
CS5412 / LECTURE 13:
THE DANGERS OF GOSSIP

Ken Birman
Spring, 2022

CS5412 CLOUD COMPUTING, SPRING 2022 1
Lecture V

REMINDER: GOSSIP

When run at a steady rate, these protocols consume a fixed amount of
background overhead. There can be load surges if participants are
Byzantine, or if they use techniques like the Bimodal Multicast idea

In normal use, costs are quite low, like “on average, one message sent and
one received per process, per second”. Message sizes are generally small.

Moreover, information spreads in time r * O(log N), where r is the gossip
rate. For many purposes this actually very reasonable.

CS5412 CLOUD COMPUTING, SPRING 2022 2

SO WHY NOT USE GOSSIP “EVERYWHERE”?

There are many tasks where the fit seems quite good, like blockchain.

In a cloud datacenter, gossip is appealing for checking to see if systems
have hung processes, monitoring loads, or tracking storage capacity.

The underlying values change slowly, so even a “slow” tracker will still be
pretty accurate.

CS5412 CLOUD COMPUTING, SPRING 2022 3

BUT THERE ARE SOME CAUTIONARY TALES

For example, gossip once caused all of Amazon S3 to crash!

This nearly resulted in a congressional inquiry! When S3 crashes, a great
many companies also freeze up – any company that depends on the cloud
depends on the S3 file system storage solution.

So… what is S3 and how does it use gossip?

CS5412 CLOUD COMPUTING, SPRING 2022 4

AMAZON S3: THE “SIMPLE STORAGE SERVER”

S3 is a huge pool of storage nodes.

Plus, a “meta-data” server that keeps track of file names and where they
can be found.

To store data, an application asks the meta-data service to allocate
space, then sends the data to the appropriate storage servers.

CS5412 CLOUD COMPUTING, SPRING 2022 5

WHY DO WE USE THE TERM “META-DATA”?

When you think about a file, you tend to think of the file name and the file
contents. Like a key and a value.

But in fact files also have owners, permissions, create time, last access time,
length (and perhaps, size on disk, which can be much smaller), etc.

We associate this data with the file. In Linux the inode plays this role. In
S3 and other big-data systems, the meta-data service does it.

CS5412 CLOUD COMPUTING, SPRING 2022 6

HOW DOES THE S3 META-DATA SERVICE TRACK
SPACE AVAILABLE ON STORAGE UNITS?

You might expect this to be easy, because the meta-data service does the
allocations.

But in fact the meta-data service itself is sharded, so any single shard
within it only knows (for sure) about files it is responsible for. Additionally,
sometimes a server needs to take some storage offline.

To know the full state of the full S3 deployment we would need to sum
across all meta-data services.

CS5412 CLOUD COMPUTING, SPRING 2022 7

LOAD BALANCING

For each server, use gossip to track an estimate of the current amount of
free space. Line them up on a “space available” line.

For a new allocation, pick a random spot in this line. This spreads the
incoming load around but will be biased to favor servers with more space.

CS5412 CLOUD COMPUTING, SPRING 2022 8

server 1 server 2 server 3 server 4 server 5 server 6

GOSSIP IS USED FOR TRACKING STORAGE

Amazon used a gossip protocol in this role, specialized to S3 meta-data.

The basic idea is to use gossip to keep track of how much space each S3
storage node is reporting that it has available.

This is inexpensive and because each storage unit holds hundreds of
gigabytes, the values don’t change rapidly. A good match for gossip.

CS5412 CLOUD COMPUTING, SPRING 2022 9

… UNTIL IT WENT WRONG!

Once upon a time, when S3 was working perfectly well, a storage server
needed to take some storage offline.

Because of doing this, it suddenly went from having 10% excess capacity to
being slightly over-full. This was not a bug – the servers actually have a tiny bit
of reserve space, so “available capacity” could become slightly negative. The
idea was that meta-data managers would omit that server from the line.

To support this, space available used signed 32 bit integers. But the S3 meta-
data service declared the field to be a 32 bit unsigned integer.

CS5412 CLOUD COMPUTING, SPRING 2022 10

SIGNED-TO-UNSIGNED CONVERSION IS A BUG

In older C programs and some other weakly typed languages, storing a
signed value into an unsigned variable isn’t flagged as an error.

C++ and Rust are examples of languages that DO complain about this.

Amazon was using C at that time. The compiler didn’t complain. And in
fact their servers had so much capacity that for a long time, none ever
actually went into “overload” in any case.

