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Abstract

Efforts to deploy AI/ML in IoT settings encounter technol-
ogy gaps. IoT applications (often implemented as distributed
programs on a cluster or federated into pipelines) may need
to track rapidly-changing data, yet existing platforms are de-
signed mostly for offline batched use and exhibit problematic
behavior under time-pressure. Cascade enables use of AI and
ML in high-bandwidth, delay-sensitive environments. Our
focus is on the critical path from an IoT sensor through a
pipeline of developer-provided machine intelligence, and on
the puzzle of minimizing latency while providing strong guar-
antees. Innovations include a new stored-procedure feature
that hosts application lambdas directly in the Cascade address
space, object and task collocation controlled using affinity
group keys, leveraging of RDMA and GPU accelerators, and
a separation of updates from queries that minimizes lock-
ing and copying. Microbenchmarks confirm that Cascade
achieves exceptionally low latency and high throughput.

1 Introduction

As artificial intelligence moves into the edge cloud delay-
sensitive and throughput-sensitive data paths are revealed [12].
Consider a smart dairy farm equipped with cameras, sensors
and controllable elements (Fig. 1). Goals include identifying
each cow, deciding if she needs to be washed, assessing body
condition, and so forth. Each will often involve a series of
intelligent sub-tasks. For example, when a motion detector
senses activity, we ask the camera to capture a thumbnail, but
not every thumbnail will show a cow. If the thumbnail is not
properly centered, we may need to optimize camera settings
before requesting a high-resolution image. For acceptable
images, we run analytics, but only save “interesting” images.

Even this very basic application would be problematic on
today’s platforms. For example, in the Apache platform, the
pipeline is defined using a package called Beam, then up-
loaded for analysis to an event-stream tool (or a “runner”),
such as Flink, Spark, or Google Dataflow. The upload intro-
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Figure 1: Part of a Cascade Smart-Dairy Application. In the
black boxes we see lambdas introduced by the developer.

duces delay and storage costs even before application logic
sees the data. Like most back-end systems, Flink batches
events to improve resource utilization, but this further ampli-
fies delays. Reconfigured to compute instantly on each new
event, the underlying HDFS storage layer may serve reads
from stale or causally-inconsistent data [32].

Dairy automation pushes the limits today, but cloud-hosted
intelligence for controlling drones, intelligent roadway inter-
sections, power grids and smart homes will require even faster
reactions. Moreover many scenarios pose safety obligations
that induce correctness obligations in the hosting platform.

Cascade minimizes delays using a ground-up architecture
that centers on collocating computation and data while still
preserving data freshness and consistency. The design mini-
mizes locking, copying, and distributed data movement, tak-
ing advantage of accelerators when feasible. Whereas many
platforms offer ways to build a single ML application by com-
posing subtasks, edge frameworks have given less attention
to independently-developed components that run separately,
where the output of one becomes the input to others: a com-
mon situation when MLs are federated. Cascade’s fast-path
enables rapid sharing between AI or ML components that
interoperate within a data-flow graph.
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Prior work has focused on individual aspects of this chal-
lenge. Most databases support event-oriented computing; a
modern example would be Snowflake [8, 16]. At a more
mechanistic level, there has been work on wrapping RDMA
into easy-to-use RPC APIs so that existing applications can
leverage fast data-movement paths [13, 23, 27, 35, 37]. Li-
braries offer a spectrum of high-speed functionalities includ-
ing shared-memory [19], key-value (K/V) stores [19, 27, 29],
and communication primitives [5, 11, 24]. However, we be-
lieve that Cascade is the first-integrated solution built from the
ground up specifically for to enable time-pressured intelligent
IoT edge computing.

In what follows, we present the detailed architecture, show
how Cascade can be used to solve the dairy application from
Fig. 1, and then describe a series of microbenchmarked eval-
uations. These compare our overheads with those of standard
tools (in which the AI/ML logic runs in a separate address
space), then drill down on the fast path, where lambdas run
inside the Cascade address space. Compared to Apache Flink
(tuned as recommended in [34]), Cascade reduces latencies
by a factor of 16x and bandwidth rises by 4x, even though
Cascade guarantees much stronger properties.

2 Background

The core of any intelligent IoT application involves design-
ing and training an AI/ML model, which can then be used to
classify new events. Training is often viewed as a back-end
activity and occurs offline, using packages such as Spark [38],
TensorFlow Serving [31], Ray [30], TorchServe [6] and Tri-
ton [7]. Yet this often forces applications to use precomputed
models. Cascade envisions a mix of edge classifiers and dy-
namic learning, enabling new IoT applications [12].

IoT data changes rapidly and classifiers can quickly be-
come stale, so as edge platforms become smarter it becomes
increasingly important to guarantee freshness of both the data
and models used to make decisions: a dimension of data
consistency. Edge applications often are graphical structures:
simple pipelines or trees, with increasingly complex patterns
likely to emerge as edge learning becomes more common.
Node-to-node bandwidth may be very high. Today’s backend
systems gain resource-utilization efficiencies from batching;
with event-triggered computing other forms of concurrency
will be needed to keep the hardware productively busy.

Yet even as we consider these changes, it is important to
keep in mind that developers have no appetite for reimple-
menting effective solutions. Any successful platform must be
able to host the packages popular on back-end cloud platforms
such as Tensor Flow [31], AWS SageMaker [26], Azure ML
Studio [4], and Google AI [1]. In our work, if some exist-
ing package is adequately fast, developers can use it without
change. But if a specific component is performance-critical,
we offer a simple way to port that logic into what we call
the fast-path. The resulting logic will leverage accelerators
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Figure 2: Cascade inherits the Derecho service architecture

to reduce overheads and delays, and yet still can interoperate
with the larger "ecosystem" of unchanged legacy components.

