
CS 5412: LECTURE 6
TIMESTAMPED DATA

Ken Birman
Spring, 2019

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 1

TODAY: DRILL DOWN ON TIME

Last time we discussed time more as an active aspect of a coordinated
system (one of a few dimensions in which an IoT system might be active).

But once a sensor reading is captured and stored, there is also a temporal
aspect to data analysis.

What can we say about time for data and events “inside” a data store?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 2

TIME IN THE REAL WORLD

Einstein was first to really look closely at this topic.

It led to his theories of relativity and his Nobel Prize.

But Einstein was thinking about particles moving at near the speed of light,
or near black holes. Do those ideas apply in other settings?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 3

TIME IN COMPUTER SYSTEMS

In IoT, time is tricky to work with for many reasons:
 Even with GPS recievers, it can be hard to get a good fix, so time

can drift
 IoT sensors often lack GPS and their clocks need to be reset via an

event, but then might drift by seconds per day
 Sensors can also fail, and this includes their clocks.

Thus a timestamped event may have inaccurate time!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 4

Often, we put “timestamps”
on IoT sensor records

IN WHAT WAYS CAN WE TALK ABOUT TIME?

First, whenever we use time in an IoT setting, it is important to track the
time source and the associated skew:

 Without GPS time, sensor time will drift by seconds/day

 With GPS time, clocks can be accurate to within about 1ms

 With special purpose hardware for synchronization, the machines in a
cloud would be able to share a clock and be accurate to a few us.

 … but today’s cloud computers don’t have that form of shared clocks,
and if virtualized, clocks can be quite inaccurate! A total mess!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 5

VENDORS PREFER LIMITED ACCURACY!

Several recent security problems have involved an attacker who places a
monitoring program on the same machine that some security code is on. The
attacker is assumed to have the source code for the application it is attacking.

The monitoring program measures timing properties of the memory and caching
hardware at very high accuracy and is able to deduce contents of the memory
state of the attacked program.

It seems doubtful that this would work, but several exploits show that it really
does work! Even so, cloud vendors make it hard to measure time.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 6

LAMPORT’S CAUSAL ORDER

Leslie Lamport is a famous distributed computing researcher

 Started out as a physicist and was inspired by Einstein, but went on
to formalize distributed protocols, and won the Turing Award

 Primarily a theoretician, but he also was the author of Latex

 Especially good at elegant ways of posing problems and solving them

He suggested that an important aspect of consistency should involve
“consistency with respect to past events”. He calls this “causal” consistency

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 7
Drill down: Consistency

HOW DOES HE DEFINE CAUSALITY?

Suppose that event A occurs in a data center, and then later event B.

Did A “cause” B to happen?

 What if A was at 10am, and B at 11:30pm. Does knowing time help?

 What if A was a command to register a new student, and B was
an internal action that creates her “meal card” account?

 What if A was an email from the department asking me about my
teaching preferences, and B was my reply?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 8
Drill down: Consistency

HOW DOES HE DEFINE CAUSALITY

For Leslie, event A causes event B if there was a computation that somehow
was triggered by A, and B was part of it. Inspired by physics!

But this is hard to discover automatically.

Instead, Leslie focused on potential causality: A “might” have caused B.

Under what conditions is this possible?

 Somehow, information must flow from A to B.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 9
Drill down: Consistency

NOTATION FOR REPRESENTING CAUSALITY

Leslie proposes that we write A → B if A potentially caused B.

He suggests that we use the words “happened before” for →

Now the question arises: is → just a mathematical concept, or can we build
a practical tool for tracking causality in real systems?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 10
Drill down: Consistency

WHY WOULD WE WANT TO TRACK A → B?

Consider the Securities and Exchange Commission.

For them, A might be “information about stock X” and B “a trade of X”.

An insider trade occurs if someone with non-public information takes
advantage to trade a stock before that information comes out. So if “John
learned that the IBM quantum computer showed promise”, then bought IBM
stock, perhaps John violated the insider trading law.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 11

LAMPORT’S POINT

Simply seeing data records in which John talks to his friend at IBM at
10:00am and then buys IBM stock at 10:01am might not be “proof” of
criminality. These days the cloud might participate in all of these events.