CS5412 CLOUD COMPUTING, SPRING 2022 11

“I HAVE -3 GB OF FREE CAPACITY”

But then one day, we did overloaded. What happens if a signed integer
becomes negative, and then we interpret it as an unsigned integer?

The sign bit will be set. 2^31 is a large number!

In effect, small negative numbers will suddenly be interpreted as big
positive numbers. Our server suddenly reports: “I have 2147483645
gigabytes of free capacity!”

CS5412 CLOUD COMPUTING, SPRING 2022 12

SUDDENLY LOTS OF NEW FILES WERE SENT TO
THIS STORAGE SERVER!
Since it was full, it refused the requests.

S3 did have logic to handle that situation. But it became a bottleneck.

S3 became … e x t r e m e l y . . . s l o w

CS5412 CLOUD COMPUTING, SPRING 2022 13

IMAGINE THE SITUATION FOR S3 PRODUCT
OWNERS AT AMAZON
One evening you are home with your family for Thanksgiving (pre-covid)

You get a call… its Jeff Bezos…

The AWS system is broken! Could you please go figure out why and fix it?
So while everyone else is carving the turkey you log in… and see millions
of errors being logged per second from 75 subsystems

CS5412 CLOUD COMPUTING, SPRING 2022 14

IT TOOK AMAZON NEARLY A DAY TO FIGURE
THIS OUT
S3 was actually working! It did store new files. But it was weirdly slow.

Higher level applications that depend on S3 began to have request
timeouts, causing a cascade of failures. Every AWS product was broken.

This issue of one failure triggering other failures is a major problem see in
the cloud and causes a whole series of outages all to happen at once.

CS5412 CLOUD COMPUTING, SPRING 2022 15

FROM BAD… TO WORSE?

They eventually found the issue, and came up with a great idea!

They shut down the bad server. But nothing happened… Gossip is very
slow to spread the word.

So then they noticed that meta-data server md1 was gossiping that server
53 had infinite space. They killed it. Suddenly, md2 took over and
started gossiping that 53 had infinite space…

CS5412 CLOUD COMPUTING, SPRING 2022 16

ISSUES YOU SEE IN THIS STORY

With gossip, fresher data might not always spread faster than stale data

Gossip is very robust to servers being down, which means that just
rebooting a single node won’t fix anything.

Pushing an urgent patch didn’t help either: many computers were in a
thrashing state and some of those would wake up after a random amount
of time. They were still gossiping these huge “free space” numbers.

CS5412 CLOUD COMPUTING, SPRING 2022 17

A THOUGHT QUESTION

What’s the best way to
 Count the number of nodes in a system?
 Compute the average load, or find the most loaded nodes, or least loaded nodes?

Options to consider
 Pure gossip solution
 Construct a service that actively tracks the nodes, or the load, etc?

CS5412 CLOUD COMPUTING, SPRING 2022 18

… AND THE ANSWER IS

Gossip isn’t very good for some of these tasks!
 There are gossip solutions for counting nodes, but they give approximate answers

and run slowly
 Tricky to compute something like an average because of “re-counting” effect, (best

algorithm: Kempe et al)

On the other hand, gossip works well for finding the c most loaded or least
loaded nodes (constant c)

Gossip solutions run in time O(log N) and generally give probabilistic solutions

CS5412 CLOUD COMPUTING, SPRING 2022 19

LESSON LEARNED?

In retrospect, many mistakes were made!

 Use of a weakly typed language, C

 Poor communication about a feature (using a negative number to report
that a server is over capacity), so some people didn’t know about it

 Poor testing of the combined elements (this bug should have been seen
before it was put into service)

 It isn’t even completely obvious that this design was the best way to
solve their actual S3 storage balancing task

CS5412 CLOUD COMPUTING, SPRING 2022 20

NOW… AN ISSUE WITH ASTROLABE

It creates a virtual tree of nodes.

At the leaf level, the tree tracks status for individual machines.