To strike this balance, we start by offering Cascade as a
standard K/V store, with a secondary option of treating it
like a file system. Cascade will still offer benefits, because
the legacy code can leverage our graphical computing model,
data transfers will run over RDMA (if available), and our
approach to code/data collocation can be exploited by config-
uring the legacy platform to run subtasks on the same nodes
where Cascade is hosting any needed inputs. The fast-path,
in contrast, goes much further by running AI/ML code inside
the platform address space, eliminating performance-limiting
barriers associated with crossing domain boundaries.

3 Cascade Design and Implementation

Cascade’s central innovations are its lock-free RDMA fast-
path, mechanisms for collocating objects with computation
and platform customization using lambdas that run in the
Cascade address space to minimize delay. In this section we
start with the big picture, then drill down on the fast-path.

Like any sharded K/V store, Cascade allows key,value ob-
jects to be saved (put) or fetched (get) by any node. If a
put arises internal to Cascade and targets the local shard, an
atomic multicast or durable Paxos operation will be issued di-
rectly (the choice depends on whether the shard is configured
to track just the most recent version using in-memory stor-
age, or to keep a persistent version history). If the operation
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Figure 3: Serializable snapshot isolation in Cascade. The four
lambdas will observe consistent data.
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targets some other shard or originates in a platform external
to Cascade, a P2P relaying operation occurs, selecting one
of the shard members as a relaying proxy. Cascade keys are
POSIX file pathnames, with support for directory hierarchies,
a current working directory for each lambda, a home direc-
tory accessed with ˜/, etc. This enables K/V data to be used
through a file-system API at a slight overhead (more system
calls are required for each access).

Cascade objects are arbitrary application objects with asso-
ciated meta-data, notably version numbers and timestamps.
Callers of put can supply one or both, or even a hybrid logi-
cal clock [28]. Applications that leverage version-numbering
gain a fault-tolerance benefit. Should a put be disrupted by
a failure the can originator safely reissue the same request
with the same version number. If the version already exists
the duplicated request is ignored; if not, the proxy performs
the operation. We obtain exactly-once semantics [24, 33],
with a very strong form of consistency illustrated in Fig. 3,
where computations triggered by an IoT event at time t query
Cascade-hosted data. These queries run on stable data that
is temporally accurate and causally consistent; stabilization
takes about 50us (dashed vertical timelines).

Cascade inherits some of these guarantees from Dere-
cho [24], an open source C++ RDMA data-replication library
that we used when developing our solution. However, Cas-
cade goes well beyond anything Derecho supports by offering
a serializable snapshot isolation guarantee [14] on a K/V
"database" that supports full SQL queries with the constraint
that updates are atomic, but limited to a single shard at a time.
Queries run on a separate data path, accessing committed,
stable data as was seen in Fig. 3. This is why so little locking
is required: once an update becomes stable the entire prefix
of the log including that update can be treated as immutable
read-only data. When data must be moved RDMA is used if
available; if not, all features map efficiently to TCP.

3.1 Fast-Path Programming model

Suppose that we simply want to run existing AI/ML code to
implement the dairy image processing pipeline example from
the introduction. Today the standard way to do this would be
to use Flink, Spark or Tensor Flow, and the most standard op-
tion would be to employ a K/V connector that treats Cascade
as a storage service. At binding time, the connector would
learn the sharding pattern and IP addresses of the server nodes.
Then, as IoT events occur, it could use this information to
forward the data to the proper shard. Communication will
be very fast if RDMA is available but because such services
batch events, and have significant overheads other than data
transfer, the performance benefit will be limited. Moreover,
although collocation of computation and data is a theme for
our work, it isn’t trivial to configure legacy schedulers to run
tasks on the same nodes where Cascade hosts the data those
tasks will use.

The central idea of the fast-path programming model is
to support lambda functions that are hosted directly within
the Cascade server nodes, wiring themselves in by requesting
upcalls when "events of interest" occur. Then we arrange to
trigger the lambda at a node where dependent objects have
been prepositioned. The trigger mechanism itself is similar to
monitoring a folder or file in Linux, but by arranging for the
trigger to run on a node that already hosts the data it needs
delays will be minimized.

3.1.1 In-Place Message Construction

Even before we tackle placement, a first challenge involves de-
lay when the end-to-end application constructs IoT objects or
other updates: If we don’t address those costs, the game would
be over before it starts. Traditional data marshalling, copying
and even brief locking can dramatically reduce performance
[25]. With this in mind, we implemented an in-place C++
object construction option that lets the application allocate
memory within the Cascade message buffer region, prereg-
istered for RDMA transfers. To enable zero-copy sharing,
server nodes use a single policy for data representation and
alignment, while external clients respect the server policies
(they may incur a cost, such as storing integers or floats in a
non-native format, but this cost will be spread over the IoT
components and hence insignificant). Servers share objects
with one-another in the agreed-upon format, avoiding mar-
shalling or copying. Cascade publishes the service’s desired
byte layout and alignment when an external client connects,
enabling connectors to preconstruct efficient marshallers.

The Cascade in-place construction APIs are used by a C++
class as follows. First, a static factory method requests mem-
ory from a special allocator, supplying the desired constructor
as a lambda. As soon as message buffer space becomes avail-
able, Cascade upcalls the lambda, which can now run asyn-
chronously, constructing the object and eventually marking
it as ready to send (long delays are common at this step, for
example to wait until motion is detected or a new photo is ac-
quired). Cascade polls "under construction" message slots and
will transmit a message (or group of messages) when ready,
respecting the FIFO order in which the message memory slots
were originally requested. Python and Java constructors use
this same approach, but access memory via getters and setters.

3.1.2 Collocation of Related Data Objects

Our next step focuses on the locations at which data is stored
and where computation will occur. Most K/V systems hash
the object keys to obtain shard numbers. Hashing randomizes
object placement onto the available shards, and is convenient
for parallel computing patterns such as MapReduce, but IoT
edge pipelines will often be linear sequences of actions or
simple tree-like structures, with less frequent use of MapRe-
duce. The concern is that if a lambda depends on multiple
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objects, randomized object placement would defeat the goal
of collocating computation with storage. ML models can be
huge, so the importance of collocation is significant - with a
10GB model, even transferring at 100Gb/s (a typical RDMA
data rate) takes one second. Moreover, whereas a traditional
batched AI/ML platform will often reuse dependent objects
frequently, giving the caching layer a chance to compensate
for high initial data-access costs, Cascade optimizes latency
and throughput on an event-by-event basis. Even a single
unnecessary object transfer could be a dominating overhead.

