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THE WORLD IS GENERATING A NEW WAVE OF 
IOT/ML PIPELINES… THERE ARE MANY USE CASES
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Data sources                          Federated ML                 Smart 
Distributed AI                Queries

How much should I 
budget for raw milk 

purchases in March for 
my yoghurt factory?”



FEDERATED ML

Increasingly seen in robotics, smart homes, 5G, digital twin scenarios.

 The application is a graphical collection of AI classifiers / learners  

 Nodes represent computational tasks.

 Edges represent data flow between distinct tasks.
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EACH λ REPRESENTS A DISTINCT ML ELEMENT

Many are parallel: Single λ may run on a pool of compute nodes.

Thus, to build a D-AI we build pipelines linking parallel tasks.

Today’s cloud platforms have limited support for this model, 
lack the real-time and consistency guarantees needed for IoT.
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DISTRIBUTED AI

A related concept

Used for AI algorithms designed to run on a parallel computer or 
cluster, for example stochastic gradient descent.  Can also refer 
to the nodes in a DNN or CNN

A federated ML graph could have nodes that themselves are 
distributed AI components!  Our graph would have subgraphs
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HIGH LEVEL CASCADE GOALS

Legacy support: Easy to use with no need to change your code

Much faster than standard platforms: low delay, high bandwidth

Stronger guarantees: Your ML doesn’t fight platform “noise”
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CONSISTENCY AND FAULT TOLERANCE
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HDFS                              CASCADE USING CONSISTENT     CASCADE WITH
CUTS BUT TRUSTING SERVER CLOCKS SENSOR TIME

We provide high availability, auto-repair after failures, and strong consistency. 
Apache HDFS (used by Spark) becomes noisy under time pressure. 
Cascade (middle and right) supports “clean” temporal data access.



TRADITIONAL APPROACH
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File system or 
Key-Value Store

GPU

Your logic

Accelerator Layer

Your code is in its own address space, 
maybe on a different computer

Request objects 
one by one

Objects copied 
over datacenter 

TCP network

Runtime copies data into GPU



TRADITIONAL APPROACH
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File system or 
Key-Value Store

GPU

Your logic

Accelerator Layer

Your code is in its own address space, 
maybe on a different computer

Caching hides these costs, in iterative cases

$$$



RDMA CAN HELP… A LITTLE
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File system or 
Key-Value Store

GPU

Your logic

Accelerator Layer

Your code is in its own address space, 
maybe on a different computer

Request objects 
one by one

Objects copied 
over datacenter 

TCP network

Runtime still copies data into GPU RDMA

$$$



CASCADE CAN BE USED THIS WAY...
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Key-Value Storage Layer

Cascade runtime environment

GPU

Your logic

Accelerator Layer

Your code is in its own address space, 
maybe on a different computer

Request objects 
one by one

Objects copied 
over datacenter 

TCP network

RDMA

$$$



… BUT CAN ALSO HOST USER CODE
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GPU

Fast-path logic (DLL)

Key-Value Storage Layer

Accelerator Layer

Cascade runtime environment



CASCADE: CUSTOMIZED SMART SERVICES
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Image to 
classify

GPU
GPU-accelerated kernel 

initiated from the lambda

Request for classification 
triggers a C++ lambda in 

the Cascade address space

Ideally, these are cached on GPU

RDMA directly into GPU memory

Fast-path logic (DLL)

Key-Value Storage Layer

Accelerator Layer
ML model, configuration, parameters



… AND WE CAN EVEN RUN MAPREDUCE
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Map…     Shuffle…   Reduce…

Derecho atomic multicast 
(vertical Paxos on RDMA)



SO… WHAT MAKES IT HARD?

When storing objects, use the federation graph to anticipate how they 
will be used.  Placement decisions should collocate objects at nodes 
where computations that need them will run.

Later, an event occurs.  Launch the computational pipeline on nodes 
that will (all) have the required inputs.

