
CASCADE: FULL DETAILS
Ken Birman
CS5412 Spring 2022
Lecture 10

1CORNELL UNIVERSITY CS5412 SPRING 2022

THE WORLD IS GENERATING A NEW WAVE OF
IOT/ML PIPELINES… THERE ARE MANY USE CASES

KEN BIRMAN (KEN@CS.CORNELL.EDU) 2

Data sources Federated ML Smart
Distributed AI Queries

How much should I
budget for raw milk

purchases in March for
my yoghurt factory?”

FEDERATED ML

Increasingly seen in robotics, smart homes, 5G, digital twin scenarios.

 The application is a graphical collection of AI classifiers / learners

 Nodes represent computational tasks.

 Edges represent data flow between distinct tasks.

CORNELL UNIVERSITY CS5412 SPRING 2022 3

EACH λ REPRESENTS A DISTINCT ML ELEMENT

Many are parallel: Single λ may run on a pool of compute nodes.

Thus, to build a D-AI we build pipelines linking parallel tasks.

Today’s cloud platforms have limited support for this model,
lack the real-time and consistency guarantees needed for IoT.

CORNELL UNIVERSITY CS5412 SPRING 2022 4

DISTRIBUTED AI

A related concept

Used for AI algorithms designed to run on a parallel computer or
cluster, for example stochastic gradient descent. Can also refer
to the nodes in a DNN or CNN

A federated ML graph could have nodes that themselves are
distributed AI components! Our graph would have subgraphs

CORNELL UNIVERSITY CS5412 SPRING 2022 5

HIGH LEVEL CASCADE GOALS

Legacy support: Easy to use with no need to change your code

Much faster than standard platforms: low delay, high bandwidth

Stronger guarantees: Your ML doesn’t fight platform “noise”

KEN BIRMAN (KEN@CS.CORNELL.EDU) 6

CONSISTENCY AND FAULT TOLERANCE

7

HDFS CASCADE USING CONSISTENT CASCADE WITH
CUTS BUT TRUSTING SERVER CLOCKS SENSOR TIME

We provide high availability, auto-repair after failures, and strong consistency.
Apache HDFS (used by Spark) becomes noisy under time pressure.
Cascade (middle and right) supports “clean” temporal data access.

TRADITIONAL APPROACH

KEN BIRMAN (KEN@CS.CORNELL.EDU) 8

File system or
Key-Value Store

GPU

Your logic

Accelerator Layer

Your code is in its own address space,
maybe on a different computer

Request objects
one by one

Objects copied
over datacenter

TCP network

Runtime copies data into GPU

TRADITIONAL APPROACH

KEN BIRMAN (KEN@CS.CORNELL.EDU) 9

File system or
Key-Value Store

GPU

Your logic

Accelerator Layer

Your code is in its own address space,
maybe on a different computer

Caching hides these costs, in iterative cases

$$$

RDMA CAN HELP… A LITTLE

KEN BIRMAN (KEN@CS.CORNELL.EDU) 10

File system or
Key-Value Store

GPU

Your logic

Accelerator Layer

Your code is in its own address space,
maybe on a different computer

Request objects
one by one

Objects copied
over datacenter

TCP network

Runtime still copies data into GPU RDMA

$$$

CASCADE CAN BE USED THIS WAY...

KEN BIRMAN (KEN@CS.CORNELL.EDU) 11

Key-Value Storage Layer

Cascade runtime environment

GPU

Your logic

Accelerator Layer

Your code is in its own address space,
maybe on a different computer

Request objects
one by one

Objects copied
over datacenter

TCP network

RDMA

$$$

… BUT CAN ALSO HOST USER CODE

KEN BIRMAN (KEN@CS.CORNELL.EDU) 12

GPU

Fast-path logic (DLL)

Key-Value Storage Layer

Accelerator Layer

Cascade runtime environment

CASCADE: CUSTOMIZED SMART SERVICES

KEN BIRMAN (KEN@CS.CORNELL.EDU) 13

Image to
classify

GPU
GPU-accelerated kernel

initiated from the lambda

Request for classification
triggers a C++ lambda in

the Cascade address space

Ideally, these are cached on GPU

RDMA directly into GPU memory

Fast-path logic (DLL)

Key-Value Storage Layer

Accelerator Layer
ML model, configuration, parameters

… AND WE CAN EVEN RUN MAPREDUCE

KEN BIRMAN (KEN@CS.CORNELL.EDU) 14

Map… Shuffle… Reduce…

Derecho atomic multicast
(vertical Paxos on RDMA)

SO… WHAT MAKES IT HARD?