With this in mind, the Cascade API allows developers to as-
sociate an affinity set key with each object: a second pathname.
Objects in the same affinity set will be collocated, moved as a
set, cached as a set, or evicted from cache as a set. If an object
has a non-null affinity key, the affinity key (not the object key)
is used to hash and select the hosting shard.

Such objects still have their own unique names, in whatever
folder hierarchy the developer employed, but this placement
policy physically hosts them on the same Cascade storage
nodes. Of course, we still need a way to access those objects
by name when some component calls get. For this purpose,
Cascade maintains a metadata store within which affinity set
mappings are tracked. In addition to supporting get this en-
ables the system to list the objects associated with an affinity
set, to track and query access patterns, and to track cache
status for sets that are cached outside their home shard.

Consider our intelligent dairy scenario. How might affinity
sets arise, and be used? Each lambda would have an affinity set
for inputs: hyperparameters for its AI/ML model, the trained
model, and so forth. Results from prior computational steps
could also be saved using affinity set keys. Those objects
will all reside in some single shard, hence by simply using
the same affinity key when deciding where to initiate the
computation, we obtain the desired collocation.

For example, suppose that some host computer external
to Cascade has an IoT device that senses movement in the
barn, and the host then captures a thumbnail photo. The host
computer will be an external client of Cascade, running code
that was configured with the affinity key. When this host
first binds to Cascade, it downloads the shard mapping, so
that later as events occur, it already will have determined the

responsible subgroup and shard. Cascade membership can
change due to failures, forcing a refresh, but this is infrequent.
Thus, when the camera captures the image, the host software
simply sends the event to a node within the preselected shard.
We offer several automated load-balancing options.

3.1.3 Lambdas

Our next challenge is to efficiently host user-supplied lamb-
das, and to minimize overheads when they trigger. Many of
today’s most widely used platforms require that data always
be stored before computing can be initiated, but in Cascade
we wished to avoid these potentially unneeded costs (IoT
inputs are often discarded after analysis). This led us to dis-
tinguish three cases. In the first case, the developer intends
to trigger some computation but without saving any data. For
this purpose, trigger is used; it has the usual key and value
arguments, but is supported as a P2P operation. The second in-
volves updating a "volatile" (in-memory) object by replacing
the current version (if any) with a new version: a replicated
update within the shard where the object resides. Here, the
triggered code will run after these updates occur either on
one node, or on all shard members, depending on the devel-
oper’s preference. The third case first updates a versioned
object logged to persistent storage, then runs any triggered
lambdas. For this third case we also support storing the delta
of this new version relative to the prior one, compressing it, or
even entangling its cryptographic signature with (entangled)
signature on the prior version to create a tamper-proof chain.

We obtain the structure illustrated in Fig. 4. This figure
shows nine nodes running a sharded service with three mem-
bers per shard. Within each node one finds three “layers” of
logic sharing a single address space: get operations return
pointers directly to immutable data in the Cascade data region,
avoiding locks or copying if the data is available locally. One
is the developer-supplied lambda that orchestrates the com-
putation. The second layer is the object storage infrastucture,
which will be queried by the lambda when it needs to access
input data such as the key and value that triggered the lambda
upcall, objects hosted in Cascade, and cached content which
might also include data pulled from elsewhere in the cloud.
The third layer depicts the GPU accelerator, hosted on the
same node and used for expensive computational tasks. GPU
memory is available for incoming RDMA transfers, and a
portion is set aside as a cache managed by Cascade.

The application depicted in this figure is one stage in an
intelligent photo analysis. The initial capture of the photo
triggered a lambda to assess photo quality (perhaps, from a
thumbnail). That lambda then requested upload of the full im-
age, perhaps after adjusting camera parameters. Further stages
then trigger. Thus, even a rather basic task might involve a
federated ML with pipelines of lambdas.

In the general ML literature there is a great deal of attention
to MapReduce. At present, we don’t expect that MapReduce
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will be as common as linear sequences, but we do support the
pattern: in this case, one event triggers an upcall to a lambda
in each member of a shard, which could have many members.
The lambdas run the map step, then shuffle, sort/group and
reduce. The distributed AI that results could be “one task” in
a larger federated ML computation.

Lambdas are created much as one creates any AI/ML ap-
plication, except that the code is compiled to a DLL and then
loaded by all the Cascade servers (at startup or dynamically).
As such, the feature can be used with existing packages pro-
vided that they are capable of running within the address
space of an active C++ program. What would normally be the
main method in a standard AI program will be replaced by an
initializer for the DLL. To set watches for events of in-
terest, the DLL initializer can register methods (perhaps
using the C++ "capture" feature to pass additional context
information to the lambda for use when it receives an upcall).
Note that the DLL will be loaded by all Cascade nodes and
may have the identical watches registered everywhere, but
upcalls only occur on nodes where a matching key is updated.
Moreover, even if all nodes in a shard match a key, Cascade
has selectable policies under which the developer can request
that just one upcall be triggered, in a load-balanced manner.

Lambda upcalls raise non-trivial issues of thread delays and
memory management. Recall that Cascade is implemented
using Derecho. Incoming Cascade events and photos are all
Derecho messages, hence Cascade itself learns of updates via
upcalls on the Derecho predicate thread - a critical path for all
of Derecho. Accordingly, Cascade limits itself to doing a fast
path match to see if the incoming key-value object matches
any pending lambda (a trie lookup). If a match is found,
the key and a pointer to the value are enqueued in a FIFO
round-robin buffer. A pool of application-dispatch threads
monitors this queue, removing elements and doing upcalls to
the registered lambdas, preserving FIFO order by ensuring
that any single DLL will see all its upcalls on a single thread.
Minimal locking is required (to implement the round-robin
buffer), and only the C++ shared pointer is copied.