If the records were timestamped by the identical clock, and the clock isn’t
faulty, this really would be proof.

But if the records came from different computers, clock imprecision could
be creating an illusion. If we track actual →, we would be confident.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 12

TRACKING A → B

Leslie first considered normal clocks. But they don’t track →
 Here, he took his inspiration from Einstein
 “Time is an illusion.” Einstein went on to draw space-time diagrams.

So Leslie asked: “Can we use space-time diagrams as the basis of a new
kind of “logical clock”?
 If A → B, then LogicalClock(A) < LogicalClock(B)
 If LogicalClock(A) < LogicalClock(B), then A → B

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 13
Drill down: Consistency

DEVELOPING A SOLUTION

Suppose that every computer (P, Q, …) has a local, private integer

Call these LogicalClockP and LogicalClockQ etc.

Each time something happens, increment the clock.

 Now, if A and B happen at P, the LogicalClockP can tell us that A → B.

 But what if A is on machine P, and B happens on Q?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 14
Drill down: CAP Consistency

A SPACE-TIME DIAGRAM FOR THIS CASE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 15

P

Q

A

B

P sends M

Q receives M

Drill down: Consistency

X

A SPACE-TIME DIAGRAM FOR THIS CASE
Uncoordinated counters don’t solve our problem

Here, A and B end up with the identical Time, so we incorrectly conclude
that A did not happen before B

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 16

P
LogicalClockP

Q
LogicalClockQ

A P sends M

0 1 2 3

0 1 2

Q receives M B

Drill down: Consistency

X

AHA!

But notice that in the diagram, the “receive” occurs when LogicalClockB = 1.

Yet the “send” of M was at LogicalClockA = 3.

So Lamport proposes this fix:

 Each time an interesting event occurs at P, increment LogicalClockP

 If P sends M to Q, include LogicalClockP in M. When Q receives M,
LogicalClockQ = Max(LogicalClockQ, LogicalClockM) + 1

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 17
Drill down: Consistency

Q computes:
LogicalClockQ = max(0, 3) + 1

A SPACE-TIME DIAGRAM FOR THIS CASE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 18

P
LogicalClockP

Q
LogicalClockQ

A P sends M

0 1 2 3

0 4 5

Q receives M B

Drill down: Consistency

LogicalClockM = 3

X

WE NOW HAVE A CHEAP PARTIAL SOLUTION!

With Lamport’s logical clocks, we pay a small cost (one integer per
machine, to keep the clock, and some space in the message)

Let’s use LogicalClock(X) to denote the relevant LogicalClock value for x.
We can time-stamp events and messages.

 If A → B, then LogicalClock(A) < LogicalClock (B)

 But… if LogicalClock (A) < LogicalClock (B), perhaps A didn’t happen
before B!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 19
Drill down: Consistency

A SPACE-TIME DIAGRAM FOR THIS CASE
With logical clocks, even if P and Q never talk, we might have Time(A) < Time(B)

Here, if we claim that LogicalClock(A) < LogicalClock (B) ⇒ A → B, this is
nonsense! In fact ¬(A → B), ¬(B → A). (A and B are “concurrent”)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 20

P
LogicalClockP

Q
LogicalClockQ

A

0 1

0 1 2 3

BX Y

Drill down: Consistency

Firewall blocks all traffic: P can’t communicate to Q

LOGICAL CLOCKS ONLY WORK IN ONE DIRECTION.

They approximate the causal happens-before relationship, but only in an
“if-then” sense, not “If and only if”.

Lamport gives many examples where this is good enough.

We actually can do better, but at the “cost” of higher space overhead.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 21
Drill down: Consistency

DETECTING INSIDER TRADING

The SEC* wants to detect that “John learned of the good news from Lilly,
CEO of Zebra Corp. Then he purchased stock before the market heard.”

If A was John learning, and B was the stock purchase, then the SEC wants to
look at LogicalClock(A) < LogicalClock(B), and conclude “A → B”.