When storing objects, use the federation graph to anticipate how they
will be used. Placement decisions should collocate objects at nodes
where computations that need them will run.

Later, an event occurs. Launch the computational pipeline on nodes
that will (all) have the required inputs.

Metrics: delay, throughput, balanced workload, resource utilization.

KEN BIRMAN (KEN@CS.CORNELL.EDU) 15

Downstream
action

Hyperparameters,
models, cloud data

GPU

FAST-PATH PERFORMANCE

A simple federated ML pipeline

Cascade is close to ideal efficiency on our hardware and 100 to
10,000x faster than common options like Apache Flink

KEN BIRMAN (KEN@CS.CORNELL.EDU) 16

Input event

Hyperparameters,
models, cloud data

GPU

Downstream
action

Hyperparameters,
models, cloud data

GPU

Latency: 12us
Throughput: 8GB/s

DAIRY INTELLIGENCE WITH CASCADE

KEN BIRMAN (KEN@CS.CORNELL.EDU) 17

THE CASCADE MODEL Is it a service? A
library?

CORNELL UNIVERSITY CS5412 SPRING 2022 18

CASCADE IS A SERVICE

Although created using Derecho (a C++ library), Cascade runs
on a set of nodes (machines or VMs) where it controls some
resources (cores, RDMA interfaces, GPUs/FPGAs, memory).

Users can build applications that access Cascade from “outside”.
We call those “external clients”. The put/get API would work,
and RDMA is supported.

CORNELL UNIVERSITY CS5412 SPRING 2022 19

Cascade Service
running as a file
system or DHT

External Client

CASCADE IS AN SERVICE

But this slide deck is mostly about users who extend the Cascade
service by adding logic that runs inside of Cascade.

Cascade behaves as a customized service: a “smart” service.

We will explain how this is done… it involves extra APIs, but
allows us to also treat our service as a kind of library.

CORNELL UNIVERSITY CS5412 SPRING 2022 20

Which cow
is this?

External Client

EXTENSION CONCEPT

Cascade is one service

But when you supply customization
it acts like many specialized
services, one per application

So it becomes a platform for new
microservices, like these!

CORNELL UNIVERSITY CS5412 SPRING 2022 21

Which cow
is this?

Is this cow
clean enough

to milk?

Does this
cow have
mastitis?

A single Cascade server can support
multiple customized services

The Cascade
Server is extensible

KEY CONCEPT: EXTENSIBILITY

What does it mean to be an “extensible platform as a service”?

Think about devices you plug into your computer. For example,
Ken uses a Garmin GPS to track bike rides. When he plugs the
Garmin into his Dell computer, it becomes an expert on all the
bike rides he has taken since 2008.

In some sense, the Garmin+Dell pair is a “new thing”
CORNELL UNIVERSITY CS5412 SPRING 2022 22

HOW DOES A PERSON EXTEND CASCADE?

We will look at this later in the class, but the idea is to plug in new
software written in C++, and to tell Cascade when this software
should run.

The new code watches for IoT events specific to the application, by
monitoring keys. Updates will trigger the λ to run.

For example, your plug-in could handle “cow-washing events”

CORNELL UNIVERSITY CS5412 SPRING 2022 23

THE CASCADE STORAGE MODEL How should Cascade
data be managed?

CORNELL UNIVERSITY CS5412 SPRING 2022 24

FILE SYSTEM “EXTENSION”

Cascade has a built-in file system extension:
 Every object has a pathname.
 The file system extension supports normal file operations.
 You can access it just like any file system.

Yet Cascade isn’t a file system. It is a key-value get/put/watch store.
Moreover, it is automatically sharded for scalability.

CORNELL UNIVERSITY CS5412 SPRING 2022 25

User sees scalable,
“private” object pools

UPDATES: CREATE A NEW FILE OR
APPENDING TO AN EXISTING FILE

Any key-value object lives in one shard (but that same shard may
have many keys that map to it!).

 A key is a string. A value is an object serialized as a byte vector.

 Updates are log appends using Paxos. Each object has a log
of versions that evolved over time.

 Queries run on the stable prefix of the log.

CORNELL UNIVERSITY CS5412 SPRING 2022 26

User sees scalable,
“private” object pools

VERSIONED UPDATES

Each time you write to an object, Cascade creates a new version,
with a unique (incrementing) version number.

