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THE PRIVACY PUZZLE FOR IOT

We have sensors everywhere, including in very sensitive settings.

They are capturing information you definitely don’t want to share.

… seemingly arguing for brilliant sensors that do all the computing.  

 But sensors are power and compute-limited.

 Sometimes, only cloud-scale datacenters can possibly do the job!
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THINGS THAT CAN ONLY BE DONE ON THE CLOUD
Training models for high quality image recognition 
and tagging.  Classifying complex images.

High quality speech, including regional accents and individual styles.

Correlating observations from video cameras with shared knowledge
 Example: A smart highway where we are comparing observations of

vehicles with previously computed motion trajectories
 Is Bessie the cow likely to give birth soon?  Will it be a difficult labor?  
 What plant disease might be causing this form of leaf damage?
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BUT THE CLOUD IS NOT GOOD ON PRIVACY

Many cloud computing vendors are incented by advertising revenue.

 Google just wants to show ads that the user will click on.

 Amazon wants to offer products this user might buy.

Consider medications: a big business in America.  But to show a relevant ad for a 
drug to treat mental health, or diabetes, entails knowing the user’s health status.  

Even showing the ad could leak information that a third party, like the ISP 
carrying network traffic, might “steal”.
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THE LAW CAN’T HELP (YET)

Lessing: “East code versus West code”.

Main points:

 The law is far behind the technology curve, in the United States.

 Europe may be better, but is a less innovative technology community.

 So our best hope is to just build better technologies here.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 5



SOME PROVIDERS AREN’T INCENTED!

We should separate cloud providers into two groups.

One group of cloud providers has an inherent motivation to violate privacy for 
revenue reasons and will “fight against” constraints.  

 Here we need to block their effort to spy on the computation.

A second group doesn’t earn their revenue with ads.

 These cloud vendors might cooperate to create a secure and private model.
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TRAFFIC ANALYSIS ATTACKS

Some attacks don’t actual try to “see” the actual data.

Instead the attacker might just try to monitor the system carefully, as a way 
to see who is talking to whom, or sending big objects.

A malicious operator can use this as indirect evidence, or try and disrupt 
the computation at key moments to cause trouble.
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SUBVERSION ATTACKS

These are exploits that leave a system unchanged, but find ways of extracting 
keys or other sensitive information during normal interactions

For example, suppose that if I check my account at AFCU, various account 
information and personal information stays on their (cloud hosted) server.

But then suppose that a negative-length web page “put” operation is done and 
as part of the error code, the server tries to return the bad argument – but 
instead sends back a snapshot of its memory, revealing my private data.
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OUR CLASS LOOKS AT DEPLOYING ML TO THE 
EDGE.  EVEN AN ML MODEL CAN BE SUBVERTED

Machine learning systems generally operate in two stages

 Given a model, they use labeled data to “train” the model (like fitting a 
curve to a set of data points, by finding parameters to minimize error).

 Then the active stage takes unlabeled data and “classifies” it by using
the model to estimate the most likely labels from the training set.

The model will look like a vector of numbers.  At a glance it doesn’t seem to 
encode the information it learned.
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INVERTING A MACHINE-LEARNED MODEL

But such a model might encode private data.

For example, a model trained on your activities in your home might “know” 
all sorts of very private things even if the raw input isn’t retained!

It turns out that for certain input, like data that is all 0’s or all 1’s, or that 
has all 0’s and a single 1, the classifier output will reveal a (noisy) version 
of the input it was trained on.  The attacker does a legitimate operation 
but learns your secrets.
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UNCOOPERATIVE PROVIDER

Making things worse, the provider of some service might not really care 
much about the form of privacy you are worried about!

So what can we do?  If the provider is very cooperative, we could audit 
their code and design… but few providers are willing to allow that.

Or, we could try and run their cloud platform inside a locked box.
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SOUNDS PRETTY BAD!

If our cloud provider wants to game the system, there are a million ways to 
evade constraints, and they may even be legal!

So realistically, with an uncooperative cloud operator, our best bet is to 
just not use their cloud.

Even hybrid cloud models seem to be infeasible if you need to protect 
sensitive user data.
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THE LOCKBOX MODEL

Intel has created special hardware to assist for this case: iSGX.  Stands for 
Software Guard Extensions.  

