DEALING WITH REAL-TIME DATA IN THE IOT CLOUD

Ken Birman
CS5412 Spring 2021
Lecture 10
THE WORLD IS GENERATING A NEW WAVE OF IOT/ML PIPELINES... THERE ARE MANY USE CASES

Satellite Images AI/ML Layer Smart Queries

“Which farms will be at risk of wheat blight in 2021?”
MANY OF THESE USES INVOLVE REAL-TIME DATA STREAMS

The data itself has GPS timestamps, accurate to a few ms

We may need to quickly recognize important events or patterns: like doing AI under time pressure, so that we can react quickly.

Consistency matters: We saw how easy it would be to be fooled by data staleness or timing issues introduced by the platform.
DISTRIBUTED AI

Increasingly seen in robotics, smart homes, 5G, digital twin scenarios.

- The application is a *graphical collection* of AI classifiers / learners
- Nodes represent computational tasks.
- Edges represent data flow between distinct tasks.
EACH λ REPRESENTS A DISTINCT AI ELEMENT

Many are parallel: Single λ may run on a pool of compute nodes.

Thus, to build a D-AI we build pipelines linking parallel tasks.

Today’s cloud platforms have limited support for this model, lack the real-time and consistency guarantees needed for IoT.
WE HEARD ABOUT CASCADE IN PRIOR LECTURES. THIS IS WHAT IT IS FOR!

Cascade was created to be a runtime system for edge IoT that is

- Really easy to use, like Tensor Flow, Pandas, Spark, …
- Offers real-time responsiveness in addition to consistency
- Scalable – even to global deployments.
THE CASCADE MODEL

Is it a service? A library?

KEN BIRMAN (KEN@CS.CORNELL.EDU)
CASCADE IS A SERVICE

Although created using Derecho (a C++ library), Cascade runs on a set of nodes (machines or VMs) where it controls some resources (cores, RDMA interfaces, GPUs/FPGAs, memory).

Users can build applications that access Cascade from “outside”. We call those “external clients”. The put/get API would work, and RDMA is supported.
But this slide deck is mostly about users who extend the Cascade service by adding logic that runs inside of Cascade.

Cascade behaves as a customized service: a “smart” service.

We will explain how this is done... it involves extra APIs, but allows us to also treat our service as a kind of library.
EXTENSION CONCEPT

Cascade is one service

But you supply customization that lets it act like many specialized services, one per application

So it becomes a platform for new microservices, like these!
KEY CONCEPT: EXTENSIBILITY

What does it mean to be an “extensible platform as a service”?

Think about devices you plug into your computer. For example, Ken uses a Garmin GPS to track bike rides. When he plugs the Garmin into his Dell computer, it becomes an expert on all the bike rides he has taken since 2008.

In some sense, the Garmin+Dell pair is a “new thing”
HOW DOES A PERSON EXTEND CASCADE?

We will look at this later in the class, but the idea is to plug in new software written in C++, and to tell Cascade when this software should run.

The new code handles IoT events specific to the application.

For example, it can handle “cow-washing events”
THE CASCADE STORAGE MODEL

How should Cascade data be managed?
Cascade has a built-in file system extension:

- Every object has a pathname.
- The file system extension supports normal file operations.
- You can access it just like any file system.

Yet Cascade isn’t a file system. It is a key-value get/put/watch store. Moreover, it is automatically sharded for scalability.
Any key-value object lives in one shard (but that same shard may have many keys that map to it!).

- A key is a string. A value is an object serialized as a byte vector.
- Updates are log appends using Paxos. Each object has a log of versions that evolved over time.
- Queries run on the stable prefix of the log.
VERSIONED/TEMPORAL QUERIES

For volatile objects, Cascade enforces version sequencing (this is enough to ensure lock-free consistency!)

With persistent objects, Cascade also keeps a history

- By default, applications see the most current version
- But indexed access allows the application to query any version (by version number or time), or fetch any data range.
VERSIONED OBJECTS

We configure the object store to track versions. `put` creates a new version:

- **key**: The object store *always* tracks information on a per-object basis
- **version-number**: Just an integer
- **time**: If the object itself lacks a timestamp, we just use “platform” time.

Now `get` can lookup most current version, or a specific one, even by time.

