRONIZATION

Adheres to POSIX

Includes HPC oriented extensions
Consistency / correctness by default
Optionally relax constraints via extensions
 Extensions for both data and metadata

Synchronous I/O used with multiple writers or mix of readers and writers

19HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

DISTRIBUTED METADATA

“Metadata operations often make up as much as half of file system
workloads…”

MDSs use journaling
 Repetitive metadata updates handled in memory
Optimizes on-disk layout for read access

Adaptively distributes cached metadata across a set of nodes

20HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

DYNAMIC SUBTREE PARTITIONING

21HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

DISTRIBUTED OBJECT STORAGE

Large files are split into a set of objects

Objects are members of placement groups

Placement groups are distributed across OSDs.

22HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

DISTRIBUTED OBJECT STORAGE

23HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

CRUSH: A SPECIALIZED KEY HASHING FUNCTION

CRUSH(x): (osdn1, osdn2, osdn3)
 Inputs
 x is the placement group
 Hierarchical cluster map
 Placement rules

Outputs a list of OSDs

Advantages
Anyone can calculate object location
Cluster map infrequently updated

24HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

DATA DISTRIBUTION

(not a part of the original PowerPoint presentation)

Files are striped into many objects

 (ino, ono) → an object id (oid)

Ceph maps objects into placement groups (PGs).
 hash(oid) & mask → a placement group id (pgid)

CRUSH assigns placement groups to OSDs, using what seems to be a “shard”

 CRUSH(pgid)→ a replication group, (osd1, osd2)

25HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

REPLICATION: RELIABLE BUT NOT PAXOS

Objects are replicated on OSDs within same PG
Client is oblivious to replication

26HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

FAILURE DETECTION AND RECOVERY

Down and Out

Monitors check for intermittent problems

New or recovered OSDs peer with other OSDs within PG

27HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

ACRONYMS USED IN PERFORMANCE SLIDES

CRUSH: Controlled Replication Under Scalable Hashing

EBOFS: Extent and B-tree based Object File System
HPC: High Performance Computing

MDS: MetaData server

OSD: Object Storage Device
PG: Placement Group

POSIX: Portable Operating System Interface for uniX

RADOS: Reliable Autonomic Distributed Object Store

28HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

PER-OSD WRITE PERFORMANCE

29HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

EBOFS PERFORMANCE

30HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

WRITE LATENCY

31HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

OSD WRITE PERFORMANCE

32HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

DISKLESS VS. LOCAL DISK

33

Compare latencies of (a) a MDS where all metadata are
stored in a shared OSD cluster and (b) a MDS which has a
local disk containing its journaling HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

PER-MDS THROUGHPUT

34HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

AVERAGE LATENCY

35HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

LESSONS LEARNED

If applications are object oriented, they will write huge numbers of
variable-size records (some extremely large).

POSIX directories are awkward. A B+ tree index works much better.

Treat the records as byte arrays, track meta-data in one service and data
in a second one. Both share the RADOS layer for actual data storage.

36HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP

SECOND (DIFFERENT) TOPIC Overheads of object orientation

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 37

LET’S DRILL DOWN ON THAT REMARK ABOUT
DOUBLED OVERHEADS
We say that Ceph is more costly when used as a file system, and less so
when used directly as a key-value storage layer via RADOS.

This illustrates a cost associated with abstraction. When we adopt the
wrong API, the translation between that API and the true one can add
overheads.

These costs matter – and we’ll see that now in a second example.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 38

CORBA AND OMG

Ceph is really an outgrowth of a consortium called the “Object
Management Group” or OMG.

They proposed a standard way to translate between internal
representations of objects and byte array external ones. They call this the
Common Object Request Broker Architecture or CORBA.

We can think of an application using Ceph as a kind of CORBA use case.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 39

UNDERSTANDING COSTS FOR CORBA’S
UNIVERSAL REPRESENTATIONS: ATC SYSTEM
A modern air traffic control system might have a structure like this:

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 40

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

UNDERSTANDING COSTS FOR CORBA’S
UNIVERSAL REPRESENTATIONS: ATC SYSTEM
Notice first that this architecture is actually a lot like Ceph or HDFS:

 The meta-data server in Ceph and HDFS is “like” the database of
flight plan versions

 The copies near the controllers are “like” the RADOS storage unit or
the HDFS store.

 And the message bus is “like” a live notification service for watched files

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 41

UNDERSTANDING COSTS FOR CORBA’S
UNIVERSAL REPRESENTATIONS: ATC SYSTEM
Also, think about objects in an ATC system:

 Flight plans: these are elaborate objects that might hold 10MB of data
and could have a great many internal fields

 Many other kinds of objects are used too. Each microservice probably
has a notifications channel of its own, and uses it to talk to individual
controllers or sets of them about relevant issues

 “Attention: In 2h 31m, BA 123 will approach US 654 on approach to CDG.
Plan corrective action to avoid a violation of flight separation rules.”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 42

UNDERSTANDING COSTS FOR CORBA’S
UNIVERSAL REPRESENTATIONS: ATC SYSTEM
An ATC system has many components, far more than were shown.

Often these are based on high-quality legacy versions and hence there can
be many programming languages in simultaneous use.

 Often we will see C/C++, Java, C#, F#, O’Caml, etc.

 Some use of Python and Fortran and Ada.

 With CORBA, we can easily integrate many modules into a single system

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 43

BUT HOW OFTEN WILL WE (DE)SERIALIZE?