Basically, they offer a way to run in a “secure context” within a vendor’s 
cloud.  If the operator wanted to, it can’t peek into the execution context.

Let’s look closely at how iSGX works.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2022SP 13



DEEP DIVE 1:  SGX

Let’s drill down on the concrete options.

First we will look closer at SGX, since this is a product from a major vendor.
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SGX CONCEPT

The cloud launches the SGX program, which was supplied by the client.

The program can now read data from the cloud file system or accept a 
secured TCP connection (HTTPS) from an external application.

The client sends data, and the SGX-secured enclave performs the task and 
sends back the result.  The cloud vendor can only see encrypted 
information, and never has any access to decrypted data or code.
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SGX EXAMPLE
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External client 
system, or IoT

Sensor

HTTPS connection
(secure!) Intel.com

Evil cloud operatorDrat! I can’t see anything!



SGX LIMITATIONS

In itself, SGX won’t protect against monitoring attacks.

And it can’t stop someone from disrupting a connection or accosting a user 
and saying “why are you using this secret computing concept?  Tell me or 
go to jail!”

And it is slow…
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SGX RECEPTION HAS BEEN MIXED

Some adoption, but performance impact is a continuing worry. 

There have been some successful exploits against SGX that leverage Intel’s 
hardware caching and prefetching policies.  (“Leaks”)

Using SGX requires substantial specialized expertise.  And SGX can’t 
leverage specialized hardware accelerators, like GPU or TPU or even 
FPGA (they could have “back channels” that leak data).
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COOPERATIVE PRIVACY LOOKS MORE PROMISING

If the vendor is willing to work with the cloud developer many new options 
emerge.  Such a vendor guarantees: “We won’t snoop, and we will isolate 
users so that other users can’t snoop”.

A first simple idea is for the vendor to provide
a guaranteed “scrubbing” for container virtualization.

 Containers that start in a known and “clean” runtime context.

 After the task finishes, they clean up and leave no trace at all.
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ORAM MODEL

ORAM: Oblivious RAM (multiuser system that won’t leak information)

Idea here is that if the cloud operator can be trusted but “other users” on the 
same platform cannot, we should create containers that leak no data.

Even if an attacker manages to run on the same server, they won’t learn 
anything.  All leaks are blocked (if the solution covered all issues, that is)

Turns out to be feasible with special design and compilation techniques
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ENTERPRISE VLAN, VIRTUALLY PRIVATE NETWORK 
(VPN). VIRTUALLY PRIVATE CLOUD (VPC)

If the cloud vendor is able to “set aside” some servers, but can’t provide a 
private network, these tools let us create a form of VPN in which traffic for 
application A shares the network with traffic for other platforms, but no 
leakage occurs.

In practice the approach is mostly via cryptography.  

For this reason, “traffic analysis” could still reveal some data.
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PRIVACY WITH µ-SERVICES

Vendor or µ-service developer will need to implement a similar “leave no trace” 
guarantee.

Use cryptography to ensure that data on the wire can’t be interpreted

 With FPGA bump-in-the-wire model, this can be done at high speeds.

 So we can pass data across the cloud message bus/queue safely as
long as the message tag set doesn’t reveal secrets.

 Cloud vendor could even audit the µ-services, although this is hard to
do and might not be certain to detect private data leakage
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DATABASES WITH SENSITIVE CONTENT

Many applications turn out to need to create a single database with data 
from multiple clients, because some form of “aggregated” data is key to 
what the µ-service is doing.

 Most customers who viewed product A want to compare with B.

 If you liked that book, you will probably like this one too.

 People like you who live in Ithaca love Gola Osteria.

 88% of people with this gene variant are descended from Genghis Khan
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ISSUE WITH DATABASE QUERIES

Many people assume that we can anonymize databases, or limit users to 
queries that sum up (“aggregate”) data over big groups.

But in fact it is often surprisingly easy to de-anonymize the data, or use 
known information to “isolate” individuals.

 How many bottles of wine are owned by people in New York State 
that have taught large MEng-level cloud computing courses?

 Seems to ask about a large population, but actually asks about me!
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BEST POSSIBLE?  DIFFERENTIAL PRIVACY

Cynthia Dwork has invented a model called “Differential Privacy”.

We put our private database on a trusted server.  It permits queries 
(normally, aggregation operations like average, min, max) but not 
retrieving individual data.  And it injects noise into results.