The object store is optimized to leverage non-volatile memory hardware.
STORING DELTAS

Existing DHTs lack support for versioned data.

We implemented a highly optimized versioned data structure

We implement a temporal index, and cache frequently accessed data.

- A server still manages a map (since many keys map to it), but you can think of the values for a specific key as being versioned.

- Sometimes deltas are more efficient. If you have a function to compute the delta, we won’t even create a new version unless you tell us to.

- Values (or deltas) are saved on NVMe & replicated for fault-tolerance.
THE CASCADE COMPUTE MODEL

Lambdas, coded in your favorite language
THE CENTRAL PUZZLE

The very fastest data paths require compilation, ideally in languages like C++.

But we want Cascade to run as a service, so it would often already be running when a new user comes along and wishes to create and launch some completely new service.

How can we extend a running system? Actually… it isn’t so hard
FIRST QUESTION: WHAT’S IN A \(\lambda \)?

We support many languages. Native APIs are Python with various packages (including LINQ) and C++ with LINQ.

Code is concise – LINQ pioneered a style that mixes “kernel” invocations with embedded SQL. Maps cleanly to GPU, FPGAs.

Cascade manages GPUs and can cache data in GPU memory.
We run Cascade on a set of nodes. Here we see nine nodes in three shards.

A shard identically replicates (key,value) tuples, using Paxos.

Here, an object with the key “Flowers” was stored in shard 0. “Vegetables” ended up in shard 2.
HOW DOES “WATCH” WORK?

On a given Cascade server node, it will issue an upcall to user-specified code if the key(s) the user wants to watch change.

Cascade’s name space is best understood as a global file system namespace. The keys are the file pathnames.

Watch thus is monitoring a file or directory...
SO... A λ IS JUST A PROGRAM DESIGNED FOR PARALLEL EXECUTION INSIDE A KEY-VALUE STORE

Our idea:

- Cascade hosts the key-value data (or file system, like Ceph)
- The user’s code is treated like a dynamically linked library.
- The user creates this DLL, saves it into Cascade, then tells us where to run it. Cascade loads and launches it there.
- DLLs have zero overhead, once loaded. So now the user’s logic is efficiently callable from Cascade!
- And we use the `watch` feature to initiate those upcalls!
Developer builds a new ML program, designed for parallel execution directly “in” a key-value store.

Cascade is already running in the cloud. She tells Cascade to load this DLL.

On the designated compute nodes, Cascade loads the DLL and activates it. The DLL initializes itself and register some “watch” upcalls.

Recall that a key-value store is sharded. Each node will host a different set of keys.
D-AI PIPELINES WILL BE COMMON

One way to trigger a lambda is with a (key, value) put.

Many lambdas depend on persistent objects, fetched with get.

Each of these lambda stages potentially runs on a pool of machines.
ANYTHING, ANYWHERE, ANY TIME

With permissions, any code can access any object, or the associated time-series if the object is a persisted history.

Obviously, performance is best if we can minimize data movement and compute instantly when new events occur.

This all yields a sophisticated programming model
WHAT DOES A REAL APPLICATION LOOK LIKE TODAY?

Example, courtesy of Weijia, Alicia and Thompson
A VERY SIMPLE EXAMPLE

First tier: inexpensive computation on meta-data

Key-value object store hosts specialized knowledge models for categories (flowers, birds, dogs, trees…)

λ₁

IoT Cloud Infrastructure

λ₂

Flower p=.85
Vegetable p=.6
Most likely a sunflower!

Sunflower

Flowers

Vegetables

Sunflower p=.97
Zucchini blossom p=.04
VALUE OF CONSISTENCY

Why does it matter?
Recall: Cascade has a built-in temporal indexing feature. Suppose our distributed AI is triggered by event ε at time τ. We run all the lambdas triggered by ε along a consistent cut “optimally close” to time τ (and selected deterministically).

Effect: The lambda won’t see platform-induced inconsistencies.
Cascade consistent cuts + GPS-timestamped sensor data result in clean input to the D-AI algorithm (in this case, a simple visualization)
CENTRAL CONCEPTUAL INSIGHT

One event may trigger many lambdas.

These lambdas may need to run on multiple nodes... yet will share the same temporal index (τ from the trigger event ε).