Metrics: delay, throughput, balanced workload, resource utilization.
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Downstream 
action

Hyperparameters, 
models, cloud data

GPU

FAST-PATH PERFORMANCE

A simple federated ML pipeline

Cascade is close to ideal efficiency on our hardware and 100 to 
10,000x faster than common options like Apache Flink
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Input event

Hyperparameters, 
models, cloud data

GPU

Downstream 
action

Hyperparameters, 
models, cloud data

GPU

Latency: 12us
Throughput: 8GB/s



DAIRY INTELLIGENCE WITH CASCADE
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THE CASCADE MODEL Is it a service? A 
library?
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CASCADE IS A SERVICE

Although created using Derecho (a C++ library), Cascade runs 
on a set of nodes (machines or VMs) where it controls some 
resources (cores, RDMA interfaces, GPUs/FPGAs, memory).

Users can build applications that access Cascade from “outside”.  
We call those “external clients”.   The put/get API would work, 
and RDMA is supported.
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Cascade Service 
running as a file 
system or DHT

External Client



CASCADE IS AN SERVICE

But this slide deck is mostly about users who extend the Cascade 
service by adding logic that runs inside of Cascade.

Cascade behaves as a customized service:  a “smart” service.

We will explain how this is done… it involves extra APIs, but 
allows us to also treat our service as a kind of library.
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Which cow
is this?

External Client



EXTENSION CONCEPT

Cascade is one service

But when you supply customization
it acts like many specialized
services, one per application

So it becomes a platform for new
microservices, like these!
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Which cow
is this?

Is this cow
clean enough

to milk?

Does this
cow have
mastitis?

A single Cascade server can support
multiple customized services

The Cascade 
Server is extensible



KEY CONCEPT: EXTENSIBILITY

What does it mean to be an “extensible platform as a service”?

Think about devices you plug into your computer.  For example, 
Ken uses a Garmin GPS to track bike rides.  When he plugs the 
Garmin into his Dell computer, it becomes an expert on all the 
bike rides he has taken since 2008.

In some sense, the Garmin+Dell pair is a “new thing”
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HOW DOES A PERSON EXTEND CASCADE?

We will look at this later in the class, but the idea is to plug in new 
software written in C++, and to tell Cascade when this software 
should run.

The new code watches for IoT events specific to the application, by 
monitoring keys.  Updates will trigger the λ to run.

For example, your plug-in could handle “cow-washing events”
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THE CASCADE STORAGE MODEL How should Cascade 
data be managed?
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FILE SYSTEM “EXTENSION”

Cascade has a built-in file system extension:
 Every object has a pathname.
 The file system extension supports normal file operations.
 You can access it just like any file system. 

Yet Cascade isn’t a file system.  It is a key-value get/put/watch store.  
Moreover, it is automatically sharded for scalability.
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User sees scalable, 
“private” object pools



UPDATES: CREATE A NEW FILE OR
APPENDING TO AN EXISTING FILE

Any key-value object lives in one shard (but that same shard may 
have many keys that map to it!). 

 A key is a string. A value is an object serialized as a byte vector.

 Updates are log appends using Paxos.  Each object has a log
of versions that evolved over time.

 Queries run on the stable prefix of the log.
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User sees scalable, 
“private” object pools



VERSIONED UPDATES

Each time you write to an object, Cascade creates a new version, 
with a unique (incrementing) version number.

If you read an object, modify it, and then write it back, you can 
tell Cascade which version you modified.  The put will double 
check to be sure that this is still the current version before 
replacing it, and otherwise returns an error (then you can loop)
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VERSIONED/TEMPORAL QUERIES

Accessed via get.  

In the volatile case, Cascade only keeps the most recent version.  
With persistent objects, Cascade keeps a log of past versions.

 By default, applications see the most current version

 Indexed access allows the application to query any version
(by version number or time), or fetch any data range.
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VERSIONED OBJECTS
We configure the object store to track versions. put creates a new version:
 key: The object store always tracks information on a per-object basis
 version-number: Just an integer
 time: If the object itself lacks a timestamp, we just use “platform” time.