Noise level can be tuned to limit the rate at which leakage occurs.
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BOTTLES OF WINE QUERY

For example, if the aggregation query includes a random extra number in 
the range [-10000,10000], then an answer like “72” tells you nothing 
about Ken’s wine cellar.

There are several ways to add noise, and this is a “hot topic”.

But for many purposes, noisy results aren’t very useful.
 “I can’t see to the right.  How many cars are coming?”
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Building systems that compute on 
encrypted data

Raluca Ada Popa
MIT PhD, now a professor at Berkeley

?
xe891a1
X32e1dc
xdd0135
x63ab12

xd51db5
X9ce568
xab2356
x453a32
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Compromise of confidential data 
is prevalent

http://www.cs.cornell.edu/courses/cs5412/2022sp 28



Problem setup

server
clients

SecretSecret
Secret

no computation computation
storage databases, web applications, mobile 

applications, machine learning, etc.

encryption ??
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Current systems strategy

Prevent attackers from breaking into servers

server

clients

Secret
Secret

http://www.cs.cornell.edu/courses/cs5412/2022sp 30



Lots of existing work

 Checks at the operating-system level

 Checks at the network level 

 Language-based enforcement of a security policy

 Static or dynamic analysis of application code 

 Trusted hardware

…
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Data still leaks even with 
these mechanisms

attackers eventually break in!

because
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accessed private data 
according to

hackers

cloud employees insiders: legitimate 
server access!

government

increasingly many companies 
store data on external clouds

Reason they succeed:Attacker:

software is complex

e.g., physical access

Attacker examples
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[Raluca Popa’s] work 
Systems that protect confidentiality even against 

attackers with access to all server data
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server

client

My approach

Servers store, process, and compute on    
encrypted data

??
Result

Secret
Secret

Secret
Secret

in a practical way

Strawman:
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Computing on encrypted data in cryptography

Fully homomorphic encryption (FHE) [Gentry’09]

prohibitively slow, e.g., slowdown

Raluca’s work: practical systems

[Rivest-Adleman-Dertouzos’78]

X 1,000,000,000

real-world 
performance

large class of 
real 

applications

meaningful 
security

+ +

practical 
systems
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My contributions

CryptDB [SOSP’11][CACM’12]
DB 

server

Server under attack:

web app 
server

Mylar [NSDI’14]

PrivStats [CCS’11]

[Usenix Security’09] mobile app server

Functional encryption [STOC’13] [CRYPTO’13]

mOPE, adjJOIN
[Oakland’13]

multi-key search

VPriv

Databases:

Web apps:

Mobile    
apps:

In general:

DB 
server

System:

Theory:
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one generic 
scheme (FHE)

strawman:

Combine systems and cryptography
1. identify core operations needed

2. multiple specialized encryption schemes 

systems crypto
3. Design and 
build system

New schemes:
 mOPE, adjJOIN for CryptDB
 multi-key search for Mylarhttp://www.cs.cornell.edu/courses/cs5412/2022sp 38



My contributions

CryptDB
DB 

server

Server under attack:

web app 
server

Mylar

PrivStats
mobile app serverVPriv

Databases:

Web apps:

Mobile    
apps:

DB 
server

System:

Functional encryptionIn general:
Theory:
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First practical database system (DBMS) to process 
most SQL queries on encrypted data

CryptDB
[SOSP’11: Popa-Redfield-Zeldovich-Balakrishnan]
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 Theory work: 
 General computation: FHE 

 very strong security: forces slowdown - many queries 
must always scan and return the whole DB

 prohibitively slow (109x)

Related work

[Hacigumus et al.’02][Damiani et al.’03][Ciriani et al’09]

[Amanatidis et al.’07][Song et al.’00][Boldyreva et al.’09]

 Systems work: 
 no formal confidentiality guarantees
 restricted functionality
 client-side filtering

[Gentry’09]

 Specialized schemes 
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Setup

under passive attack

Application

trusted client-side

DB server

Use cases:
 Outsource DB to the cloud (DBaaS) 

 e.g. Encrypted BigQuery
 Local cluster: hide DB content from sys. admins.

http://www.cs.cornell.edu/courses/cs5412/2022sp 42



Setup

transformed 
queryplain query 

under passive attack

Application
decrypted 

results
encrypted 

results

DB server

encrypted DB
Proxy

Secret
Secret

computation on 
encrypted data ≈ 

regular computation

 Stores schema  
and master key

 No query execution

trusted client-side
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Goal

• We want to support standard queries, such as “retrieve the 
whole database”, or “get the average salary for tier 3 
employees”.

