
CS5412 / LECTURE 12:
GOSSIP PROTOCOLS

Ken Birman
Spring, 2022

CS5412 CLOUD COMPUTING, SPRING 2022 1
Lecture V

BUILDING SCALABLE INFRASTRUCTURES

Within a cloud computing environment we often need to manage very
large pools of computers or services.

What is the best way to monitor and manage this kind of deployment?

In lectures 11 and 12 we will discuss the concept of using “gossip” as the
basis for an unusually scalable style of solution. Amazon uses it in S3!

CS5412 CLOUD COMPUTING, SPRING 2022 2

GOSSIP IS USED IN BLOCKCHAIN!

Hard to deny that Blockchain is big business!

Gossip is used to distribute updates in permissionless blockchain, where the
participants are anonymous but might not be cooperating

Gossip makes it is very hard for attackers to disrupt updates.

CS5412 CLOUD COMPUTING, SPRING 2022 3

BYZANTINE PARTICIPANTS

Blockchain must tolerate (a few) Byzantine participants.

They seek to damage or disrupt the chain or to favor or delay transactions
from certain parties, attempt to DDoS links, etc.

Even a Byzantine participant can’t modify or forge messages: messages
are cryptographically signed.

CS5412 CLOUD COMPUTING, SPRING 2022 4

Byzantine participant

GOSSIP 101

Suppose that Anne tells me something.
I’m sitting next to Fred, and I tell him
Later, he tells Mimi and I tell Frank

Each round doubles the number of people
who know the secret.

This is an example of a push epidemic
Push-pull occurs if we exchange data

CS5412 CLOUD COMPUTING, SPRING 2022 5

Push-Pull in Action!

Not cooperating

PUSH/PULL GOSSIP

Combines push and pull, but requires an RPC-style of interaction:

 Process P decides to gossip with process Q

 P sends Q some form of concise “digest” of information available.

 Q sends back its own digest, plus a list of items it wants from P.

 P responds by sending those items, plus a list of items it wants from Q.

 Q sends the requested items.

This avoids sending large duplicate objects

CS5412 CLOUD COMPUTING, SPRING 2022 6

Push-Pull in Action!

EACH MESSAGE IS TREATED SEPARATELY

We send requests but don’t actually “wait” for a response

This way if our peer turns out to be faulty or uncooperative, nothing bad
can happen – we sent a first stage push-pull message but got not reply
and don’t have any associated state that lingers, etc

If it works, great. If not, well, the next message will go to someone else.

CS5412 CLOUD COMPUTING, SPRING 2022 7

LIMITED WORK PER ROUND

Think about maximum size gossip messages – there is always a limit.

All of these patterns have a fixed maximum number of messages that will
be sent and received.

So, each process has a limit on how many bytes it will need to send for
each gossip round.

CS5412 CLOUD COMPUTING, SPRING 2022 8

REASONABLE NETWORK ASSUMPTIONS

Gossip doesn’t assume all-to-all connectivity: outside the datacenter we
often see more of a graph of peering connections.

Instead, we tend to assume an “expander” graph: every node is
reachable from every other node within O(log(N)) hops. We also assume
that the network is robust to link failures or Byzantine DDoS attack.

These are considered to be very practical, reasonable assumptions

CS5412 CLOUD COMPUTING, SPRING 2022 9

SIZE CONSTRAINT

For gossip to really have constant cost at each participant, we need to
decide on a maximum message size.

Messages can grow to that maximum, but not beyond

But with unlimited numbers of processes, even if the events we gossip about
are rare, the amount of information to share could grow as O(N)

CS5412 CLOUD COMPUTING, SPRING 2022 10

TRICKS FOR LIMITING MESSAGE SIZE

Many systems only gossip about “recent” information.

The theory is that older data is probably stale or wrong in any case.

Then the issue is “how many events can happen in ∆ time?” This may be
more manageable

CS5412 CLOUD COMPUTING, SPRING 2022 11

GOSSIP SCALES VERY NICELY BUT PURE PUSH
OR PURE PULL ISN’T IDEAL

Participant load is constant, independent
of size of the system.

Total network load linear in system size.

Information spreads in log(N) time, yet that
limit on work per process remains in effect!

CS5412 CLOUD COMPUTING, SPRING 2022 12

%
 in

fe
ct

ed

0.0

1.0

Time →

“Reinfection” eventually
becomes dominant Pure push case: Needs a long time to

reach the last few processes

GOSSIP WITH PUSH-PULL IS BEST

Participant load is constant, independent
of size of the system.

