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BUILDING SCALABLE INFRASTRUCTURES

Within a cloud computing environment we often need to manage very 
large pools of computers or services.

What is the best way to monitor and manage this kind of deployment?

In lectures 11 and 12 we will discuss the concept of using “gossip” as the 
basis for an unusually scalable style of solution.  Amazon uses it in S3!  
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GOSSIP IS USED IN BLOCKCHAIN!

Hard to deny that Blockchain is big business!

Gossip is used to distribute updates in permissionless blockchain, where the 
participants are anonymous but might not be cooperating

Gossip makes it is very hard for attackers to disrupt updates.  
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BYZANTINE PARTICIPANTS

Blockchain must tolerate (a few) Byzantine participants.

They seek to damage or disrupt the chain or to favor or delay transactions 
from certain parties, attempt to DDoS links, etc.

Even a Byzantine participant can’t modify or forge messages: messages 
are cryptographically signed.
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GOSSIP 101

Suppose that Anne tells me something.
I’m sitting next to Fred, and I tell him
Later, he tells Mimi and I tell Frank

Each round doubles the number of people
who know the secret.

This is an example of a push epidemic
Push-pull occurs if we exchange data
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PUSH/PULL GOSSIP

Combines push and pull, but requires an RPC-style of interaction:

 Process P decides to gossip with process Q

 P sends Q some form of concise “digest” of information available.

 Q sends back its own digest, plus a list of items it wants from P.

 P responds by sending those items, plus a list of items it wants from Q.

 Q sends the requested items.

This avoids sending large duplicate objects
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EACH MESSAGE IS TREATED SEPARATELY

We send requests but don’t actually “wait” for a response

This way if our peer turns out to be faulty or uncooperative, nothing bad 
can happen – we sent a first stage push-pull message but got not reply 
and don’t have any associated state that lingers, etc

If it works, great.  If not, well, the next message will go to someone else.
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LIMITED WORK PER ROUND

Think about maximum size gossip messages – there is always a limit.

All of these patterns have a fixed maximum number of messages that will 
be sent and received.

So,  each process has a limit on how many bytes it will need to send for 
each gossip round.
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REASONABLE NETWORK ASSUMPTIONS

Gossip doesn’t assume all-to-all connectivity: outside the datacenter we 
often see more of a graph of peering connections.

Instead, we tend to assume an “expander” graph: every node is 
reachable from every other node within O(log(N)) hops.  We also assume 
that the network is robust to link failures or Byzantine DDoS attack.

These are considered to be very practical, reasonable assumptions
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SIZE CONSTRAINT

For gossip to really have constant cost at each participant, we need to 
decide on a maximum message size.

Messages can grow to that maximum, but not beyond

But with unlimited numbers of processes, even if the events we gossip about 
are rare, the amount of information to share could grow as O(N)
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TRICKS FOR LIMITING MESSAGE SIZE

Many systems only gossip about “recent” information.

The theory is that older data is probably stale or wrong in any case.

Then the issue is “how many events can happen in ∆ time?”  This may be 
more manageable
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GOSSIP SCALES VERY NICELY BUT PURE PUSH 
OR PURE PULL ISN’T IDEAL

Participant load is constant, independent 
of size of the system.

Total network load linear in system size.

Information spreads in log(N) time, yet that 
limit on work per process remains in effect!
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GOSSIP WITH PUSH-PULL IS BEST

Participant load is constant, independent 
of size of the system.

Total network load linear in system size.

Information spreads in log(N) time, yet that 
limit on work per process remains in effect!
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ONE SMALLISH RISK

What if everyone decides to gossip to the same process all at once?

Selection of the target is random… it could happen.

But it is very unlikely and in fact the receiver could just ignore some 
messages.  Gossip doesn’t require reliable messaging.
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GOSSIP IN DISTRIBUTED SYSTEMS

We can even gossip about membership 
 Need a bootstrap mechanism, but then discuss failures, new members
 This feature is not used in permissionless blockchain, but it is used in 

permissioned blockchain.  In fact this is what distinguishes those models.

Gossip to repair faults in replicated data
 “I have 6 updates from Charlie”

If we aren’t in a hurry, gossip to replicate data too
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WHY “IF WE AREN’T IN A HURRY?”

Gossip is very robust, but log(N) time might not be fast.

Normally we run one round every second or so.

A data center with 100,000 computers would have log(N) = 17, so when 
something important happens, it would take 17 seconds to reach all nodes.

Size limit of messages can also be an issue
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WHAT IF WE ACTUALLY ARE IN A HURRY?

One option is to mix gossip with a second mechanism.

UDP multicast can be useful here.  This is an old and not-often used feature 
of the Internet UDP protocol (user datagram protocol, sometimes called 
“unreliable datagrams” to contrast with TCP).

 Instead of having just one server for each IP address, UDP datagrams
allow multiple servers to attach to the same shared IP address

 With this feature, the UDP multicast will go to all receivers
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SOME WARNINGS…

Many datacenters disable the router feature UDP multicast requires.