If you read an object, modify it, and then write it back, you can
tell Cascade which version you modified. The put will double
check to be sure that this is still the current version before
replacing it, and otherwise returns an error (then you can loop)

CORNELL UNIVERSITY CS5412 SPRING 2022 27

VERSIONED/TEMPORAL QUERIES

Accessed via get.

In the volatile case, Cascade only keeps the most recent version.
With persistent objects, Cascade keeps a log of past versions.

 By default, applications see the most current version

 Indexed access allows the application to query any version
(by version number or time), or fetch any data range.

CORNELL UNIVERSITY CS5412 SPRING 2022 28

VERSIONED OBJECTS
We configure the object store to track versions. put creates a new version:
 key: The object store always tracks information on a per-object basis
 version-number: Just an integer
 time: If the object itself lacks a timestamp, we just use “platform” time.

Now get can lookup most current version, or a specific one, even by time.
The object store is optimized to leverage non-volatile memory hardware.

29CORNELL UNIVERSITY CS5412 SPRING 2022

STORING DELTAS

Existing DHTs lack support for versioned data.

We implemented a highly optimized versioned data structure

We implement a temporal index, and cache frequently accessed data.

 A server still manages a map (since many keys map to it), but you can
think of the values for a specific key as being versioned.

 Sometimes deltas are more efficient. If you have a function to compute
the delta, we won’t even create a new version unless you tell us to.

 Values (or deltas) are saved on NVMe & replicated for fault-tolerance.
30CORNELL UNIVERSITY CS5412 SPRING 2022

THE CASCADE COMPUTE MODEL Lambdas, coded in
your favorite language

CORNELL UNIVERSITY CS5412 SPRING 2022 31

THE CENTRAL PUZZLE

The very fastest data paths require compilation, ideally in
languages like C++.

But we want Cascade to run as a service, so it would often
already be running when a new user comes along and wishes to
create and launch some completely new service.

How can we extend a running system? Actually… it isn’t so hard
CORNELL UNIVERSITY CS5412 SPRING 2022 32

FIRST QUESTION: WHAT’S IN A λ?

We support many languages. Native APIs are Python with
various packages (including LINQ) and C++ with LINQ.

Code is concise – LINQ pioneered a style that mixes “kernel”
invocations with embedded SQL. Maps cleanly to GPU, FPGAs.

Cascade manages GPUs and can cache data in GPU memory.

CORNELL UNIVERSITY CS5412 SPRING 2022 33

HOW CAN A KEY-VALUE STORE “BE” A CLASSIFIER
SERVICE OR AN ANALYTIC SERVICE?

We run Cascade on a
set of nodes. Here we see
nine nodes in three shards.

A shard identically replicates (key,value) tuples, using Paxos.

Here, an object with the key “Flowers” was stored in shard 0.
“Vegetables” ended up in shard 2.

CORNELL UNIVERSITY CS5412 SPRING 2022 34

Flowers Vegetables

… ENABLING THIS KIND OF SOLUTION

KEN BIRMAN (KEN@CS.CORNELL.EDU) 35

First tier: inexpensive
computation on meta-data

Key-value object store holds specialized knowledge
models for categories (flowers, birds, dogs, trees…)

Flower p=.85
Vegetable p=.6

Flowers
Vegetables

Sunflower p=.97
Zucchini blossom p=.04

Sunflower

IoT Cloud Infrastructure

Most likely a sunflower!

HOW DOES “WATCH” WORK?

On a given Cascade server node, it will issue an upcall to user-
specified code if the key(s) the user wants to watch change.

Cascade’s name space is best understood as a global file system
namespace. The keys are the file pathnames.

Watch thus is monitoring a file or directory…

CORNELL UNIVERSITY CS5412 SPRING 2022 36

SO… A λ IS JUST A PROGRAM DESIGNED FOR
PARALLEL EXECUTION INSIDE A KEY-VALUE STORE

Our idea:
 Cascade hosts the key-value data (or file system, like Ceph)
 The user’s code is treated like a dynamically linked library.
 The user creates this DLL, saves it into Cascade, then tells us

where to run it. Cascade loads and launches it there.
 DLLs have zero overhead, once loaded. So now the user’s

logic is efficiently callable from Cascade!
 And we use the watch feature to initiate those upcalls!

CORNELL UNIVERSITY CS5412 SPRING 2022 37

CREATING AND INSTALLING A
NEW λ ON SOME CASCADE NODES

CORNELL UNIVERSITY CS5412 SPRING 2022 38

Hyperparameters,
models, cloud data

GPU

Developer builds a new ML program, designed for
parallel execution directly “in” a key-value store.