Total network load linear in system size.

Information spreads in log(N) time, yet that
limit on work per process remains in effect!

CS5412 CLOUD COMPUTING, SPRING 2022 13

%
 in

fe
ct

ed

0.0

1.0

Time →

Push-Pull Terminates quickly and reaches
every non-faulty process

ONE SMALLISH RISK

What if everyone decides to gossip to the same process all at once?

Selection of the target is random… it could happen.

But it is very unlikely and in fact the receiver could just ignore some
messages. Gossip doesn’t require reliable messaging.

CS5412 CLOUD COMPUTING, SPRING 2022 14

GOSSIP IN DISTRIBUTED SYSTEMS

We can even gossip about membership
 Need a bootstrap mechanism, but then discuss failures, new members
 This feature is not used in permissionless blockchain, but it is used in

permissioned blockchain. In fact this is what distinguishes those models.

Gossip to repair faults in replicated data
 “I have 6 updates from Charlie”

If we aren’t in a hurry, gossip to replicate data too

CS5412 CLOUD COMPUTING, SPRING 2022 15

WHY “IF WE AREN’T IN A HURRY?”

Gossip is very robust, but log(N) time might not be fast.

Normally we run one round every second or so.

A data center with 100,000 computers would have log(N) = 17, so when
something important happens, it would take 17 seconds to reach all nodes.

Size limit of messages can also be an issue

CS5412 CLOUD COMPUTING, SPRING 2022 16

WHAT IF WE ACTUALLY ARE IN A HURRY?

One option is to mix gossip with a second mechanism.

UDP multicast can be useful here. This is an old and not-often used feature
of the Internet UDP protocol (user datagram protocol, sometimes called
“unreliable datagrams” to contrast with TCP).

 Instead of having just one server for each IP address, UDP datagrams
allow multiple servers to attach to the same shared IP address

 With this feature, the UDP multicast will go to all receivers

CS5412 CLOUD COMPUTING, SPRING 2022 17

SOME WARNINGS…

Many datacenters disable the router feature UDP multicast requires.

If they do this, it won’t work even though Linux might allow you to bind to
that shared class-D multicast IP address, and to send to it – the messages
just won’t reach other machines.

Also, because UDP multicast isn’t reliable, some receivers could receive the
message, but others might drop it – silently. No retransmissions occur.

CS5412 CLOUD COMPUTING, SPRING 2022 18

BIMODAL MULTICAST

This was a protocol that uses UDP multicast as a first step, then “fills any
gaps” using gossip.

Cool trick: If some node is asked to share the same message twice via
gossip, instead it resends the UDP multicast. That way if a few processes
seem to have missed some message, it gets retransmitted soon.

We get two delivery delay “curves”: one for UDP multicast, the second for
gossip to fill the tiny number of remaining gaps.

CS5412 CLOUD COMPUTING, SPRING 2022 19

A BIMODAL DELIVERY CURVE

In this picture, 99.9% of the messages are received via UDP multicast. So
in a datacenter with 100,000 machines, only 100 or so miss it.

But then the gossip spread could be a bit slow

CS5412 CLOUD COMPUTING, SPRING 2022 20Time →

Pe
rc

en
t i

nf
ec

te
d

Gossip kicks in but
takes time to fill the

gaps

A BIMODAL DELIVERY CURVE

With a second UDP multicast, our curve looks much better!

CS5412 CLOUD COMPUTING, SPRING 2022 21Time →

Pe
rc

en
t i

nf
ec

te
d

Gossip kicks in, then a
second UDP multicast
occurs, and this leaves

just a few stagglers

Maybe this guy is badly
overloaded, or had a
broken link, or was

rebooting…

IS GOSSIP ATOMIC MULTICAST?

Not really. It lacks a total order guarantee.

But some systems add a timestamp and deliver multicasts in timestamp
order, breaking ties using the IP address of the senders.

At time τ, they have some estimated δ such that no messages are expected
with timestamp ≤ τ-δ (if one were to turn up, they would silently discard it).
When messages become “stable” in this sense, they deliver them.

CS5412 CLOUD COMPUTING, SPRING 2022 22

STRAGGLERS CAN MISS MESSAGES

A machine that ran very slow for a while and missed messages will see
them via gossip, but it may be too late to deliver them in correct order.

In effect, a mistake was already made and it is too late to fix it.