At the inner levels (these are “virtual” tables) aggregation queries are
computed from the lower levels and shared. Lightly loaded leaf nodes run
the inner-level gossip protocol

CS5412 CLOUD COMPUTING, SPRING 2022 21

STATE MERGE: CORE OF ASTROLABE EPIDEMIC

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu
CS5412 CLOUD COMPUTING, SPRING 2022 22

STATE MERGE: CORE OF ASTROLABE EPIDEMIC

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

swift 2011 2.0

cardinal 2201 3.5

CS5412 CLOUD COMPUTING, SPRING 2022 23

STATE MERGE: CORE OF ASTROLABE EPIDEMIC

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2201 3.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu
CS5412 CLOUD COMPUTING, SPRING 2022 24

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

ASTROLABE BUILDS A HIERARCHY USING A P2P PROTOCOL THAT
“ASSEMBLES THE PUZZLE” WITHOUT ANY SERVERS

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

SQL query
“summarizes”

data

Dynamically changing query
output is visible system-wide

Name Load Weblogic? SMTP? Word
Version

…

swift 1.7 0 1 6.2

falcon 2.1 1 0 4.1

cardinal 3.9 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 4.1 0 0 4.5

zebra 0.9 0 1 6.2

gnu 2.2 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.2 123.45.61.3 123.45.61.17

NJ 1.6 127.16.77.6 127.16.77.11

Paris 2.7 14.66.71.8 14.66.71.12

CS5412 CLOUD COMPUTING, SPRING 2022 25

ANOTHER REALLY BAD STORY…

A company experimented with using Astrolabe

In their experiment, which was never deployed in practice, they had the
idea that instead of the least loaded leaf nodes playing the inner gossip
role, every node would have an equal role.

So they came up with a new kind of Astrolabe tree

CS5412 CLOUD COMPUTING, SPRING 2022 26

A NORMAL AGGREGATION TREE

In this tree, the lowest level has fanout of 2, whereas Astrolabe used 100.
But this is still fine.

Notice that node A
is elected to gossip at
several levels of the
hierarchy

CS5412 CLOUD COMPUTING, SPRING 2022 27

A B C D E F G H I J K L M N O P

A C E G I K M O

A E I M

A I

DEPLOYMENT TEAM ASKS… IS THIS “FAIR”?

When a company acquires a technology they often redesign some aspects

In this particular scenario, the new owners new that Astrolabe was kind of
slow (due to gossip) but had the idea that maybe a more even gossip role
sharing would help.

So they went with a different approach

CS5412 CLOUD COMPUTING, SPRING 2022 28

CS5412 CLOUD COMPUTING, SPRING 2022 29

A DIFFERENT AGGREGATION TREE

A B C D E F G H I J K L M N O P

A C E G I K M O

B F J N

D L
∅

An event e occurs
at H

P learns O(N)
time units later!

G gossips with H
and learns e

WAIT! P LEARNS N TIME-STEPS LATER?

Wasn’t Astrolabe supposed to run in O(log N) time?

Why is it suddenly running in time O(N)?

CS5412 CLOUD COMPUTING, SPRING 2022 30

CS5412 CLOUD COMPUTING, SPRING 2022 31

WHAT WENT WRONG?

In this horrendous tree, each node has equal “work to do” but the
information-space diameter is larger!

Astrolabe was actually benefitting from “instant” knowledge because the
epidemic at each level is run by someone elected from the level below

CS5412 CLOUD COMPUTING, SPRING 2022 32

INSIGHT: TWO KINDS OF SHAPE

We’ve focused on the aggregation tree

But in fact should also think about the information flow tree

Our example was showing how an information flow tree can be slow.

CS5412 CLOUD COMPUTING, SPRING 2022 33

INFORMATION SPACE PERSPECTIVE
Bad aggregation graph: diameter O(n)

Astrolabe version: diameter O(log(n))

H – G – E – F – B – A – C – D – L – K – I – J – N – M – O – P

A B C D E F G H I J K L M N O P

A C E G I K M O

A E I M

A I

A
 –

B

C
 –

D

E –
F

G
 –

H

I –
J

K
–

L

M
 –

N

O
 –

P

A B C D E F G H I J K L M N O P

A C E G I K M O

B F J N

D L∅

SO… WE FIXED THAT

But then they had another idea.

Recall how UDP multicast was used to speed up urgent notifications with
Bimodal Multicast.

Could something like that be used to speed up Astrolabe?

CS5412 CLOUD COMPUTING, SPRING 2022 34

INFORMATION SPACE PERSPECTIVE

UDP multicast causes a fast “all to most” exchange. Then a few stragglers
need to catch up in the next gossip round or two:

In this UDP-multicast accelerated graph, we
get a very accelerated covergence

CS5412 CLOUD COMPUTING, SPRING 2022 35

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

A

C
D
E

G
H
I
J
K
L
M
N
O
P

F B

WE WON’T ANSWER THAT QUESTION

We asked “could UDP multicast speed up Astrolabe” but in fact we don’t
have time today to explore this (open) question.