3.2 Coding (and Caching) for Intelligent IoT

Developers of Cascade stored procedures can work in C++
(perhaps leveraging a library like MxNET), Python or Java,
but the underlying native API is in C++ 17. Lambdas will of-
ten query databases or other services external to Cascade. To
support such tasks, our native C++ layer needed a language-
embedded SQL option. Curiously, C++ 17 lacks a stan-
dard solution to this problem, but we identified a package,
"boolinq.hpp", that offers a comprehensive open-source ver-
sion of the LINQ language-embedded query syntax for SQL-
style operations on collections. Lambda developers could also
use packages like Tensor Flow, PyTorch and NumPy.

Although LINQ and similar language embeddings for SQL
are not new, our use of them in time-pressured IoT settings ex-

poses interesting new choices and tradeoffs, particularly with
respect to design of affinity groups, cache management and
prefetching. Prior work on back-end, batched systems such
as MapReduce, Hadoop and Spark/Databricks (a family of
related systems), Tensor Flow and more recently, Ray, showed
that caching is central to performance in long-running compu-
tations, such as when a large model is trained [10, 17, 30, 38].
Offline training tasks are heavily iterative and may run for
hours, so object reuse is to be expected. In contrast, edge logic
will be triggered event-by-event under time pressure, and data
will often evolve so quickly that even if the code appears to
reuse the identical item, it may still need to be recomputed.

Indeed, it makes sense to anticipate two cases. Long-term
stable data, such as a machine-learned model for cow recog-
nition, will probably continue to be computed on existing
back-end systems, downloaded, and then frequently reused.
This sort of object should ideally be downloaded once, then
saved in the same affinity group as the object that triggered
the lambda. As long as events from a given source follow
the same path within the system for each pipeline, they will
find needed data inputs either stored locally or cached lo-
cally, including data acquired from external sources such as
databases or file systems. For other objects generated and
hosted entirely within Cascade, but that might be accessed
from multiple shards or where there is no natural way to as-
sign an affinity group key, we implement a coherent caching
scheme, ensuring that if an object is updated, any stale cached
versions will be evicted from cache.

An final nuance involves caching on GPU. Cascade man-
ages accelerator memory, and hence can leave an object in
GPU memory for reuse even if the higher-level code doesn’t
explicitly distinguish where data touching will occur. The
option of using GPU Direct to terminate RDMA transfers
directly in GPU memory, avoiding a staged transfer through
the host and an extra DMA operation from host into GPU, is
also of interest. Both topics will be explored in future work.

Operation Description
put Insert or update an object.
trigger Notify watchers tracking the key on a node.
remove Remove an object by key.
get Get the value of an object by key.
initialize Initialize DLL resources.
destroy Destroy DLL resources (on exit).
register Register itself to Cascade context.
unregister Unregister itself from Cascade context.

Table 1: API for K/V operations and registering lambdas.
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3.3 Additional functionality

Our focus has been on the Cascade fast-path. To preserve
space we were forced to omit discussion of a number of
Cascade features associated with support for multitenancy
and to avoid naming collisions when distinct lambdas hap-
pen to use similar keys. Also important but not covered here
are support for federated ML applications described as data
flow graphs, support for the MapReduce computing model
and other popular D-AI and D-ML computational patterns,
wide-area mirroring, security, thread scheduling, NUMA ar-
chitectural considerations, and system configuration features.

4 Smart Milk Farm with Cascade

Rather than limiting our evaluation to microbenchmarks, we
also implemented a dairy intelligence application. The ap-
plication focuses on one step in an AI framework for dairy
productivity and management, and models a research dairy
farm like the one illustrated in Fig 1, where cows are milked
a few times daily using partially automated systems. To track
of the health of each cow, the system images animals as they
enter or leave the milking parlor, then employs ML to develop
a variety of informatio streams which will be reported via
dashboards aimed at farm workers, owner and vets. We obtain
a multi-stage pipeline. The first step uses a motion detector
and RFID to capture photos and identify the cows. In the
second step, selected images are subjected to a full analysis,
after which web tools generate dashboard reporting.

The filter we use scores each image based on whether or
not it shows a cow, sharpness, and other criteria. For example,
the research farm we are working with requires that we not
image farm workers. Storing photos prior to analysis would
violate the policy, but a purely online filtering procedure is
considered acceptable. The bcs analysis, which runs only on
selected images, uses an AI model to assess body condition.
This currently is a visual metric based on analysis of the cow
haunch, visible fat, muscle and skeletal structure.

Both computer vision analytics are fairly basic, and unopti-
mized. The filter lambda is implemented as a convolutional
neural network. Its output is a real number between one to
zero: if the output is lower than a threshold, the image is
dropped. In the production system, we will need to evolve it
to run on a set of images of each animal, rejecting images that
violate our goals and then selecting the best image among
those that remain. The bcs lambda is based on CowNet [2], an
open-source research framework, but in work still underway,
is being extended to correlate the bcs score with other metric
data associated with the cow (identified by RFID), such as
milk quality and quantity, using LINQ to query electronic
health records. Our full framework uploads these records and
other metrics to Azure’s CosmosDB, where we deploy AI
logic to detect and clean up noisy records.

We found it easy to modify the existing filter and bcs logic

/milk_farm/store/

/milk_farm/frontend/ lfilter

/milk_farm/compute/ lbcs

photo aggregators

Figure 5: The fast-path in a Smart Dairy Service.

to use the stored procedure interface defined in Table 1. We
started by compiling the two lambdas against a C++ Tensor-
Flow interface called CppFlow [3]. CppFlow turns out to be
somewhat slow, but has the benefit of full compatibility with
the Cascade DLL model. The resulting DLLs then needed to
be configured with an object containing hyperparameters and
a second object holding the trained mode; we stored these as
K/V objects and the initializer in the DLL loads them using
get, then passes the associated objects by reference when reg-
istering the lambdas. In the full system, the bcs lambda will
also query CosmosDB, but for this experiment, we host all
the needed objects in Cascade. Ultimately it will be important
to leverage caching to avoid unnecessary critical-path delays,
but that should not be difficult: milk metrics and electronic
health records are uploaded at most once per day.