A Cascade query always sees a “consistent state snapshot.”
A temporal query for time τ sees a consistent cut at $\tau \pm \delta_{\text{clock}}$.

Queries to unstable data must wait, but updates are stable within 50us.
Even if δ is small, there could be a few events at each process in the $t \pm \delta$ time window. By selecting a consistent cut, Cascade avoids the “maskup” issue we saw in the HDFS animation.

Queries to unstable data must wait, but updates are stable within 50us.
BUT THE JOB IS STILL HARD!

Cascade makes it easy to extract a tensor with a temporal dimension: A stack of frames

But writing ML code that can recognize patterns over time is not easy! Even identifying movement trajectories is a hard vision task.

Cascade is just the platform. You need to write the application!
COOL OBJECT ORIENTED IDEA

Suppose that you have a device that captures images of size w,h and you want to form a 3-D tensor for times t0 .. t1.

You can define your sensor as an object with getter methods that turn around and fetch the appropriate images. Now your code is written in terms of my_tensor[x,y,t] and yet Cascade handles fetching and caching the data.

You can even use LINQ to do this in one line of Python or C++ code (we will see this later in the semester)
Now, if you have a computer vision algorithm that can recognize the orientation of the skater frame by frame, you can write a function that will “represent” the pattern of how her body is spinning over time.
“MACHINE LEARNING” A SPIN

In this model, we can think of a trajectory as the “motion trace” of some key points such as the skater’s hands, arms, face, etc.

Each traces out a path in time and space.

In effect, our system is learning a collection of high dimensional splines that fit the observed data, and can be used to predict future movement.
REALISTIC “USE CASES?” FOR SKATING

A skating judge might be interested in measured properties of the spin, like speed, number of spins, steadiness.

A coach might be trying to diagnose the root cause of a small wobble.

The skater may be wondering what would have happened if her left hand was just a tiny bit higher.
This is why we need a graph of AI’s – a D-AI

Each lambda in such a graph would “own” a distinct AI task, perhaps a substantial one. The lambda might be just a few lines of code, but it could also be a big program, or could be invoking sophisticated ML logic that came from prebuilt libraries.

The entire solution would embody a kind of edge machine intelligence, whereas each individual lambda is a narrow specialist in just one aspect of the problem.
HOW TO CREATE A NEW λ

Cascade is an extensible service!
TRIGGERED ACTIONS: THE CODE ITSELF

The lambda is created as code that implements a static API.

- User places the DLL (or the source file) in a Cascade object
- A command tells Cascade which nodes should load it.
- The DLL has an `initialize` method. Cascade calls it.

Notice that the user-supplied code can define new object types. We only require that all Cascade objects be byte-serializable.
Cascade implements has three primary APIs

- The main Cascade APIs: (key,value) **put** and **get**.
- **watch** upcalls to trigger user logic when some key is updated.

Watch can do exact key match, or path-prefix match, or arbitrary regular-expression matches.
The `initialize` method calls `watch` to register the user’s lambdas

- A lambda is a closure. This associates “context” with the lambda.
- Example: keys identifying hyperparameter and model objects.

`Watch` monitors for keys that match.

If a match occurs, Cascade passes the matching key to the lambda.
PATTERN MATCHING

Just like with file names (key == file name)

/data-center/instance/users/Alicia/SmartDairy/ImageRec/cow2716/model

Many watch patterns will seek exact match.

Some are a prefix followed by a glob-style pattern, like “trigger if any change occurs in this folder”
PERFORMANCE CHALLENGE

Recall... a D-AI will be a complex pipeline of triggered logic:

How fast can these triggered actions be initiated? How close to perfect wire efficiencies and zero extra delay can we get?
INSIDE A SMART SERVICE

We really want the data to be “ideally” positioned or copied directly to the perfect place…

Skip this transfer for any ML objects already cached in the GPU device!

Request for classification runs as a lambda

Image to classify

RDMA directly into GPU memory

GPU-accelerated kernel initiated from the lambda
STATUS AND OPPORTUNITIES

The basic Cascade system (in one data center) is up and working, as an application built on our Derecho system (ACM TOCS 2019). Blazingly fast… SIGCOMM submission describes some of the most impactful optimizations relative to the original TOCS version.