If they do this, it won’t work even though Linux might allow you to bind to 
that shared class-D multicast IP address, and to send to it – the messages 
just won’t reach other machines.  

Also, because UDP multicast isn’t reliable, some receivers could receive the 
message, but others might drop it – silently.  No retransmissions occur.
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BIMODAL MULTICAST

This was a protocol that uses UDP multicast as a first step, then “fills any 
gaps” using gossip.

Cool trick: If some node is asked to share the same message twice via 
gossip,  instead it resends the UDP multicast.  That way if a few processes 
seem to have missed some message, it gets retransmitted soon.

We get two delivery delay “curves”: one for UDP multicast, the second for 
gossip to fill the tiny number of remaining gaps.
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A BIMODAL DELIVERY CURVE

In this picture, 99.9% of the messages are received via UDP multicast.  So 
in a datacenter with 100,000 machines, only 100 or so miss it.

But then the gossip spread could be a bit slow
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A BIMODAL DELIVERY CURVE

With a second UDP multicast, our curve looks much better!
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IS GOSSIP ATOMIC MULTICAST?

Not really.  It lacks a total order guarantee.

But some systems add a timestamp and deliver multicasts in timestamp 
order, breaking ties using the IP address of the senders.

At time τ, they have some estimated δ such that no messages are expected 
with timestamp ≤ τ-δ (if one were to turn up, they would silently discard it).  
When messages become “stable” in this sense, they deliver them.
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STRAGGLERS CAN MISS MESSAGES

A machine that ran very slow for a while and missed messages will see 
them via gossip, but it may be too late to deliver them in correct order.

In effect, a mistake was already made and it is too late to fix it.

So… bimodal multicast can approximate atomic multicast, but only to 
some probabilistic limit.  It won’t (can’t) be flawless.
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GOSSIP ABOUT MEMBERSHIP

Start with a bootstrap protocol
 For example, processes go to some web site.  On it they find a dozen nodes 

where the system has been stable for a long time
 Pick one at random

It sends back a membership list.  Now your node is up and running!
 Then track “processes I’ve heard from recently” and “processes other nodes

have heard from recently”
 Generally, use push gossip to spread the word
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EXAMPLE: THE KELIPS DHT

The goal is similar to the goal for any DHT: Support put and get.  Kelips
does this entirely using gossip!

It ends up being very robust, but a bit slow – we don’t really use Kelips, 
but it does illustrate how gossip can let us build sophisticated data 
structures that “feel” like things where consensus would normally be used!

Note: Kelips does not support the “versioned” style of put.  In fact with 
gossip, that type of functionality (“compare and swap”) is hard!
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MAIN ASSUMPTIONS

Kelips was created for wide-area computing.

No node is sure who else is running the protocol, although there is a way to 
send messages to random other nodes.
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KELIPS IN PICTURES
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Affinity Groups:
peer membership thru 
consistent hash

KELIPS
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Affinity Groups:
peer membership thru 
consistent hash

KELIPS
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HOW IT WORKS

Kelips is entirely gossip based!
 Gossip about membership
 Gossip to replicate and repair data
 Gossip about “last heard from” time used to discard failed nodes

Gossip “channel” uses fixed bandwidth
 … fixed rate, packets of limited size
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Affinity Groups:
peer membership thru 
consistent hash

SO, HOW DOES IT WORK?
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HOW KELIPS WORKS

Gossip about everything
Heuristic to pick contacts: periodically ping contacts to check 
liveness, RTT… swap so-so ones for better ones.
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REPLICATION MAKES IT ROBUST

Kelips should work even during disruptive episodes
 After all, tuples are replicated to  √N nodes
 Query k nodes concurrently to overcome isolated crashes, also reduces risk that 

very recent data could be missed

… we often overlook importance of showing that systems work while 
recovering from a disruption
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INTERESTING THINGS ABOUT KELIPS

The actual DHT is not really “encoded” anywhere.

Instead, Kelips emerges from the mix of gossip and the hashing rule.

If all nodes have the same value of     then Kelip will be “self-stabilizing”

 They do have the same value for N because they gossip about
membership!
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WHO USES KELIPS?

Nobody!

In a datacenter we generally can track membership with perfect accuracy.  
We can then create a DHT just using hashing.

Kelips only makes sense if nodes don’t know the list of members.
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ASTROLABE

36

Intended as help for 
applications adrift in a sea 

of information

Structure emerges from a 
randomized gossip protocol

An actual Astrolabe
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ASTROLABE IS A FLEXIBLE MONITORING 
OVERLAY
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Name Time Load Weblogic? SMTP? Word 
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu Periodically, pull data from monitored systems

Name Time Load Weblogic? SMTP? Word 
Version

swift 2271 1.8 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0



ASTROLABE IS A FLEXIBLE MONITORING 
OVERLAY
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Periodically, pull data from monitored systems

Name Time Load Weblogic? SMTP? Word 
Version

swift 2271 1.8 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

Name Time Load Weblogic
?