Cascade is already running in the cloud. She tells
Cascade to load this DLL.

On the designated compute nodes,
Cascade loads the DLL and activates

it. The DLL initializes itself and
register some “watch” upcalls.

Recall that a key-value store is
sharded. Each node will host a

different set of keys.

Downstream
action

Hyperparameters,
models, cloud data

GPU

D-AI PIPELINES WILL BE COMMON

Each of these lambda stages potentially runs on a pool of machines.

CORNELL UNIVERSITY CS5412 SPRING 2022 39

Input event

Hyperparameters,
models, cloud data

GPU

Downstream
action

Hyperparameters,
models, cloud data

GPU

One way to trigger a lambda is
with a (key,value) put.

Many lambdas depend on
persistent objects, fetched with get

ANYTHING, ANYWHERE, ANY TIME

With permissions, any code can access any object, or the
associated time-series if the object is a persisted history.

Obviously, performance is best if we can minimize data
movement and compute instantly when new events occur.

This all yields a sophisticated programming model

CORNELL UNIVERSITY CS5412 SPRING 2022 40

CASCADE λS EXECUTE IN CONSISTENT CUTS

Recall: Cascade has a built-in temporal indexing feature.
Suppose our distributed AI is triggered by event ε at time τ.

We run all the lambdas triggered by ε along a consistent cut
“optimally close” to time τ (and selected deterministically).

Effect: The lambda won’t see platform-induced inconsistencies.

CORNELL UNIVERSITY CS5412 SPRING 2022 41

VISUALIZATION OF CASCADE CONSISTENCY

42

HDFS CASCADE USING CONSISTENT CASCADE WITH
CUTS BUT TRUSTING SERVER CLOCKS SENSOR TIME

Cascade consistent cuts + GPS-timestamped sensor data result in clean
input to the D-AI algorithm (in this case, a simple visualization)

CORNELL UNIVERSITY CS5412 SPRING 2022

CENTRAL CONCEPTUAL INSIGHT

One event may trigger many lambdas.

These lambdas may need to run on multiple nodes… yet will
share the same temporal index (τ from the trigger event ε).

A Cascade query always sees a “consistent state snapshot.”

CORNELL UNIVERSITY CS5412 SPRING 2022 43

VISUALIZING THE CONSISTENCY MODEL

A temporal query for time τ sees a consistent cut at τ ± δclock.
Queries to unstable data must wait, but updates are stable within 50us.

CORNELL UNIVERSITY CS5412 SPRING 2022 44

Put(k,v)
Put(k,v)

Put(k,v)

Put(k,v)

(ε, τ)

St
ab

le
 p

or
tio

n
U

ns
ta

bl
e

ta
il

λ

Each Cascade shard has its own Paxos-based log

Each λ is triggered by an upcall
from a “watcher” monitoring some

key (or pattern)

tim
e

λ
λ

λ

Put(k,v)

VISUALIZING THE CONSISTENCY MODEL

A temporal query for time τ sees a consistent cut at τ ± δclock.
Queries to unstable data must wait, but updates are stable within 50us.

CORNELL UNIVERSITY CS5412 SPRING 2022 45

Put(k,v)
Put(k,v)

Put(k,v)

Put(k,v)

(ε, τ)

St
ab

le
 p

or
tio

n
U

ns
ta

bl
e

ta
il

λ

Each Cascade shard has its own Paxos-based log

Each λ is triggered by an upcall
from a “watcher” monitoring some

key (or pattern)

tim
e

λ
λ

λ

Put(k,v)Put(k,v)

St
ab

le
 p

or
tio

n
U

ns
ta

bl
e

ta
il

λ

Even if δ is small, there could be a few events at each process in the t ± δ time window. By
selecting a consistent cut, Cascade avoids the “mashup” issue we saw in the HDFS animation.

tim
e

λ
λ

λ

Put(k,v)

BUT THE JOB IS STILL HARD!

Cascade makes it easy to extract a tensor
with a temporal dimension: A stack of frames

But writing ML code that can recognize patterns over time is not
easy! Even identifying movement trajectories is a hard vision task.

Cascade is just the platform. You need to write the application!

CORNELL UNIVERSITY CS5412 SPRING 2022 46

COOL OBJECT ORIENTED IDEA

Suppose that you have a device that captures images of size w,h and
you want to form a 3-D tensor for times t0 .. t1.