Now get can lookup most current version, or a specific one, even by time.
The object store is optimized to leverage non-volatile memory hardware.
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STORING DELTAS

Existing DHTs lack support for versioned data.

We implemented a highly optimized versioned data structure

We implement a temporal index, and cache frequently accessed data.

 A server still manages a map (since many keys map to it), but you can
think of the values for a specific key as being versioned.

 Sometimes deltas are more efficient.  If you have a function to compute
the delta, we won’t even create a new version unless you tell us to.

 Values (or deltas) are saved on NVMe & replicated for fault-tolerance.
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THE CASCADE COMPUTE MODEL Lambdas, coded in 
your favorite language
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THE CENTRAL PUZZLE

The very fastest data paths require compilation, ideally in 
languages like C++.

But we want Cascade to run as a service, so it would often 
already be running when a new user comes along and wishes to 
create and launch some completely new service.

How can we extend a running system?  Actually… it isn’t so hard
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FIRST QUESTION: WHAT’S IN A λ?

We support many languages.  Native APIs are Python with 
various packages (including LINQ) and C++ with LINQ.

Code is concise – LINQ pioneered a style that mixes “kernel” 
invocations with embedded SQL.  Maps cleanly to GPU, FPGAs.

Cascade manages GPUs and can cache data in GPU memory.
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HOW CAN A KEY-VALUE STORE “BE” A CLASSIFIER 
SERVICE OR AN ANALYTIC SERVICE?

We run Cascade on a 
set of nodes.  Here we see
nine nodes in three shards.

A shard identically replicates (key,value) tuples, using Paxos.

Here, an object with the key “Flowers” was stored in shard 0.  
“Vegetables” ended up in shard 2.
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Flowers Vegetables



… ENABLING THIS KIND OF SOLUTION
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First tier: inexpensive 
computation on meta-data

Key-value object store holds specialized knowledge 
models for categories (flowers, birds, dogs, trees…)

Flower p=.85
Vegetable p=.6

Flowers
Vegetables

Sunflower p=.97
Zucchini blossom p=.04

Sunflower

IoT Cloud Infrastructure

Most likely a sunflower!



HOW DOES “WATCH” WORK?

On a given Cascade server node, it will issue an upcall to user-
specified code if the key(s) the user wants to watch change.

Cascade’s name space is best understood as a global file system 
namespace. The keys are the file pathnames.  

Watch thus is monitoring a file or directory…
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SO… A λ IS JUST A PROGRAM DESIGNED FOR 
PARALLEL EXECUTION INSIDE A KEY-VALUE STORE

Our idea:
 Cascade hosts the key-value data (or file system, like Ceph)
 The user’s code is treated like a dynamically linked library.
 The user creates this DLL, saves it into Cascade, then tells us

where to run it.  Cascade loads and launches it there.
 DLLs have zero overhead, once loaded.  So now the user’s

logic is efficiently callable from Cascade!
 And we use the watch feature to initiate those upcalls!
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CREATING AND INSTALLING A 
NEW λ ON SOME CASCADE NODES

CORNELL UNIVERSITY CS5412 SPRING 2022                           38

Hyperparameters, 
models, cloud data

GPU

Developer builds a new ML program, designed for 
parallel execution directly “in” a key-value store.   

Cascade is already running in the cloud. She tells 
Cascade to load this DLL.

On the designated compute nodes, 
Cascade loads the DLL and activates 

it.  The DLL initializes itself and 
register some “watch” upcalls.

Recall that a key-value store is 
sharded.  Each node will host a 

different set of keys.



Downstream 
action

Hyperparameters, 
models, cloud data

GPU

D-AI PIPELINES WILL BE COMMON

Each of these lambda stages potentially runs on a pool of machines.
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Input event

Hyperparameters, 
models, cloud data

GPU

Downstream 
action

Hyperparameters, 
models, cloud data

GPU

One way to trigger a lambda is 
with a (key,value) put.

Many lambdas depend on 
persistent objects, fetched with get



ANYTHING, ANYWHERE, ANY TIME

With permissions, any code can access any object, or the 
associated time-series if the object is a persisted history.