So… bimodal multicast can approximate atomic multicast, but only to
some probabilistic limit. It won’t (can’t) be flawless.

CS5412 CLOUD COMPUTING, SPRING 2022 23

GOSSIP ABOUT MEMBERSHIP

Start with a bootstrap protocol
 For example, processes go to some web site. On it they find a dozen nodes

where the system has been stable for a long time
 Pick one at random

It sends back a membership list. Now your node is up and running!
 Then track “processes I’ve heard from recently” and “processes other nodes

have heard from recently”
 Generally, use push gossip to spread the word

CS5412 CLOUD COMPUTING, SPRING 2022 24

EXAMPLE: THE KELIPS DHT

The goal is similar to the goal for any DHT: Support put and get. Kelips
does this entirely using gossip!

It ends up being very robust, but a bit slow – we don’t really use Kelips,
but it does illustrate how gossip can let us build sophisticated data
structures that “feel” like things where consensus would normally be used!

Note: Kelips does not support the “versioned” style of put. In fact with
gossip, that type of functionality (“compare and swap”) is hard!

CS5412 CLOUD COMPUTING, SPRING 2022 25

MAIN ASSUMPTIONS

Kelips was created for wide-area computing.

No node is sure who else is running the protocol, although there is a way to
send messages to random other nodes.

CS5412 CLOUD COMPUTING, SPRING 2022 26

KELIPS IN PICTURES

CS5412 CLOUD COMPUTING, SPRING 2022 27

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru
consistent hash

1N −

Affinity group
pointers

N
members
per affinity
group

id hbeat rtt

30 234 90ms

230 322 30ms

Affinity group view

110 knows about
other members –
230, 30…

Affinity Groups:
peer membership thru
consistent hash

KELIPS

CS5412 CLOUD COMPUTING, SPRING 2022 28

0 1 2

30

110

230 202

1N −

Contact
pointers

N
members
per affinity
group

id hbeat rtt

30 234 90ms

230 322 30ms

Affinity group view

group contactNode

… …

2 202

Contacts

202 is a “contact”
for 110 in group 2

Affinity Groups:
peer membership thru
consistent hash

KELIPS

CS5412 CLOUD COMPUTING, SPRING 2022 29

0 1 2

30

110

230 202

1N −

Gossip protocol
replicates data
cheaply

N
members
per affinity
group

id hbeat rtt

30 234 90ms

230 322 30ms

Affinity group view

group contactNode

… …

2 202

Contacts

resource info

… …

cnn.com 110

Resource Tuples

“cnn.com” maps to group 2. So
110 tells group 2 to “route”
inquiries about cnn.com to it.

HOW IT WORKS

Kelips is entirely gossip based!
 Gossip about membership
 Gossip to replicate and repair data
 Gossip about “last heard from” time used to discard failed nodes

Gossip “channel” uses fixed bandwidth
 … fixed rate, packets of limited size

CS5412 CLOUD COMPUTING, SPRING 2022 30

Affinity Groups:
peer membership thru
consistent hash

SO, HOW DOES IT WORK?

CS5412 CLOUD COMPUTING, SPRING 2022 31

0 1 2

30

110

230 202

1N −

Contact
pointers

N
members
per affinity
group

id hbeat rtt

30 234 90ms

230 322 30ms

Affinity group view

group contactNode

… …

2 202

Contacts

HOW KELIPS WORKS

Gossip about everything
Heuristic to pick contacts: periodically ping contacts to check
liveness, RTT… swap so-so ones for better ones.

CS5412 CLOUD COMPUTING, SPRING 2022 32

Node 102

Gossip data stream

Hmm…Node 19 looks like
a much better contact in
affinity group 2

175

19

Node 175 is a
contact for Node
102 in some
affinity group

REPLICATION MAKES IT ROBUST

Kelips should work even during disruptive episodes
 After all, tuples are replicated to √N nodes
 Query k nodes concurrently to overcome isolated crashes, also reduces risk that

very recent data could be missed

… we often overlook importance of showing that systems work while
recovering from a disruption

CS5412 CLOUD COMPUTING, SPRING 2022 33

INTERESTING THINGS ABOUT KELIPS

The actual DHT is not really “encoded” anywhere.

Instead, Kelips emerges from the mix of gossip and the hashing rule.

If all nodes have the same value of then Kelip will be “self-stabilizing”

 They do have the same value for N because they gossip about
membership!