These lambdas can be instantiated multiple times per node.
On our servers a concurrent load of four instances gives the
best performance. Cascade allows us to impose such a limit by
configuring the number of threads used for triggered upcalls
in each server node, and Flink has a similar option.

Fig. 5 illustrates the three-staged logic that results.
Associated with each stage is a folder within the K/V
store: /milk_farm/frontend/, /milk_farm/compute/,
and /milk_farm/store/. Photo aggregator nodes capture
photos and metadata and forward each record using P2P trig-
ger puts, selecting a target node associated with the frontend
folder, where an upcall to the filter lambda will occur.

We deployed the solution in two forms: as a Cascade fast-
path, and as an Apache Flink task. Each platform also requires
a description of the two-step pipeline. For Cascade, we cre-
ated a JSON file that describes the fast path topology in Fig. 5
using a data-flow graph notation. For Apache, we used Beam
to describe the desired Flink stream-processing pipeline. The
two deployments were then run on the identical hardware
platform, configured with adequate resources for the highest
possible performance. In both cases we arranged for node
assignments that place the filter and bcs lambdas on different
nodes, equipped with GPUS. Output is stored to a storage
service, and we configured it to run on nodes with large high-
speed storage options. Finally, we implemented an external
client program. It runs as a stand-alone C++ application that
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Figure 6: K/V Store Put Throughput

hosts the IoT camera, using our own RDMA-based RPC to
access the Cascade API from Table 1. For performance eval-
uation, the client program was configured to replay a script
of previously-captured images. Results are presented in Sec-
tion 5.3, where we show that Cascade’s low overheads trans-
late to higher application performance. With faster filter and
bcs logic, the gap would grow even wider.

5 Evaluation

In this section, we start by reviewing microbenchmarks that
evaluate the throughput and latency of the Cascade K/V store.
Next, we evaluate performance of a data pipeline composed of
multiple put operations, employing no-op actions to highlight
overheads. Finally, we evaluate the dairy image pipeline.

All experiments ran on a cluster of dedicated servers. Each
server has a Mellanox ConnectX-4 VPI NIC card connecting
to a Mellanox SB7700 InfiniBand switch, which provides
an RDMA-capable 100Gbps network backbone, but the ma-
chines themselves have two configurations. The more power-
ful configuration has two Intel Xeon Gold 6242 processors,
192 gigabytes of memory, and an NVIDIA Tesla T4 GPU.
The second setup has two Intel Xeon E2690 v0 processors
and 96 gigabytes of memory but no GPU. For convenience,
we use type A to denote the larger configuration and type B
for the basic one. Both types of servers have an Intel Optane
P4800X NVMe card.

All servers run Linux kernel 5.0.0. We synchronize the
server clocks with PTP [20] so that the skew among them is
in the microseconds, allowing comparison of the timestamps
from different servers with sub-millisecond precision. Ap-
pendix A provides additional clock-synchronization details.

5.1 Cascade K/V Store Performance

We started by evaluating the performance of Cascade’s three
types of put operations. A volatile put operation (vola) puts
a K/V pair to a volatile Cascade subgroup, where the data
replicated in a consistent, fault-tolerant manner. A persistent
put operation (pers) is similar to a volatile put except for
persisting data in a file system in the NVMe device. A trigger

PUT type 10KB Message 1MB Message
Trigger 12 us 220 us
Volatile 70 us 1100 us
Persistent 500 us 4200 us

Table 2: Typical Put Operation Latencies

put operation (trig) is a point-to-point: it sends a K/V pair to
a single node, and the data is not retained after the triggered
action runs. In this microbenchmark, a set of clients running
in type B servers issue requests to Cascade nodes running
on type A servers, at a controlled rate. The nodes are all
dedicated ones. Then, we varied the shard size as well as the
number of clients to test scalability. For some experiments,
we used just a single client irrespective of the server shard
size (one), while others had multiple clients, one per shard
member (all).

5.1.1 Throughput

Figure 6 shows the put throughput of Cascade K/V store
with varying shard size, or the number of replicas. The Y-
axes represent the throughput seen by the application. With
only one node in a shard, volatile put reaches ∼ 500 MBps
(50 kops) and ∼ 2.8 GBps (2.8 kops) for 10KB and 1MB
messages. The throughput for 10KB messages is steady as
we vary the shard size from 1 to 5, confirming the excellent
scalability of the Derecho library. With 1MB messages, both
figures drop slightly: ∼ 2.2 GBps (2.2kops) for shards of size
5, reflecting the overhead of replicating large messages.

With multiple clients, we achieve even higher throughput.
Volatile put with 10KB messages rises from ∼ 500 MBps (25
kops) to ∼ 1.3 GBps (130 kops), a figure at which the repli-
cation capacity of the system becomes saturated. In contrast,
with 1MB messages, even with multiple clients, throughput
remains flat, peaking at ∼ 2.7 GBps for 5-member shards.
Our studies suggest that the bottleneck is associated with a
memcpy operation that we use to copy data from the RDMA
buffers used for incoming messages to a heap where we store
objects that will be passed to developer-supplied lambdas.

The numbers for persistent put operations show similar
trends, but the actual bandwidths are sharply reduced. Persis-
tent put reaches at most ∼ 270 MBps (27 kops) and ∼ 800
MBps (800 ops), both for small and large messages. The
bottleneck turns out to be a side-effect of the Paxos-style con-
sistency model we support. Although our NVMe device can
achieve sequential write bandwidth of 2.4 GBps, this requires
an uninterrupted stream of DMA transfers. It turns out that in
the persisted mode our update workload incorporates ordering
dependencies that the storage layer enforces by periodically
pausing until persisted updates are completed. These delays
prevent the system from leveraging the full DMA bandwidth.
Trigger put operations scale best because these operations
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Figure 7: K/V Store Put Latency

avoid all memory copying and replication overheads. A trig-
ger put client gets∼ 7.6GBps (∼ 7.6 kops) for 1MB messages,
which is close to the RDMA hardware limit, and aggregated
throughput grows linearly in the number of clients.