Obviously, performance is best if we can minimize data 
movement and compute instantly when new events occur.

This all yields a sophisticated programming model
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CASCADE λS EXECUTE IN CONSISTENT CUTS

Recall: Cascade has a built-in temporal indexing feature.  
Suppose our distributed AI is triggered by event ε at time τ.

We run all the lambdas triggered by ε along a consistent cut 
“optimally close” to time τ (and selected deterministically).

Effect: The lambda won’t see platform-induced inconsistencies.
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VISUALIZATION OF CASCADE CONSISTENCY

42

HDFS                              CASCADE USING CONSISTENT     CASCADE WITH
CUTS BUT TRUSTING SERVER CLOCKS SENSOR TIME

Cascade consistent cuts + GPS-timestamped sensor data result in clean
input to the D-AI algorithm (in this case, a simple visualization)
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CENTRAL CONCEPTUAL INSIGHT

One event may trigger many lambdas.   

These lambdas may need to run on multiple nodes… yet will 
share the same temporal index (τ from the trigger event ε).

A Cascade query always sees a “consistent state snapshot.”
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VISUALIZING THE CONSISTENCY MODEL

A temporal query for time τ sees a consistent cut at τ ± δclock. 
Queries to unstable data must wait, but updates are stable within 50us.
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VISUALIZING THE CONSISTENCY MODEL

A temporal query for time τ sees a consistent cut at τ ± δclock. 
Queries to unstable data must wait, but updates are stable within 50us.
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BUT THE JOB IS STILL HARD!

Cascade makes it easy to extract a tensor
with a temporal dimension: A stack of frames

But writing ML code that can recognize patterns over time is not 
easy!  Even identifying movement trajectories is a hard vision task.  

Cascade is just the platform.  You need to write the application!
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COOL OBJECT ORIENTED IDEA

Suppose that you have a device that captures images of size w,h and 
you want to form a 3-D tensor for times t0 .. t1.

You can define your sensor as an object with getter methods that turn 
around and fetch the appropriate images.  Now your code is written 
in terms of my_tensor[x,y,t] and yet Cascade handles fetching and 
caching the data.

You can even use LINQ to do this in one line of Python or C++ code 
(we will see this later in the semester)
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COOL OBJECT ORIENTED IDEA

Now, if you have a computer vision algorithm that can recognize 
the orientation of the skater frame by frame, you can write a 
function that will “represent” the pattern of how her body is 
spinning over time.
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“MACHINE LEARNING” A SPIN

In this model, we can think of a trajectory as the “motion trace” 
of some key points such as the skater’s hands, arms, face, etc.

Each traces out a path in time and space.

In effect, our system is learning a collection of high dimensional 
splines that fit the observed data, and can be used to predict 
future movement
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REALISTIC “USE CASES?” FOR SKATING

A skating judge might be interested in measured properties of 
the spin, like speed, number of spins, steadiness.

A coach might be trying to diagnose the root cause of a small 
wobble.

The skater may be wondering what would have happened if her 
left hand was just a tiny bit higher
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HOW WOULD YOUR CODE WORK?

First retrieve a tensor: one axis for time, and then 3 spatial axes.  

Now you can write code that finds the best match layer by layer 
relative to the prior layer.  That tells you the trajectory of her 
hand movements.

Last, you might apply a model to this and highlight small errors.
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GROUPING OBJECTS

Often a lambda will need to access several objects that should 
ideally all have their own keys, yet you want them grouped on the 
same shard.

For this, Cascade supports “affinity grouping”.  Each object has a 
second key, used for placement.

Even if A and B have different keys – “names” – they will be stored 
on the same shard if you assign them the same affinity key.
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HOW TO CREATE A NEW λ Cascade is an extensible service!
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TRIGGERED ACTIONS: THE CODE ITSELF

The lambda is created as code that implements a static API.
 User places the DLL (or the source file) in a Cascade object
 A command tells Cascade which nodes should load it.
 The DLL has an initialize method.  Cascade calls it.