• Yet we don’t want the service operator to ever see the real 
data.  So the step that selects matching data can’t decrypt!
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col1/rank col2/name

table1/emp

SELECT * FROM emp

SELECT * FROM table1

x2ea887

col3/salary

60

100

800

100

Randomized encryption 
(RND) - semantic

Example
Application

Proxy

x95c623

x4be219

x17cea7
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col1/rank col2/name

table1/emp

SELECT * FROM emp
WHERE salary = 100

x934bc1

x5a8c34

x5a8c34

x84a21c

SELECT * FROM table1 
WHERE col3 = x5a8c34

?x5a8c34

x5a8c34

?x5a8c34

x5a8c34

x4be219

x95c623

x2ea887

x17cea7

col3/salary

60

100

800

100

Randomized encryption 
(RND)

Deterministic 
encryption (DET)

Example
Application

Proxy
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col1/rank col2/name

table1 (emp)

x934bc1

x5a8c34

x5a8c34

x84a21c

x578b34

x638e54

x122eb4

x9eab81

SELECT cdb_sum(col3) 
FROM table1

x72295a

col3/salary

60

100

800

100

Deterministic 
encryption (DET)SELECT  sum(salary)  

FROM emp

“Summable”
encryption (HOM) -

semantic

1060

Example
Application

Proxy
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1. Use SQL-aware set of efficient encryption 
schemes 

Techniques

2. Adjust encryption of data based on queries

3. Query rewriting algorithm

(meta technique!)
Most SQL can be implemented with 
a few core operations
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1. SQL-aware encryption schemes

e.g., =, !=, IN, 
GROUP BY, 
DISTINCT 

Scheme

RND
HOM

DET

SEARCH

JOIN

OPE

Function

data moving

addition

equality

join

word 
search

order

Construction

AES in UFE

AES in CMC

Paillier

our new 
scheme 

Song et al.,‘00

e.g., >, <, ORDER BY, 
ASC, DESC, MAX, 
MIN, GREATEST, 
LEAST

restricted ILIKE

e.g., SUM, + 

our new scheme
[Oakland’13] 

e.g., SELECT, 
UPDATE, DELETE, 
INSERT, COUNT

x < y               Enc(x) < Enc(y) 

reveals 
only repeat 

pattern

Security

reveals 
only 

order

≈ semantic 
security

SQL operations:
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How to encrypt each data item?

1. Support queries 

2. Use most secure encryption schemes

Leaks order!

rank

ALL?

col1-
RND

col1-
HOM

col1-
SEARCH

col1-
DET

col1-
JOIN

col1-
OPE

‘CEO’
‘worker’

Goals:

Challenge: may not know queries ahead of time
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Onion
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Onion concept

• Take some value, X.

• Now encrypt it once:  XK

• What if we encrypt XK a second time, with a different crypto 
system?  We now have a two-layer “onion”.  We would have to 
decrypt twice to reveal X.
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value

OPE
DET

RND

Onion of encryptions

+
functionality

+
security

Adjust encryption: strip off layer of the onion
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int value
HOM

Onion Add

Onions of encryptions

value
JOIN
DET
RND

Onion Equality

Onion Search

Same key for all items in a column for same onion layer

OR
each 
value

value
OPE
RND

Onion Order
text value
SEARCH

3 columns1 column
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Onion evolution

 If needed, adjust onion level
 Proxy gives decryption key to server 
 Proxy remembers onion layer for columns

 Start out the database with the most secure 
encryption scheme

Lowest onion level is never removed
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Example

SELECT * FROM emp WHERE rank = ‘CEO’

emp:

rank name salary

‘CEO’
‘worker’

‘CEO’
JOIN
DET
RND

Onion Equality

col1-
OnionEq

col1-
OnionOrder

col1-
OnionSearch

col2-
OnionEq

table 1:

…
…

…

Logical table:

Physical table:

RND
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Example (cont’d)

UPDATE table1 SET col1-OnionEq = 
Decrypt_RND(key, col1-OnionEq)