5.1.2 Latency

Table 2 shows typical latencies for put operations. For each
volatile put operation, we measured time starting when the
client sends the request, and ending when all replicas finish
updating their in-memory store. Each data point in the figure
shows the average latency during a five-second period. Simi-
larly, for each persistent put operation, we measure the time
from the client first sent the request to when the last replica
finishing persisting it; while for each trigger put operation,
we measure until the request reaches a replica that upcalls to
a developer-supplied lambda. Recall that although this entails
comparing timestamps from distinct machines, their clocks
are synchronized to a resolution of a few microseconds.

The persistent put latency is about four to five times higher
than that of a volatile put. Below, we confirm that the bottle-
neck is the I/O to our storage devices. Trigger put is one order
of magnitude faster than volatile and persistent put because it
does not need to replicate or persist any data.

The data in Table 2 reflects performance when the system
is not saturated. As the workload is increased and begins to
approach the maximum sustainable throughput latency will

rise sharply and without limit. To quantify this effect, we
measured the end-to-end latency of Cascade K/V store with
three replicas in Figure 7. The six subfigures show the end-
to-end latency for the three operation types and two different
message sizes. We control the maximum message rate on the
client-side and the Cascade window size (a multicast flow-
control parameter) to see how the latency changes.

As shown in figures 7b, 7c, 7e, and 7f, before the system
becomes saturated end-to-end latency is consistently low, cor-
responding to the flat part on the near right part of the curved
surfaces. In this area, the messages haven’t formed queuing
backlogs in the transport windows, and are processed imme-
diately. As the workload grows we see the latency suddenly
rise, corresponding to the slope part on the far left part of
the curved surfaces. Here, processing becomes bursty and
queuing delay dominates the end-to-end latency.

Figures 7a and 7d show that the trigger put latency is insen-
sitive to workload and window size. This is a consequence
of using a no-op as the triggered action: If we used a lambda
that performed a more realistic computation, the computing
cost would dominate the end-to-end latency. We will see this
effect when we evaluate our dairy image processing pipeline.

Figure 8 shows the latency breakdown for the volatile and
persistent put. We use a setup with a shard of three nodes and
a client that uploads 1MB objects. The window size is three.
The submitting component refers to the latency between the
client serializing a put request into the sending buffer and the
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Figure 8: Latency Breakdown for Volatile and Persistent Put
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Figure 9: Pipeline Illustration

Cascade server receiving it; the multicast component is the
latency of replicating the data among the shard members; the
processing component is the time spent in updating the in-
memory state, and the persistence component represents the
time from the replica state being updated to the corresponding
update being persisted in all replica. Because trigger put has
only the submitting component, we exclude it in this figure.

For volatile put, the multicast and submitting components
account for most of the end-to-end latency. As the request rate
increases, the overhead of those two components grows as
well: messages pile up in the window slots. For persistent put,
the persistence overhead dominates. However, as the request
rate goes up close to the maximal achievable throughput, the
overhead of submitting and multicast grows suddenly because
the messages pile up. This is the issue noted previously: the
underlying Derecho persistent multicast (a version of Paxos)
sometimes syncs data to storage, delaying the pipeline.

5.2 Pipeline Performance
To evaluate a fast-path pipeline we created a series of lambdas
that relay received data stage by stage but perform no other
computation, implemented with a trigger put or a volatile
(multicast) put (Figure 9). As seen in the figure, the shards
have three members each, consisting of one running on a
type A server and two on type B servers. Each lambda runs

in a single member, on a dedicated A-type serve. The client
program runs on a type B server node.

5.2.1 Pipeline Latency

For our first experiment, the client sends either 10 KB or 1
MB messages at steady but low request rate. We then measure
the time from when the client sends each request to the time
when the no-op logic is activated, stage by stage. Figure 10a
and 10b show the average latency for all the messages during
a representaive 5-second period, for varying pipeline lengths.
The latencies for the first stage match the trigger and volatile
put latencies shown in table 2. With longer pipelines, the
latency for each stage is a linear function of the depth of
that stage in the pipeline, showing that the overhead of the
lambda upcall infrastructure is negligible. Of interest here
is the comparison of trigger put, where the data is sent to
just one shard member and not retained, with volatile put,
where data is replicated using atomic multicast and is retained
in memory. We see here that trigger is faster, but that the
overhead of volatile put is surprisingly low.

To contrast these numbers with the state-of-the-art stream
processing system, we then configured Apache Flink computa-
tions in an layout intended to mimic our trigger put scenario1.
This required several steps2. First, we constrained Flink to use
a single task-processing slot per server, ensuring that it would
not try to run multiple tasks on any single node. Next, we
disabled Flink’s automatic operator chaining [9] to prevent it
from combining all the no-op tasks into a single task (operator
chaining is a form of inlined composition: useful, and equally

1Flink itself lacks data replication, but we could have mimicked a volatile
put by storing objects into HDFS, configured for automatic data replication.
We considered running such an experiment, but the performance would have
been so poor that the comparison wouldn’t have been useful.

2Tuning Flink proved to be challenging. In summary, we quickly dis-
covered that although Flink is an event processing framework, it really isn’t
optimized for low latency. To enable a fair comparison we spent weeks ad-
justing parameters and testing, while simultaneously combating the Kinsing
malware exploit, which attacks Flink through its web GUI API.
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Figure 10: No-op Pipeline Latency

relevant to Cascade, but orthogonal to the topic of this pa-
per). Two changes go beyond what most users might consider.
We recompiled Flink to load 1MB at a time, rather than its
standard 32KB block size, and also set its minibatch delay
barrier to zero. This last change might be controversial: the
Flink documentation emphatically specifies that the barrier
delay not be reduced below 1ms [34], but when we used this
guidance, Flink performance was terrible and the servers had
very low CPU utilization levels.