You can define your sensor as an object with getter methods that turn
around and fetch the appropriate images. Now your code is written
in terms of my_tensor[x,y,t] and yet Cascade handles fetching and
caching the data.

You can even use LINQ to do this in one line of Python or C++ code
(we will see this later in the semester)

CORNELL UNIVERSITY CS5412 SPRING 2022 47

COOL OBJECT ORIENTED IDEA

Now, if you have a computer vision algorithm that can recognize
the orientation of the skater frame by frame, you can write a
function that will “represent” the pattern of how her body is
spinning over time.

CORNELL UNIVERSITY CS5412 SPRING 2022 48

“MACHINE LEARNING” A SPIN

In this model, we can think of a trajectory as the “motion trace”
of some key points such as the skater’s hands, arms, face, etc.

Each traces out a path in time and space.

In effect, our system is learning a collection of high dimensional
splines that fit the observed data, and can be used to predict
future movement

CORNELL UNIVERSITY CS5412 SPRING 2022 49

REALISTIC “USE CASES?” FOR SKATING

A skating judge might be interested in measured properties of
the spin, like speed, number of spins, steadiness.

A coach might be trying to diagnose the root cause of a small
wobble.

The skater may be wondering what would have happened if her
left hand was just a tiny bit higher

CORNELL UNIVERSITY CS5412 SPRING 2022 50

HOW WOULD YOUR CODE WORK?

First retrieve a tensor: one axis for time, and then 3 spatial axes.

Now you can write code that finds the best match layer by layer
relative to the prior layer. That tells you the trajectory of her
hand movements.

Last, you might apply a model to this and highlight small errors.

CORNELL UNIVERSITY CS5412 SPRING 2022 51

GROUPING OBJECTS

Often a lambda will need to access several objects that should
ideally all have their own keys, yet you want them grouped on the
same shard.

For this, Cascade supports “affinity grouping”. Each object has a
second key, used for placement.

Even if A and B have different keys – “names” – they will be stored
on the same shard if you assign them the same affinity key.

CORNELL UNIVERSITY CS5412 SPRING 2022 52

HOW TO CREATE A NEW λ Cascade is an extensible service!

CORNELL UNIVERSITY CS5412 SPRING 2022 53

TRIGGERED ACTIONS: THE CODE ITSELF

The lambda is created as code that implements a static API.
 User places the DLL (or the source file) in a Cascade object
 A command tells Cascade which nodes should load it.
 The DLL has an initialize method. Cascade calls it.

Notice that the user-supplied code can define new object types. We
only require that all Cascade objects be byte-serializable.

CORNELL UNIVERSITY CS5412 SPRING 2022 54

TRIGGERED ACTIONS: API IS SIMPLE

Cascade implements has three primary APIs

 The main Cascade APIs: (key,value) put and get.

 watch upcalls to trigger user logic when some key is updated.

Watch can do exact key match, or path-prefix match, or
arbitrary regular-expression matches.

CORNELL UNIVERSITY CS5412 SPRING 2022 55

TRIGGERED ACTIONS: THE CODE ITSELF

The initialize method calls watch to register the user’s lambdas
 A lambda is a closure. This associates “context” with the lambda.
 Example: keys identifying hyperparameter and model objects.

Watch monitors for keys that match.

If a match occurs, Cascade passes the matching key to the lambda.

CORNELL UNIVERSITY CS5412 SPRING 2022 56

PATTERN MATCHING

Just like with file names (key == file name)
/data-center/instance/users/Alicia/SmartDairy/ImageRec/cow2716/model

Many watch patterns will seek exact match.

Some are a prefix followed by a glob-style pattern, like “trigger
if any change occurs in this folder”

CORNELL UNIVERSITY CS5412 SPRING 2022 57

WHAT DOES A REAL APPLICATION
LOOK LIKE TODAY?