But we do have time to understand UDP multicast in more detail, and to
hear about an issue of its very own

CS5412 CLOUD COMPUTING, SPRING 2022 36

BUILDING BLOCKS

Infrastructure tools designers think about technology as building blocks.

They focus on modular components and match the properties of the
resulting infrastructure tool to the available building blocks.

But each new combination can bring unexpected problems caused by
interactions between elements that work perfectly well “on their own”!

CS5412 CLOUD COMPUTING, SPRING 2022 37

HOW UDP MULTICAST REALLY WORKS

First, the IP system reserves a class of IP addresses for use in UDP
multicast. They are “class D” addresses, and we can think of each one as
a unique id plus a unique port number shared by a set of receivers.

For example, “Ken’s Magic Message Bus” might reserve IP address
D:224.10.20.30 port number 7890. Every server process in the KMMB
service has this hard-wired in.

CS5412 CLOUD COMPUTING, SPRING 2022 38

ROLES OF HARDWARE

In UDP multicast, the hardware itself is supposed to route packets only to
where they are wanted.

For KMMB, this will be “nodes subscribing to the topic”. Each (ip,port) pair
corresponds to a topic, and we want our packets to go only to subscribers

So the network becomes active, and filters traffic

CS5412 CLOUD COMPUTING, SPRING 2022 39

THE BASIC MECHANISMS

When a machine boots, the KMMB server instance launches. It creates a
socket and binds this standard IP address and port to it.

This causes the NIC to begin to watch for messages that match. In
addition, the top of rack switch and datacenter routers are informed that
there is a new multicast listener on this segment of the network.

The routers use this knowledge to filter on each forwarding link.

CS5412 CLOUD COMPUTING, SPRING 2022 40

CONCEPT: A BLOOM FILTER: A WAY TO TRACK SET
MEMBERSHIP CHEAPLY (O(1) INCLUSION COST)

A Bloom filter is a set of (usually) 3 bit-vectors of some length (usually) 1K

To “remember” X, the filter computes hash(X), hash(X+1), hash(X+2) and
sets the corresponding bit in vector 0, 1 and 2.

Later to answer the question “does this filter include X” we repeat but this
time check the bits. Answer yes if all 3 bits are set, no if not.

CS5412 CLOUD COMPUTING, SPRING 2022 41

USE OF THESE FILTERS?

The NIC uses a Bloom filter to recognize incoming IP multicast packets it
should accept.

The TOR switch uses a Bloom filter to track which links lead to machines
listening for a particular IP multicast address.

The fat-tree of datacenter routers uses this to remember which
subnetworks have a machine listening for an IP multicast address.

CS5412 CLOUD COMPUTING, SPRING 2022 42

EXAMPLE: NODES A, B AND C ARE IN IP
MULTICAST GROUP OF KMMB

CS5412 CLOUD COMPUTING, SPRING 2022 43

A B C

A SENDS A MULTICAST

Suppose we want to publish some event from A to the Foo “group”?

A prepares a UDP packet, puts the special address in it, and calls sendto

At each stage it will be forwarded towards any receivers

CS5412 CLOUD COMPUTING, SPRING 2022 44

EXAMPLE: NODES A, B AND C ARE IN IP
MULTICAST GROUP OF KMMB

CS5412 CLOUD COMPUTING, SPRING 2022 45

A B C

BLOOM FILTER ROLE?

At the “line rate” of the network (75M packets/second) we have very little
time to decide where to forward copies.

The Bloom filter can be implemented in hardware (the hashing policy is the
expensive step) and runs fast enough to make the decision before the
switch or router exceeds its available time

So we get a very clean UDP multicast that might show up multiple times
per receiver, but won’t bother non-receivers…

CS5412 CLOUD COMPUTING, SPRING 2022 46

SOME USES

Maybe KMMB is super popular. Each user has their own instance.

Pub/sub is fantastic for tracking debug data and network management
properties. If nobody is using the debug monitor (“subscribing”), the
network itself automatically discards the UDP packets!

… so perhaps we see a “linear adoption”. Maybe for every 1500
machines we see one additional thing using UDP multicast.

CS5412 CLOUD COMPUTING, SPRING 2022 47

WHAT DOES THIS TELL US?

When the datacenter was small, it worked awesomely.

500,000 / 1500 = 330. Our Bloom Filter bit vectors each have 1024
bits. Not very many are set, and filtering genuinely prevents UDP multicast
packets from being forwarded unless there is a real listener down that link

CS5412 CLOUD COMPUTING, SPRING 2022 48

WHAT DOES THIS TELL US?