As shown in Figure 10c, even with all of this tuning, Flink’s
pipeline latency is quite high. The Cascade pipeline with
trigger put has a latency below one-eighth that of the Flink
version for 10 KByte messages and one-fourth for 1 MByte
messages. Indeed, even the (replicated) volatile put on three-
member shard has less than half of the latency of Flink, at
both messages sizes.

We see two reasons for Cascade’s higher performance.
First, the Cascade RDMA fast-path offloads communication
to the RDMA hardware, whereas Flink uses TCP, incurring
the standard overheads of the kernel network stack. We find
it interesting that the RDMA advantage (at least with Dere-
cho’s multicast protocol) dominates even non-replicated P2P
relaying. Cascade’s fast path also benefits from in-place se-
rialization. Flink uses the Java-based Kryo serializer, which
requires copying from the Java-managed memory region into
a network buffer. One implication is that even if Flink were
ported to use RDMA (a non-trivial undertaking because the
RDMA communication model is so different), marshalling
would be a significant bottleneck.

5.2.2 Pipeline Throughput

We then stress the same pipelines by tuning our client to run at
the maximum sustainable message rate for each setup, obtain-
ing the first four throughput series shown in Figure 11. Again,
the throughput of Cascade’s one-stage pipeline matches the
trigger and volatile put throughput in Figure 6, dropping
slightly as we move to a pipeline with two or more stages.
This reflects the extra costs associated with message relaying:
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Figure 11: No-op Pipeline Bandwidth

the first pipeline stages each need to send as well as receiving.
Performance is sustained as pipeline length grows from two
to four, supporting our claim that Cascade scales extremely
well. In the same experiment, Flink gives lower and more
variable throughput, although the error bars are still small.

5.3 Dairy Application Performance

We deployed the smart dairy application from Section 4. Re-
call that nodes in the frontend and compute stages perform
image analysis: they benefit from GPUs and use servers of
type A. The other nodes run in the type B servers. Like the
previous experiments, each node runs in a dedicated server to
avoid resource conflicts.

We first deployed the application with a simple configura-
tion where each stage of the pipeline runs on a single-member
shard. We use cow images collected from our research dairy,
each with a valid cow image pre-verified by the filter model:
it needs to run, but will always select every image for further
analysis (this is to avoid variable-length computations that
would make the output harder to understand). The raw image
size in JPEG format is about 200 KBytes. At the beginning of
the experiment, the photo aggregator transforms the raw im-
ages into two-dimensional dense arrays in OpenCV cv::Mat
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format, which can be used directly by our inference engine.
Interestingly, although this dense array format is larger (about
1 MBytes which is five times the JPEG format), it saves the
computation resources and supports faster decision-making,
reducing CPU and GPU performance pressure but at the cost
of higher data movement costs. We configure the storage
folder to run in Cascade’s volatile mode, meaning that the
most recent version of each object will be retained in memory
but not persisted.

We then built the same application as a Flink pipeline for
comparison. It consists of a photo streaming data source task
as the photo aggregator, four filter tasks, four bcs tasks, and a
terminating data sink. We use Flink’s fine-grained resource
management to control the task layout so that tasks of the
same type will run on the same server. Moreover, the filter
and bcs tasks are placed in Type A servers because the models
require GPU resources. To mimic Cascade in-memory storage
of the results, the Flink data sink task saves output into an
in-memory hashmap. Once again we see that even though
Flink’s data storage sink is non-replicated and the Cascade
version replicates the output, Flink is substantially slower.

5.3.1 Latency Breakdown
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Figure 12: Smart Milk Farm Latency Breakdown

In this experiment we selected fixed sending rates in the
range from 50 to 400 frames per second(fps). For each rate,
we run a session that lasts for (at least) five seconds and log the
timestamps for each photo at different stages in the pipeline.
We recorded the following six timestamps for each photo:

1. the photo aggregator sends a photo;
2. the filter lambda is triggered by the photo;
3. the filter model finishes processing the photo;
4. the bcs model is triggered by the photo;
5. the bcs model finishes processing the photo;
6. the result is written by the store folder.

By calculating the deltas between timestamps we obtain a
latency breakdown along the pipeline.

The blue bars in Figure 12 show the results for Cascade at
a low rate and then at the highest sustainable rate (the limiting

factor turns out to be the filter and bcs model costs, which fully
load our type A servers). The end-to-end latency is only nine
milliseconds for the light workload at ∼ 50 fps and twelve
milliseconds for the stressed workload at ∼ 400 fps. The
time spent in model inference dominates end-to-end latencies:
filter processing time represents about 36% of end-to-end
latency; and bcs model processing is even greater, at nearly
53%. The aggregated data forwarding latency represents just
11%, reflecting the efficient fast-path.

The Flink latency breakdown is shown as the red bars
in Figure 12. Although the filter and bcs models consume
an identical amount of time, Flink’s data forwarding delays
(highlighted with stripes) are far higher. For a stressed load
at 400 fps, Cascade’s end-to-end latency 12 ms, is about one-
ninth that of Flink’s. Even with light load at 50 fps, Flink’s
end-to-end latency is 25 ms, whereas Cascade is just 9 ms, a
64% reduction.

5.3.2 Throughput Scalability
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Figure 13: Dairy Pipeline Transactions/sec. The triples indi-
cate the number of members comprising the front-end stage,
compute stage, and storage stage, respectively.