Example, courtesy of Weijia,
Alicia and Thompson

CORNELL UNIVERSITY CS5412 SPRING 2022 58

Data Center

The Farm Server (IoT Edge)

Frame
Extractor

Video clip
store

Frame
Sampler

Frame
Server

WAN

Image Pipeline
Front End

(As an external client)

Cascade Image pipeline

DAIRY IMAGE PIPELINE: FRONT END
Dairy Farm

CORNELL UNIVERSITY CS5412 SPRING 2022 59

Streaming image frames through TCP portal
Farm server

… DETAILED VERSION (PyLINQ ON MSFT AZURE)
Date cow_id daily_yield daily_fat … daily_protein

12/3/20 1 14 3.96 … 2.89

… … … … … …

1/10/21 237 20 4.42 … 4.55

Filtered image frames

External Client to Cascade

Upload daily date to Azure Blob Storage

Date cow_id …

12/3/20 1 …

… … …

12/3/20 237 …

Integrate daily data

Cascade backend

<field>/<cow_id>{<ts(ver)>}
daily_protein/cow_id1{ver_1} = 2.89

daily_fat/cow_id237{ver_38} = 4.42

CV model
Image analysis

Download blobs from Azure &
Store to Cascade VCSS subgroup

cow id: 127

LINQ query to retrieve data of most recent 10 days from Cascade about cow 128

ML Model
birth prediction

Probability of calving
in next 8h is: 80%

Store to subgroup VCSS
Trigger image analysis

Action = black_cow_infer

CORNELL UNIVERSITY CS5412 SPRING 2022 60

Streaming image frames through TCP portal
Farm server

C++ IS SIMILAR (BUT MORE EFFICIENT)
Date cow_id daily_yield daily_fat … daily_protein

12/3/20 1 14 3.96 … 2.89

… … … … … …

1/10/21 237 20 4.42 … 4.55

Filtered image frames

External Client to Cascade

Upload daily date to Azure Blob Storage

Date cow_id …

12/3/20 1 …

… … …

12/3/20 237 …

Integrate daily data

Cascade backend

<field>/<cow_id>{<ts(ver)>}
daily_protein/cow_id1{ver_1} = 2.89

daily_fat/cow_id237{ver_38} = 4.42

CV model
Image analysis

Download blobs from Azure &
Store to Cascade VCSS subgroup

cow id: 127

LINQ query to retrieve data of most recent 10 days from Cascade about cow
128

ML Model
birth prediction

Probability of calving
in next 8h is: 80%

Store to subgroup VCSS
Trigger image analysis

Action = black_cow_infer

CORNELL UNIVERSITY CS5412 SPRING 2022 61

THE CASCADE AND DERECHO TEAM

62

Alicia Yang

Ken Birman

Sagar Jha

Andrea Merlina

Lorenzo Rosa

Roman Vitenberg
Edward Tremel

(faculty at Augusta Univ.)

Mae Milano
(post-doc at Berkeley)

Cornell undergrads:
Aahil Awatramani, Ben Posnick, Max

Charlamb, Archishman Sravankumar, Aaron
Weiss, Peter Zheng

Weijia Song

Thompson Liu

	Cascade: Full Details
	The world is generating a new wave of IoT/ML pipelines… there are many use cases
	Federated ML
	Each represents a distinct ML element
	Distributed AI
	High level Cascade goals
	Consistency and Fault Tolerance
	Traditional Approach
	Traditional Approach
	RDMA can help… a little
	Cascade Can be used this way...
	… but can also host user code
	CASCADE: CUSTOMIZED SMART SERVICES
	… and we can even run MapReduce
	So… what makes it hard?
	Fast-Path Performance
	DAIRY INTELLIGENCE with Cascade
	The Cascade Model
	Cascade is a service
	Cascade is an service
	Extension concept
	Key concept: Extensibility
	How does a person extend Cascade?
	The Cascade Storage Model
	File System “extension”
	Updates: Create a new file or�Appending to an existing file
	Versioned updates
	Versioned/Temporal queries
	Versioned objects
	Storing deltas
	The Cascade compute Model
	The central puzzle
	First question: What’s in a ?
	How can a key-value store “be” a classifier service or an analytic service?
	… Enabling this kind of solution
	How does “watch” work?
	So… a is just a program designed for parallel execution Inside a key-value store
	Creating and Installing a �new on some Cascade Nodes
	D-AI pipelinEs will be common
	Anything, anywhere, any time
	Cascade s execute in consistent cuts
	Visualization of Cascade consistency
	Central conceptual insight
	Visualizing the consistency Model
	Visualizing the consistency Model
	But the job is still hard!
	Cool object oriented idea
	Cool object oriented idea
	“Machine learning” a spin
	Realistic “use cases?” for skating
	How would your code work?
	Grouping objects
	How to create a new
	Triggered actions: The code itself
	Triggered actions: API is simple
	Triggered actions: The code itself
	Pattern matching
	What does a real application look like today?
	Dairy Image Pipeline: Front End�
	Slide Number 60
	Slide Number 61
	The Cascade and Derecho team

