Logistics

• Intermediate report
 • Feedback is expected by this weekend.
 • Address the concerns via emails or attending OHs.

• Projects
 • Technology workshop.
 • Spendings.
Privacy & Encryption
Trusted Execution Environments (TEEs)

• Intel:
 • Software Guard eXtensions (SGX)
 • Management Engine (ME)

• AMD:
 • Memory Encryption Techniques
 • Platform Secure Processor
SGX

2 major changes:
• enclave memory access semantics
• protection of the address mappings
SGX

protection of the address mappings
• Compiler support is needed.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECREATE</td>
<td>Declare base and range, start build</td>
</tr>
<tr>
<td>EADD</td>
<td>Add 4k page</td>
</tr>
<tr>
<td>EEEXTEND</td>
<td>Measure 256 bytes</td>
</tr>
<tr>
<td>EINT</td>
<td>Declare enclave built</td>
</tr>
<tr>
<td>EREMOVE</td>
<td>Remove page</td>
</tr>
<tr>
<td>EENTER</td>
<td>Enter enclave</td>
</tr>
<tr>
<td>ERESUME</td>
<td>Resume enclave</td>
</tr>
<tr>
<td>EEXIT</td>
<td>Leave enclave</td>
</tr>
<tr>
<td>AEX</td>
<td>Asynchronous enclave exit</td>
</tr>
</tbody>
</table>
SGX

protection of the address mappings

• Whether an access operation is from a processor running in the enclave mode.

• Whether a target physical address is in the EPC.

• Whether a target page belongs to the enclave (i.e., only the enclave code can access the enclave's data).

• (EPC = Enclave Page Cache)
SGX Vulnerability

https://dl.acm.org/doi/fullHtml/10.1145/3456631#Bib0068
SGX Vulnerability

- Memory access pattern is not hidden.
 - I can guess which algorithm is used if that’s a widely used library.
 - RSA as an example.
SGX Vulnerability

- Memory access pattern is not hidden.
 - I can guess which algorithm is used if that’s a widely used library.
 - I might be able to guess private key somehow.
 - Branching to the old location?
 - Branching to a new location?
SGX Vulnerability

• Memory access pattern is not hidden.
 • I can guess which algorithm is used if that’s a widely used library.
 • I might be able to guess private key somehow.
 • Branching to the old location?
 • Branching to a new location?
• A big assumption is network connection is safe.
• It’s slow.
Differential Privacy

- We add noise and hope that the noise can cancel each other.
- Only make sense on aggregated results, e.g., sum, average, etc.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>Age_Noise</td>
<td>22</td>
<td>17</td>
<td>20</td>
<td>19</td>
<td>24</td>
<td>21</td>
</tr>
</tbody>
</table>

For odd column, we +2, for even column, we -2.
Encrypted Database

- Key idea:
 - We don’t trust the DB.
 - We only trust the device on hand.
Encrypted Database

• What is in our tool box?
 • Trustable local environment: browser, application, etc.
 • Encryption algorithms:
 • DET: encryption that guarantees same input is mapped to the same output, potential leakage, used for =
 • RND: encryption with randomness, useful for data moving, e.g., select
 • HOM: basic calculation, e.g., \(\text{HOM}(a+b) = \text{HOM}(a) + \text{HOM}(b) \).
 • OPE: Comparable, >, <, max, min
 • JOIN, SEARCH, ...
 • Commercial non-encrypted databases
Encrypted Database

• Challenge
 • We don’t know what is in the query, so we don’t know which encryption algorithm to use.
 • Complex query operation might go beyond the capability of existing encryption algorithms.
Encrypted Database

<table>
<thead>
<tr>
<th>rank</th>
<th>‘CEO’</th>
<th>‘worker’</th>
<th>ALL?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>col1-RND</th>
<th>col1-HOM</th>
<th>col1-SEARCH</th>
<th>col1-DET</th>
<th>col1-JOIN</th>
<th>col1-OPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

Idea 1: Let’s just expand the table and create a new column for each algorithm!

Leaks order!

http://www.cs.cornell.edu/courses/cs5412/2022fa
Encrypted Database

• Idea 1:
 • Information leakage is inevitable.
 • From OPE column, I can compare each person’s rank and figure our who is CEO, who is worker, what’s the percentage of management, etc.
 • Combined with DET column, I might be able to guess the salary of each class.

• This consumes lots of space! If I have N algorithm, the new table is N times larger!
Encrypted Database

• Idea 2: Onion of algorithms.
Encrypted Database

- Idea 2:
 - Some encryption algorithms are “stackable”.
 - E.g., first DET then RND can support select at the “first layer” and = if we “peel off” the RND layer.
 - We never peel off the most inner layer!

```sql
SELECT * FROM emp WHERE rank = 'CEO'

UPDATE table1 SET col1-OnionEq = Decrypt_RND(key, col1-OnionEq)

SELECT * FROM table1 WHERE col1-OnionEq = xda5c0407
```
Encrypted Database

• Idea 2:
 • Performs well, with at most 26% slower
 • Deployed in large systems.

• Still not a panacea
 • Some queries are too complicated: computation + sorting.
 • Information leakage is inevitable.
SQL
Azure SQL
Migrate, modernize, and innovate on the modern SQL family of cloud databases

Azure Cosmos DB
Build or modernize scalable, high-performance apps

Azure SQL Database
Build apps that scale with managed and intelligent SQL database in the cloud

Azure Database for PostgreSQL
Fully managed, intelligent, and scalable PostgreSQL

Azure SQL Managed Instance
Modernize SQL Server applications with a managed, always-up-to-date SQL instance in the cloud

Azure Database for MySQL
Fully managed, scalable MySQL Database

SQL Server on Azure Virtual Machines
Migrate SQL Server workloads to the cloud at lower total cost of ownership (TCO)

Azure Cache for Redis
Accelerate apps with high-throughput, low-latency data caching

Azure Database Migration Service
Accelerate your data migration to Azure

Azure Managed Instance for Apache Cassandra
Modernize Cassandra data clusters with a managed instance in the cloud

Azure Database for MariaDB
Deploy applications to the cloud with enterprise-ready, fully managed community MariaDB
ACID

• Atomicity, consistency, Isolation, Durability.

• My own story: A small project containing only 3 KVTs gave me a huge punishment in performance.
 • Students, parents, students’ classes.
 • Some complex operations require me to read all tables, lock all tables, update accordingly and then free all the locks.
 • This process is surprisingly slow with features like hot data push, i.e., I can only access the part of table in my browser, so hitting a cold cache is extremely harmful.

• My lesson:
 • Schema is important.
 • It does not harm to use relational databases.
SQL Tips

• Join order matters.
• Plan ahead in your schema design.
• It never hurts to have multiple DBs.