We investigated scalability by varying the number of nodes
while tracking throughput, but focused purely on Cascade.
Here, the configuration of the shard responsible for each stage
has a significant impact, so we use a three-tuple to represent
a system configuration, where the elements are positive inte-
gers representing the number of nodes assigned to each role:
frontend (which runs the filter lambda), compute (which runs
bcs scoring lambda), and storage. For example, (1,2,3) rep-
resents a system configuration with six nodes. The frontend
folder is backed by a shard with one node; the compute folder
is backed by a shard with two nodes; and the store folder
is backed by a shard with three nodes. Cascade supports a
variety of load-balancing policies, including random, static,
and round-robin; we selected round-robin. We then graphed
the maximum throughput achievable without overloading the
pipeline in Figure 13. For context we benchmarked both
lambdas on a single server of type A: filter runs at ∼ 540 fps,
while bcs runs at ∼ 400 fps.
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The overall trend is easily understood. The bcs lambda is
the bottleneck in the (1,1,3) configuration. In the (1,2,3)
configuration, the bcs lambda has adequate capacity because
it runs on 2 nodes, causing the filter lambda to emerge as
the limiting factor: we obtain a maximum throughput of ∼
540. With configuration (2,2,3) bcs is again the limit. With
the (2,3,3) configuration, the two lambdas are balanced and
throughput exceeds one thousand fps. Broadly, these results
support our view that Cascade has excellent scalability, and
useful configuration flexibility.

6 Additional Related Work

The introduction and background sections discussed a num-
ber of widely used big-data platforms and the challenges
of adapting them for use in event-driven edge settings. Al-
though Apache Flink and Storm [15] aim at stream processing,
these are not the only systems similar to ours. For example,
Spark [38] achieves impressive performance for iterative tasks
where in-memory RDD caching and smart scheduling can
be leveraged. The core trade-off is the one we discussed in
connection with Apache Flink: today’s back-end systems are
optimized for batch computing. Although they can be con-
figured to use very small batch sizes (mini-batches), their
efficiency degrades because we deprive their schedulers of
the scheduling flexibility they require.

The tradeoff is interesting. By configuring Flink to disable
its minibatching feature, we departed from the standard setup
of that platform. We had no choice: in the normal configura-
tion, Flink’s per-event latencies would have been 50x higher.
The natural question is whether Cascade obtains acceptable
levels of resource utilization. In fact we do, via per-event
scheduling, but for reasons of brevity we must leave that topic
for a future paper.

Cascade was created from the ground up for event-driven
settings where timely response is prioritized, and uses job
collocation controlled by the developer (through the use of
affinity keys) to keep resources busy. The goal of low per-
event latency drives a series of design choices that wouldn’t
be ideal in a batched system where high throughput is the
overarching goal. Additionally, the most common style of
component-to-component interaction changes. Whereas all
of the systems we described encourage a graphical style of
application development, the subtasks (the nodes within these
graphs) often are components of some single process. The
style of ML federation on which our work focuses would
often involve programs written in different languages and
perhaps running on a variety of frameworks, communicating
by sharing K/V objects. Optimization of the fast-path for this
case posed new challenges.

Prior work on K/V stores includes RDMA-enabled systems
such as FARM [19] and FASST [27] as well as commercial
products, such as Amazon’s DynamoDB [18], Snowflake [8],
Microsoft Cosmos [21, 22], Databricks Datalake, Cassandra,

RocksDB or even the Ceph object-oriented file system, which
runs over a key-value store called RADOS [36]. The distinc-
tion here is that none of these solutions host the developer-
supplied lambdas within the same address space as the storage
system and the hosted GPU accelerator, forcing costly lock-
ing, copying and domain crossings. Our contribution centers
on the Cascade fast-path, which hosts lambdas in the address
space of Cascade itself, as well as our use of RDMA for lock-
free and zero-copy hardware accelerated data movement. This
permits multiple orders of magnitude improvements both in
event-response latency and in overall throughput.

We do not have space for a systematic review of prior work
on database platforms for AI and ML, but in fact view this
topic as somewhat tangential. Whereas Cascade focuses on
low-latency stream processing with AI/ML lambdas on the
critical path, many AI and ML applications treat databases
as an integral aspect of the artificial intelligence algorithm,
which they express directly as database computations. This
leads to a great deal of work on expressiveness of the query
APIs offered to the AI/ML logic, database schemas optimized
for the patterns of queries that arise in AI/ML settings, and
optimization when such systems are running batched work-
loads over very large data sets. These are important questions
and the work is of high quality. However, the focus is not
on the style of per-event processing that our effort seeks to
optimize. Conversely, Cascade’s LINQ query package has
limited functionality and would not be the best choice for
ambitious big-data computations.

7 Conclusion

Cascade demonstrates that even with strong consistency guar-
antees, an edge IoT platform can host very low-latency, high
bandwidth edge intelligence. With pipelines of developer-
supplied lambda methods, stage-to-stage delays were as low
as 33us in our experiments, and bandwidth as high as 4.5Gbps.
In contrast, Apache Flink exhibited latencies of 560us or
more per pipeline stage for the same workload, and bandwidth
peaked at less than 2GBps. These benchmark performance
figures carry over to full applications, as demonstrated using
a smart-dairy application that has been deployed at a research
dairy farm on our agriculture and life sciences campus.

The demand for AI/ML in edge IoT settings will surely
continue to expand, with applications in many settings. The
smart dairy experiment explored here already strains the limits
of what standard platforms can do. As edge communication
options expand to include 5G first-hop links and perhaps
even edge RDMA (or similar options such as DPDK), intel-
ligent applications will grow to encompass mobile vehicles
and smart infrastructures, bringing steadily more demanding
latency and throughput requirements.

Cascade is fully open and available under permissive 3-
clause BSD licensing.
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A Time Synchronization with PTP
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Figure 14: Time Synchronization with PTP

The server clocks are synchronized to a master clock in
the directly connected switch with Precision Time Protocol
(PTP) [20]. Figure 14 shows how skew between the server
clocks and the master clock varies over time. The Y-axis (in-
accuracy) is calculated from the output of Linux PTP daemon
by adding the root mean square of the sampled offsets to the
average offset in two seconds. Although some sporadic noises
go up to more than ten microseconds, the average offsets are
bounded in one microsecond. This is adequate for the open
loop latency measurement in our evaluation.
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