CS5412 CLOUD COMPUTING, SPRING 2022 34

N

WHO USES KELIPS?

Nobody!

In a datacenter we generally can track membership with perfect accuracy.
We can then create a DHT just using hashing.

Kelips only makes sense if nodes don’t know the list of members.

CS5412 CLOUD COMPUTING, SPRING 2022 35

ASTROLABE

36

Intended as help for
applications adrift in a sea

of information

Structure emerges from a
randomized gossip protocol

An actual Astrolabe

CS5412 CLOUD COMPUTING, SPRING 2022

ASTROLABE IS A FLEXIBLE MONITORING
OVERLAY

CS5412 CLOUD COMPUTING, SPRING 2022 37

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu Periodically, pull data from monitored systems

Name Time Load Weblogic? SMTP? Word
Version

swift 2271 1.8 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

ASTROLABE IS A FLEXIBLE MONITORING
OVERLAY

CS5412 CLOUD COMPUTING, SPRING 2022 38

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

Periodically, pull data from monitored systems

Name Time Load Weblogic? SMTP? Word
Version

swift 2271 1.8 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2231 1.7 1 1 6.0

ASTROLABE IN A SINGLE DOMAIN

Each node owns a single tuple, like the management information base
(MIB)

Nodes discover one-another through a simple broadcast scheme (“anyone
out there?”) and gossip about membership
Nodes also keep replicas of one-another’s rows
 Periodically (uniformly at random) merge your state with some else…

CS5412 CLOUD COMPUTING, SPRING 2022 39

STATE MERGE: CORE OF ASTROLABE EPIDEMIC

CS5412 CLOUD COMPUTING, SPRING 2022 40

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

STATE MERGE: CORE OF ASTROLABE EPIDEMIC

CS5412 CLOUD COMPUTING, SPRING 2022 41

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

swift 2011 2.0

cardinal 2201 3.5

STATE MERGE: CORE OF ASTROLABE EPIDEMIC

CS5412 CLOUD COMPUTING, SPRING 2022 42

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2201 3.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

OBSERVATIONS

Merge protocol has constant cost
One message sent, received (on avg) per unit time.
 The data changes slowly, so no need to run it quickly – we usually run it every five
seconds or so
 Information spreads in O(log N) time

But this assumes bounded region size
 In Astrolabe, we limit them to 50-100 rows

CS5412 CLOUD COMPUTING, SPRING 2022 43

BIG SYSTEMS…

A big system could have many regions

 Looks like a pile of spreadsheets

 A node only replicates data from its neighbors within its own region

CS5412 CLOUD COMPUTING, SPRING 2022 44

SCALING UP… AND UP…

With a stack of domains, we don’t want every system to “see” every
domain
 Cost would be huge

So instead, we’ll see a summary

CS5412 CLOUD COMPUTING, SPRING 2022 45

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

cardinal.cs.cornell.edu

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

ASTROLABE BUILDS A HIERARCHY WITHOUT
ANY SERVERS

CS5412 CLOUD COMPUTING, SPRING 2022 46

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

SQL query
“summarizes”

data

Dynamically changing query
output is visible system-wide

Name Load Weblogic? SMTP? Word
Version

…

swift 1.7 0 1 6.2

falcon 2.1 1 0 4.1

cardinal 3.9 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 4.1 0 0 4.5

zebra 0.9 0 1 6.2

gnu 2.2 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.2 123.45.61.3 123.45.61.17

NJ 1.6 127.16.77.6 127.16.77.11

Paris 2.7 14.66.71.8 14.66.71.12

LARGE SCALE: “VIRTUAL” REGIONS

These are
 Computed by queries that summarize a whole region as a single row
 Gossiped in a read-only manner within a leaf region

But who runs the gossip?
 Each region elects “k” members to run gossip at the next level up.
 Can play with selection criteria and “k”

CS5412 CLOUD COMPUTING, SPRING 2022 47

HIERARCHY IS VIRTUAL… DATA IS REPLICATED

CS5412 CLOUD COMPUTING, SPRING 2022 48

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Blue leaf node “sees” its neighbors and the
domains on the path to the root.

Falcon runs level 2 epidemic
because it has lowest load

Gnu runs level 2 epidemic because
it has lowest load

HIERARCHY IS VIRTUAL… DATA IS REPLICATED

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Green node sees different leaf domain but has
a consistent view of the inner domain

CS5412 CLOUD COMPUTING, SPRING 2022 49

WORST CASE LOAD?