SMTP? Word 
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2231 1.7 1 1 6.0



ASTROLABE IN A SINGLE DOMAIN

Each node owns a single tuple, like the management information base 
(MIB)

Nodes discover one-another through a simple broadcast scheme (“anyone 
out there?”) and gossip about membership
Nodes also keep replicas of one-another’s rows
 Periodically (uniformly at random) merge your state with some else…
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STATE MERGE: CORE OF ASTROLABE EPIDEMIC
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STATE MERGE: CORE OF ASTROLABE EPIDEMIC
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STATE MERGE: CORE OF ASTROLABE EPIDEMIC
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OBSERVATIONS

Merge protocol has constant cost
One message sent, received (on avg) per unit time.
 The data changes slowly, so no need to run it quickly – we usually run it every five 
seconds or so
 Information spreads in O(log N) time

But this assumes bounded region size
 In Astrolabe, we limit them to 50-100 rows
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BIG SYSTEMS…

A big system could have many regions

 Looks like a pile of spreadsheets

 A node only replicates data from its neighbors within its own region
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SCALING UP… AND UP…

With a stack of domains, we don’t want every system to “see” every 
domain
 Cost would be huge

So instead, we’ll see a summary
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Name Load Weblogic? SMTP? Word 
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word 
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg 
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

ASTROLABE BUILDS A HIERARCHY WITHOUT 
ANY SERVERS
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SQL query 
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Dynamically changing query 
output is visible system-wide

Name Load Weblogic? SMTP? Word 
Version

…

swift 1.7 0 1 6.2

falcon 2.1 1 0 4.1

cardinal 3.9 1 0 6.0

Name Load Weblogic? SMTP? Word 
Version

…

gazelle 4.1 0 0 4.5

zebra 0.9 0 1 6.2

gnu 2.2 1 0 6.2

Name Avg 
Load

WL contact SMTP contact

SF 2.2 123.45.61.3 123.45.61.17

NJ 1.6 127.16.77.6 127.16.77.11

Paris 2.7 14.66.71.8 14.66.71.12



LARGE SCALE: “VIRTUAL” REGIONS

These are
 Computed by queries that summarize a whole region as a single row
 Gossiped in a read-only manner within a leaf region

But who runs the gossip?
 Each region elects “k” members to run gossip at the next level up.
 Can play with selection criteria and “k”
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HIERARCHY IS VIRTUAL… DATA IS REPLICATED
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Name Load Weblogic? SMTP? Word 
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…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1
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WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Blue leaf node “sees” its neighbors and the 
domains on the path to the root.  

Falcon runs level 2 epidemic 
because it has lowest load

Gnu runs level 2 epidemic because 
it has lowest load



HIERARCHY IS VIRTUAL… DATA IS REPLICATED

Name Load Weblogic? SMTP? Word 
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word 
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Green node sees different leaf domain but has 
a consistent view of the inner domain  
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WORST CASE LOAD?

A small number of nodes end up participating in O(logfanoutN) epidemics
 Here the fanout is something like 50
 In each epidemic, a message is sent and received roughly every 5 seconds

We limit message size so even during periods of turbulence, no message 
can become huge.  
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CRITICISM OF ASTROLABE

Uses complained that Astrolabe didn’t feel natural.

People expect a database, not a distributed query system.  However, they 
do like the idea of dynamically searching for the root cause of a problem.

Gossip is slow, and management systems may need to react quickly.  So if 
they do use Astrolabe, they might ask for a feature like the bimodal 
multicast UDP “acceleration”, which can speed things up when events occur.
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WHO USES ASTROLABE?

When Werner Vogels joined Amazon, they adopted Astrolabe inside the 
S3 storage system.

It evolved substantially over time, but the gossip pattern was retained.

Today, many management systems use ideas similar to these, but the 
Astrolabe hierarchical approach is not currently seen even at Amazon.
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BLOCKCHAINS

Blockchains have emerged as a new application for 
gossip, but in wide-area settings – not inside datacenters.

The area was pioneered by Bitcoin, the cryptocurrency.

Bitcoin is defined over an append-only tamperproof log (like Paxos!).  A 
gossip protocol is used to share proposed updates robustly.

CS5412 CLOUD COMPUTING, SPRING 2022 53

Created as a joke but by now 
has a $29BUS market value.  

Pronounced “doge” not “doggy”



… WE WON’T DIVE INTO BLOCKCHAIN TODAY

The Bitcoin log is a bit complicated because of the cryptographic model.

But the policy for disseminating updates (log appends) is definitely a 
gossip protocol.  Every node talks to some neighbors in the Bitcoin network 
“overlay” and they exchange data using gossip techniques.

The idea is that even if a few nodes are Byzantine, the overall blockchain 
can route around their bad behavior.
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HOW TO USE GOSSIP IN A PROJECT?

I really like Lonnie Princehouse’s MiCA platform.

https://github.com/mica-gossip/MiCA

MiCA uses a Java-based coding style.  You create and compose gossip 
and can even configure them to run at different gossip rates.
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SUMMARY

Gossip can be a powerful tool for building stable distributed protocols.

It is extremely easy to use, and robust!

But it can be challenging to create entire systems based on gossip.   The 
technology works best as a tool for building subsystems with specific roles.
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