When the datacenter was small, it worked awesomely.

But then the boss gave the order and we doubled the size! Plus, more and
more people are using KMMB for debugging and similar tasks

1M / 1500 = 660. Our Bloom Filter bit vectors only had 1024 bits. So
now most of them will be set. Yesterday with 500,000 machines this wasn’t
the case – only 330 were set, per vector.

CS5412 CLOUD COMPUTING, SPRING 2022 49

FALSE POSITIVES

As we scale up the data center, more and more of the UDP packets are going to
be forwarded to more and more machines, due to Bloom Filter matches.

In effect we go from the network filtering out “no receiver” packets to
forwarding every packet, many copies each, on every link.

This overloads the network and it becomes lossy. It may also overload individual
machines if some machines are listening for many IP multicast addresses

CS5412 CLOUD COMPUTING, SPRING 2022 50

WE CALL THESE MULTICAST STORMS

The term refers to an all-to-all message
pattern that overwhelms the entire data center.

Basically, a single event ended up crashing
the whole datacenter within seconds!

CS5412 CLOUD COMPUTING, SPRING 2022 51

HUGE % OF MESSAGES GET DROPPED

All the machines see a huge overload.
They are receiving packets they didn’t
subscribe to, and must “manually”
discard them, which takes time

The whole data center grinds to a halt.

Lots of other services begin to get timeouts due to unresponsive servers,
causing even more errors to report

CS5412 CLOUD COMPUTING, SPRING 2022 52

THESE PROBLEMS HAVE ACTUALLY BEEN SEEN!

One result is that most modern data centers disable UDP multicast.

Either trying to use it always gives errors or, more common, when you try to
use it they automatically set up TCP connections and route your messages
over TCP.

For smaller multicast groups this works… but you can’t make 100,000 TCP
connections from one node to 100,000 other nodes. So we can’t use the
UDP speedup feature in most datacenter systems.

CS5412 CLOUD COMPUTING, SPRING 2022 53

SUMMARY

Gossip is tricky! UDP multicast is tricky too! In fact everything except TCP
seems to be risky!

A gossip mechanism will have constant, low overheads and very
predictable delay, provided that the information sharing graph is of low
diameter. This is what blockchain gossip layers assume.

But small mistakes can yield gossip solutions that actually malfunction in
major ways, potentially shutting down entire datacenters!

CS5412 CLOUD COMPUTING, SPRING 2022 54

Stairway to heaven needs repairs!

	CS5412 / Lecture 13: �The Dangers of Gossip
	Reminder: Gossip
	So why not use gossip “everywhere”?
	But there are some cautionary tales
	Amazon S3: The “Simple Storage Server”
	Why do we use the term “meta-data”?
	How does the s3 Meta-Data service track space available on storage units?
	Load Balancing
	Gossip is used for tracking storage
	… until it went wrong!
	signed-to-unsigned conversion is a bug
	“I have -3 GB of free capacity”
	Suddenly LOTS of new files were sent to this storage server!
	Imagine the situation for s3 product owners at Amazon
	It took Amazon nearly a day to figure this out
	From bad… to worse?
	Issues you see in this story
	A thought question
	… and the answer is
	Lesson learned?
	Now… an issue with Astrolabe
	State Merge: Core of Astrolabe epidemic
	State Merge: Core of Astrolabe epidemic
	State Merge: Core of Astrolabe epidemic
	Astrolabe builds a hierarchy using a P2P protocol that “assembles the puzzle” without any servers
	Another really bad story…
	A Normal aggregation tree
	Deployment team asks… is this “fair”?
	A different aggregation tree
	Wait! P learns N time-steps later?
	What went wrong?
	Insight: Two kinds of shape
	Information space perspective
	So… we fixed that
	Information Space perspective
	We won’t answer that question
	Building blocks
	How UDP multicast really works
	Roles of hardware
	The basic mechanisms
	Concept: A bloom filter: A way to track set membership cheaply (O(1) inclusion cost)
	Use of these filters?
	Example: Nodes A, B and C are in IP multicast group of KMMB
	A sends a multicast
	Example: Nodes A, B and C are in IP multicast group of KMMB
	Bloom Filter role?
	Some uses
	What does this tell us?
	What does this tell us?
	False positives
	We call these multicast storms
	Huge % of messages get dropped
	These problems have actually been seen!
	Summary