A small number of nodes end up participating in O(logfanoutN) epidemics
 Here the fanout is something like 50
 In each epidemic, a message is sent and received roughly every 5 seconds

We limit message size so even during periods of turbulence, no message
can become huge.

CS5412 CLOUD COMPUTING, SPRING 2022 50

CRITICISM OF ASTROLABE

Uses complained that Astrolabe didn’t feel natural.

People expect a database, not a distributed query system. However, they
do like the idea of dynamically searching for the root cause of a problem.

Gossip is slow, and management systems may need to react quickly. So if
they do use Astrolabe, they might ask for a feature like the bimodal
multicast UDP “acceleration”, which can speed things up when events occur.

CS5412 CLOUD COMPUTING, SPRING 2022 51

WHO USES ASTROLABE?

When Werner Vogels joined Amazon, they adopted Astrolabe inside the
S3 storage system.

It evolved substantially over time, but the gossip pattern was retained.

Today, many management systems use ideas similar to these, but the
Astrolabe hierarchical approach is not currently seen even at Amazon.

CS5412 CLOUD COMPUTING, SPRING 2022 52

BLOCKCHAINS

Blockchains have emerged as a new application for
gossip, but in wide-area settings – not inside datacenters.

The area was pioneered by Bitcoin, the cryptocurrency.

Bitcoin is defined over an append-only tamperproof log (like Paxos!). A
gossip protocol is used to share proposed updates robustly.

CS5412 CLOUD COMPUTING, SPRING 2022 53

Created as a joke but by now
has a $29BUS market value.

Pronounced “doge” not “doggy”

… WE WON’T DIVE INTO BLOCKCHAIN TODAY

The Bitcoin log is a bit complicated because of the cryptographic model.

But the policy for disseminating updates (log appends) is definitely a
gossip protocol. Every node talks to some neighbors in the Bitcoin network
“overlay” and they exchange data using gossip techniques.

The idea is that even if a few nodes are Byzantine, the overall blockchain
can route around their bad behavior.

CS5412 CLOUD COMPUTING, SPRING 2022 54

HOW TO USE GOSSIP IN A PROJECT?

I really like Lonnie Princehouse’s MiCA platform.

https://github.com/mica-gossip/MiCA

MiCA uses a Java-based coding style. You create and compose gossip
and can even configure them to run at different gossip rates.

CS5412 CLOUD COMPUTING, SPRING 2022 55

Lonnie Princehouse

SUMMARY

Gossip can be a powerful tool for building stable distributed protocols.

It is extremely easy to use, and robust!

But it can be challenging to create entire systems based on gossip. The
technology works best as a tool for building subsystems with specific roles.

CS5412 CLOUD COMPUTING, SPRING 2022 56

	CS5412 / Lecture 12: �Gossip Protocols
	Building scalable infrastructures
	Gossip is used in Blockchain!
	Byzantine participants
	Gossip 101
	Push/Pull gossip
	Each message is treated separately
	Limited work per round
	Reasonable network assumptions
	Size constraint
	Tricks for limiting message size
	Gossip scales very nicely but pure push or pure pull isn’t ideal
	Gossip with push-pull is best
	One smallish risk
	Gossip in distributed systems
	Why “if we aren’t in a hurry?”
	What if we actually are in a hurry?
	Some warnings…
	Bimodal Multicast
	A bimodal Delivery curve
	A bimodal Delivery curve
	Is gossip atomic multicast?
	Stragglers can miss messages
	Gossip about membership
	Example: The Kelips DHT
	Main assumptions
	Kelips in pictures
	Kelips
	Kelips
	How it works
	So, how does it work?
	How Kelips works
	Replication makes it robust
	Interesting things about Kelips
	Who uses Kelips?
	Astrolabe
	Astrolabe is a flexible monitoring overlay
	Astrolabe is a flexible monitoring overlay
	Astrolabe in a single domain
	State Merge: Core of Astrolabe epidemic
	State Merge: Core of Astrolabe epidemic
	State Merge: Core of Astrolabe epidemic
	Observations
	Big systems…
	Scaling up… and up…
	Astrolabe builds a hierarchy without any servers
	Large scale: “virtual” regions
	Hierarchy is virtual… data is replicated
	Hierarchy is virtual… data is replicated
	Worst case load?
	Criticism of Astrolabe
	Who uses Astrolabe?
	Blockchains
	… we won’t dive into Blockchain today
	How to use Gossip in a project?
	Summary