Each time an object is read or written (from disk or network)

Each time an object is passed from one module to another

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 44

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Points at which we might do
serialization/deserializationO

ve
rh

ea
d
→

UNIVERSAL REPRESENTATIONS ARE COSTLY!

It is very easy for a CORBA application to spend all its time on this one
action.

Ceph designers were aware of that, and decided it should only be done
under application control.

Thus Ceph is “object oriented” and yet reflects a choice not to have the
whole system understand every kind of object

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 45

HOW DO ATC SYSTEMS AVOID THESE COSTS?

The trick is to use “lazy” record access.

The ATC record is the main object being shared. Suppose that we have
two versions of an ATC object while in memory:

 Version A: The object is fully resident in memory and you can access all
fields, edit it to create a new version, etc.

 Version B: All the same methods are offered, but the in-memory data is
limited to a URL pointing to the record in the flight plan database

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 46

WHY TWO “IDENTICAL” OBJECT VARIANTS?

Notice how easy it is to switch from representation B to A (or back).

In an ATC system most components don’t really look at the data fields and
for this reason, most components would be happy with representation B.
But a small object with just a URL in it is very cheap to serialize!

With “lazy deserialization”, we would convert from form B to form A only
when an application tries to touch the data.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 47

OLD SINGLE VERSION APPROACH

Each time an object is read or written (from disk or network)

Each time an object is passed from one module to another

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 48

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Points at which we might do
serialization/deserializationO

ve
rh

ea
d
→ Wasted work!

DUAL VERSION APPROACH

We only do a costly action when the component will actually touch the
inner data fields!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 49

Time →

ATC
controller

Version
Mgr

Message
Bus

ATC rules
checker . . .

Dual scheme reduces overheads!

A A B B B B B B B B B A B B B

O
ve

rh
ea

d
→

Here we fetch the full data for the flight
plan from the flight plan database

HOW SHOULD WE STORE THE FLIGHT PLAN
RECORDS?
The need is for a very simple append-only log managed by the version
manager.

It is easy to recognize this as a use case for state machine replication.

This situates the central safety question in one specific component, where
we can formalize it and use mathematical tools to prove that each plan
has just one sequence of versions, used consistently by all components.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 50

HOW SHOULD WE IMPLEMENT THE FLIGHT
PLAN MANAGER COMPONENT?

A (key-value) sharded service built on Derecho would be an ideal choice.

Derecho has been proved correct in several ways: by hand, but also using a
machine-verified proof in the Ivy protocol verification tool.

It is also scalable and extremely fast: important because this role is central.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 51

REVISITING THE STRUCTURE

A modern air traffic control system might have a structure like this:

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 52

. . .

Air traffic controllers
update flight plans

Flight plan manager
tracks current and past

flight plan versions
Message bus

Microservices for various tasks, such as checking future
plane separations, scheduling landing times, predicting

weather issues, offering services to the airlines

WAN link to other ATC centers

Flight plan update
broadcast service

If this one component is correct, the
whole system can be proved safe!

SUMMARY – CEPH

Ceph is a file system that was created by taking the HDFS model, but then
extending it to be better matched to properties of object-oriented code.

This is very popular, although it does bring overheads.

Ceph uses a simple but “weak” form of data replication. It doesn’t
guarantee consistency.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 53

SUMMARY – CORBA

Here we saw a different form of object-oriented overhead, arising in
applications that adopt the standard CORBA approach to interoperability.

CORBA buys flexibility but brings steep costs.

Those costs can be managed by understanding the architecture and
designing the application to avoid triggering costly
serialization/deserialization.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 54

BROADER INSIGHT LINKING THESE SUBTOPICS

Innovation brings challenges.

As the world has shifted towards object oriented languages like Java,
C++, Python with its object features, etc., we are finding that they pay
steep overheads if you adapt them naively to run on standard platforms.

But with modest effort, they can perform extremely well in the cloud.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 55

	 CS 5412/Lecture 19: �Making The Cloud Friendlier for Object-Oriented Computing
	Today’s main topic
	Today’s two Sub-topics
	First Topic
	Modern systems are object oriented
	… issues
	CEPH project
	Three perspectives
	object formats are “invisible” to Ceph
	Ceph: A Scalable, High-Performance Distributed File System
	Contents
	Goals
	Slide Number 13
	Slide Number 14
	System Overview
	Key Features
	Client Operation
	Client Access Example
	Synchronization
	Distributed Metadata
	Dynamic Subtree Partitioning
	Distributed Object Storage
	Distributed Object Storage
	CRUSH: A specialized Key Hashing Function
	Data distribution
	Replication: Reliable but not Paxos
	Failure Detection and Recovery
	Acronyms Used in Performance Slides
	Per-OSD Write Performance
	EBOFS Performance
	Write Latency
	OSD Write Performance
	Diskless vs. Local Disk
	Per-MDS Throughput
	Average Latency
	Lessons learned
	Second (Different) Topic
	Let’s Drill down on that remark about doubled overheads
	CORBA and OMG
	Understanding Costs for CORBA’s universal Representations: ATC System
	Understanding Costs for CORBA’s universal Representations: ATC System
	Understanding Costs for CORBA’s universal Representations: ATC System
	Understanding Costs for CORBA’s universal Representations: ATC System
	But how often will we (DE)serialize?
	Universal representations are costly!
	How do ATC systems avoid these costs?
	Why two “identical” object variants?
	Old Single version approach
	Dual version approach
	How should we store the flight plan records?
	How should we Implement the flight plan manager component?
	Revisiting the structure
	Summary – CEPH
	Summary – corba
	Broader Insight linking these subtopics