‘CEO’
JOIN
DET
RND

SELECT * FROM table1 WHERE col1-OnionEq = xda5c0407

DET

Onion Equality

SELECT * FROM emp WHERE rank = ‘CEO’

col1-
OnionEq

col1-
OnionOrder

col1-
OnionSearch

col2-
OnionEq

table 1
…
…
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Security threshold 

Data owner can specify minimum level of security

CREATE TABLE emp (…, credit_card SENSITIVE integer, …)

RND, HOM, DET for unique fields
≈ semantic security
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Security guarantee

Columns annotated as sensitive have semantic 
security (or similar). 

Encryption schemes exposed for each column are 
the most secure enabling queries.

equality        repeats

• Never reveals plaintext
common in practice

sum        semantic no filter       semantic
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Limitations & Workarounds

 More complex operators, e.g., trigonometry
 Certain combinations of encryption schemes:

 e.g.,  salary + raise   > 100K

Queries not supported:

use query splitting, query rewriting

HOM
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Implementation

CryptDB
SQL UDFs
(user-defined 

functions)

unmodified 
DBMSquery

results

SQL Interface

No change to the DBMS!

Application CryptDB
Proxy

Largely no change to apps!
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Evaluation

1. Does it support real queries/applications? 
2. What is the resulting confidentiality level?
3. What is the performance overhead?
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Real queries/applications

Application Encrypted 
columns

phpBB 23
HotCRP 22
grad-apply 103
TPC-C 92
sql.mit.edu 128,840

# cols with queries 
not supported

0
0
0
0

1,094

SELECT 1/log(series_no+1.2) … 
… WHERE sin(latitude + PI()) … 

apps with 
sensitive 
columns

tens of 
thousands 
of apps
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Confidentiality level

Application Encrypted 
columns

phpBB 23
HotCRP 22
grad-apply 103
TPC-C 92
sql.mit.edu 128,840

Min level: 
≈semantic

21
18
95
65

80,053

Min level: 
DET/JOIN

1
1
6

19
34,212

Min level: 
OPE

1

2

2
8

13,131

Most 
columns at 
semantic

Most columns at 
OPE were less 

sensitive

Final onion state
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Performance
DB server throughput

CryptDB
Proxy

Encrypted 
DB

Application 1

CryptDB:

Plain 
database

Application 1

MySQL
:

CryptDB
Proxy

Application 2

Application 2
Latency

Hardware: 2.4 GHz Intel Xeon E5620 – 8 cores, 12 GB RAM
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TPC-C performance

Throughput loss over MySQL: 26% 
Latency (per query): 0.10ms MySQL vs. 0.72ms CryptDB

No cryptography at the DB server in the steady state!

Homomorphic
addition
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Adoption

Encrypted BigQuery

sql.mit.edu

Úlfar Erlingsson, 
head of security 
research, Google 

Encrypted version of the D4M Accumulo NoSQL engine

SEEED implemented on top of the SAP HANA DBMS 

Users opted-in to run Wordpress over our CryptDB source code

[http://code.google.com/p/encrypted-bigquery-client/]

http://css.csail.mit.edu/cryptdb/

“CryptDB was really eye-opening in establishing the practicality 
of providing a SQL-like query interface to an encrypted database”

“CryptDB was [..] directly influential on the design and 
implementation of Encrypted BigQuery.”
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CONCERNS ABOUT CRYPTDB?

The main criticisms stem from the “strip a layer” step.

Once we reduce the level of protection, we’ve leaked some information and the 
remaining data is “less protected”. Raluca’s response: if you want to make use of 
operations like aggregation, you can’t easily avoid releasing some information.

Criticism response to Raluca: attacker might trick my code into doing the 
operation, and might do so in the future when some flaw in one of the crypto 
scheme is noticed.  The logic wouldn’t protect itself in that case.
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SUMMARY

A “leave no trace” model could offer a practical way to leverage the cloud 
and yet not release private data to the public.

With a trusted vendor willing to audit operations and to “enclave” sensitive 
data computation, and clean up afterward, there is real hope for privacy 
without leaks.  

SGX, costly but can be used where the vendor is not trusted.

For databases, techniques like CryptDB aren’t perfect but work well.  
Differential privacy is even better, but only if noise can be tolerated.
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