Notice that the user-supplied code can define new object types. We 
only require that all Cascade objects be byte-serializable.
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TRIGGERED ACTIONS: API IS SIMPLE

Cascade implements has three primary APIs

 The main Cascade APIs: (key,value) put and get.

 watch upcalls to trigger user logic when some key is updated.

Watch can do exact key match, or path-prefix match, or 
arbitrary regular-expression matches.

CORNELL UNIVERSITY CS5412 SPRING 2022                           55



TRIGGERED ACTIONS: THE CODE ITSELF

The initialize method calls watch to register the user’s lambdas 
 A lambda is a closure.  This associates “context” with the lambda.
 Example: keys identifying hyperparameter and model objects.

Watch monitors for keys that match.

If a match occurs, Cascade passes the matching key to the lambda.
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PATTERN MATCHING

Just like with file names (key == file name)
/data-center/instance/users/Alicia/SmartDairy/ImageRec/cow2716/model 

Many watch patterns will seek exact match.

Some are a prefix followed by a glob-style pattern, like “trigger 
if any change occurs in this folder”
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WHAT DOES A REAL APPLICATION 
LOOK LIKE TODAY?

Example, courtesy of Weijia, 
Alicia and Thompson
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Data Center

The Farm Server (IoT Edge)

Frame
Extractor

Video clip
store

Frame
Sampler

Frame
Server

WAN

Image Pipeline 
Front End

(As an external client)

Cascade Image pipeline

DAIRY IMAGE PIPELINE: FRONT END
Dairy Farm
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Streaming image frames through TCP portal
Farm server

… DETAILED VERSION (PyLINQ ON MSFT AZURE)
Date cow_id daily_yield daily_fat … daily_protein

12/3/20 1 14 3.96 … 2.89

… … … … … …

1/10/21 237 20 4.42 … 4.55

Filtered image frames

External Client to Cascade

Upload daily date to Azure Blob Storage

Date cow_id …

12/3/20 1 …

… … …

12/3/20 237 …

Integrate daily data

Cascade backend

<field>/<cow_id>{<ts(ver)>}
daily_protein/cow_id1{ver_1} = 2.89

daily_fat/cow_id237{ver_38} = 4.42

CV model
Image analysis

Download blobs from Azure & 
Store to Cascade VCSS subgroup

cow id: 127

LINQ query to retrieve data of most recent 10 days from Cascade about cow 128

ML Model
birth prediction

Probability of calving
in next 8h is: 80%

Store to subgroup VCSS
Trigger image analysis

Action = black_cow_infer
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Streaming image frames through TCP portal
Farm server

C++ IS SIMILAR (BUT MORE EFFICIENT)
Date cow_id daily_yield daily_fat … daily_protein

12/3/20 1 14 3.96 … 2.89

… … … … … …

1/10/21 237 20 4.42 … 4.55

Filtered image frames

External Client to Cascade

Upload daily date to Azure Blob Storage

Date cow_id …

12/3/20 1 …

… … …

12/3/20 237 …

Integrate daily data

Cascade backend

<field>/<cow_id>{<ts(ver)>}
daily_protein/cow_id1{ver_1} = 2.89

daily_fat/cow_id237{ver_38} = 4.42

CV model
Image analysis

Download blobs from Azure & 
Store to Cascade VCSS subgroup

cow id: 127

LINQ query to retrieve data of most recent 10 days from Cascade about cow 
128

ML Model
birth prediction

Probability of calving
in next 8h is: 80%

Store to subgroup VCSS
Trigger image analysis

Action = black_cow_infer
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THE CASCADE AND DERECHO TEAM
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Alicia Yang

Ken Birman

Sagar Jha

Andrea Merlina

Lorenzo Rosa

Roman Vitenberg
Edward Tremel 

(faculty at Augusta Univ.)

Mae Milano
(post-doc at Berkeley)

Cornell undergrads:
Aahil Awatramani, Ben Posnick, Max 

Charlamb, Archishman Sravankumar, Aaron 
Weiss, Peter Zheng

Weijia Song
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