But this idea of extending into distributed AI is new. Our big project is to fully implement the whole picture.
WHAT ARE WE DOING RIGHT NOW?

We are doing a basic image pipeline for dairy farming right now:

- A cow walks into the barn.
- In real-time we identify her, pivot and zoom to her haunches, estimate her body fat from those images.
- Combine this with previously uploaded general health metrics.
- Within milliseconds, a decision is reached, perhaps to milk her, perhaps to route her to a holding area (for the vet to come check).

This is working in beta form today.
DAIRY IMAGE PIPELINE: FRONT END

Dairy Farm

The Farm Server (IoT Edge)

- Frame Extractor
- Frame Sampler
- Video clip store
- Frame Server

Data Center

- Image Pipeline Front End (As an external client)

Cascade Image pipeline

WAN
Detailed Version (PyLINQ on MSFT Azure)

Farm Server
- Streaming image frames through TCP portal

External Client to Cascade
- Upload daily date to Azure Blob Storage

Azure
- Integrate daily data

Cascade Backend
- Filtered image frames
- Store to subgroup VCSS

CV Model
- Image analysis
- Action = black_cow_infer

LINQ Query to Retrieve Data of Most Recent 10 Days from Cascade About Cow
```csharp
client = cascade_py.ServiceClientAPI()
cow_id = "cow_id237"
recent_data = []
for field in ["daily_yield", "daily_fat", "daily_protein"]:
    field_pool = client.get_object_pool("VolatileCascadeStore", field)
    query_result = field_pool
        .where(lambda x: x.endswith("/cow_id")
            .order_by(lambda x: x.version)
            .reverse()
            .take(10))
    recent_data.append(query_result)
```

ML Model
- Birth prediction
- Probability of calving in next 8h is: 80%

Download Blobs from Azure & Store to Cascade VCSS Subgroup
```csharp
client = cascade_py.ServiceClientAPI()
daily_yield_pool = client.get_object_pool("VolatileCascadeStore", "daily_yield")
daily_yield_pool.put(cow_id, val)
daily_fat/cow_id237{ver_38} = 4.42
```

DETAILED VERSION (PyLINQ ON MSFT AZURE)

<table>
<thead>
<tr>
<th>Date</th>
<th>cow_id</th>
<th>daily_yield</th>
<th>daily_fat</th>
<th>...</th>
<th>daily_protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/3/20</td>
<td>1</td>
<td>14</td>
<td>3.96</td>
<td>...</td>
<td>2.89</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1/10/21</td>
<td>237</td>
<td>20</td>
<td>4.42</td>
<td>...</td>
<td>4.55</td>
</tr>
</tbody>
</table>
C++ is similar (but more efficient)

<table>
<thead>
<tr>
<th>Date</th>
<th>cow_id</th>
<th>daily_yield</th>
<th>daily_fat</th>
<th>...</th>
<th>daily_protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/3/20</td>
<td>1</td>
<td>14</td>
<td>3.96</td>
<td>...</td>
<td>2.89</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1/10/21</td>
<td>237</td>
<td>20</td>
<td>4.42</td>
<td>...</td>
<td>4.55</td>
</tr>
</tbody>
</table>

Filtered image frames through TCP portal

External Client to Cascade

Upload daily date to Azure Blob Storage

Integrate daily data

Download blobs from Azure & Store to Cascade VCSS subgroup

Cloud service for Farm

Filtered image frames

C++ API calls

ServiceClient API calls

LINQ query to retrieve data of most recent 10 days from Cascade about cow

Probability of calving in next 8h is: 80%

ML Model

Birth prediction

CV model

Image analysis

Store to subgroup VCSS

Trigger image analysis

Action = black_cow_infer

Store to subgroup VCSS

Download blobs from Azure & Store to Cascade VCSS subgroup
THE CASCADE AND DERECHO TEAM

Weijia Song

Alicia Yang

Ken Birman

Sagar Jha

Lorenzo Rosa

Matthew Milano
(post-doc at Berkeley)

Andrea Merlina

Roman Vitenberg

Cornell undergrads:
Aahil Awatramani, Ben Posnick, Max Charlamb, Thompson Liu, Archishman Sravankumar, Aaron Weiss, Peter Zheng

Edward Tremel
(faculty at Augusta Univ.)