But logical clocks don’t let us conclude this. And John might insist that “I kept
a log of call times, and I spoke to Lilly after the IBM market announcement.
Perhaps some clock drifted and the SEC has its time sequence wrong.”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 22
* Securities Exchange Commission

INTUITION BEHIND VECTOR CLOCKS

Suppose that we had a fancier clock that could act like logical clocks do
(with the “take the max, then add one” rule).

But instead of a single counter, what if it were to count “events in the
causal past of this point in the execution”, tracking events on a per-process
basis?

For example, a VectorClock value for A = [5,7] might mean “event A
happens after 5 events at P, and 7 events at Q”.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 23

VECTOR CLOCKS ARE EASY TO IMPLEMENT
A vector clock has one entry per machine. VT(A) = [3, 0, 7, 1]
 If an event occurs at P, P increments its own entry in the vector
 When Q receives M from P, Q computes an entry-by-entry max,

then increments its own entry (because a “receive” is an event, too)

VectorClock comparison rule:

Define VT(A) < VT(B) if
VT(A) ≤ VT(B), Now, VT(A) < VT(B) iff A → B
but VT(A) ≠ VT(B)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 24
Drill down: Consistency

A SPACE-TIME DIAGRAM FOR THIS CASE
Case A: Suppose that P and Q never interact.

With vector clocks we can see that A is concurrent with X, Y and B. We can use
the comparison rule to show this, for example that ¬(A → B) and ¬(B → A).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 25

P
VectorClockP

Q
VectorClockQ

A

[0,0] [1,0]

[0,0] [0,1] [0,2] [0,3]

BX Y

Drill down: Consistency

Firewall blocks all traffic: P can’t communicate to Q

A SPACE-TIME DIAGRAM FOR THIS CASE
Case B: P sends a message to Q after A, and it is received before B at Q.

The vector timestamps show that A happens before B (and also, before Y).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 26

P
VectorClockP

Q
VectorClockQ

A

[0,0] [1,0]

[0,0] [0,1] [1,2] [1,3]

BX Y

Drill down: Consistency

Now the firewall is gone and a message gets through!

VECTOR CLOCKS SOLVE THE SEC PROBLEM!

A: John spoke to his friend Lilly.

Then the message M was to tell his stock broker to “Buy IBM futures ASAP!”
B was the purchase. Our goal: Deduce that A → B using just a database
with information about A, and information about B, including timestamps.

We just saw that
VectorClock(A) < VectorClock(B) ⇒ A → B!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 27

SO WHY NOT ALWAYS USE VECTOR CLOCKS?

They represent happens-before with full accuracy, which is great.

But you need one vector entry per process in your application. For a small
µ-service this would be fine, but if the vector would become large, the
overheads are an issue.

So, we try to use a LogicalClock before considering a VectorClock.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 28

MORE FUN WITH CAUSALITY
Working with Mani Chandy (CalTech), Lamport also showed that you can
use → to define “now” in a way that makes sense even for a fully
distributed system

He draws a complex space-time picture, perhaps this one:

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 29

P

Q

A

E

FR

S
T

U

B

D

C

H

G

Drill down: Consistency

CONSISTENT CUTS AND SNAPSHOTS

They asked: Suppose I visit each node, each at some point in time. Can we
extend consistency to cover such a case (“consistent cut”)

Or even fancier: what if each node makes a checkpoint for me when I visit
it along a cut. Can we end up with a “consistent snapshot”, like a photo?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 30
Drill down: Consistency

CONSISTENT AND INCONSISTENT SNAPSHOT

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 31

Imagine taking
photos of our
geese one by
one and creating
a tiled mashup

Truth: 7 Geese in a V formation

Drill down: Consistency

CONSISTENT AND INCONSISTENT SNAPSHOT

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 32

But suppose
they were in
motion while
you did this

Truth: 7 Geese in a V formation

Drill down: Consistency

CONSISTENT AND INCONSISTENT SNAPSHOT

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 33

Without coordination, some
vanish, some are duplicated!

You might even see a goose that
shifted to avoid collision with

another goose, but see that other
goose in a much earlier place,

before it even got close.

Truth: 7 Geese in a V formation

Drill down: Consistency

CONSISTENT SNAPSHOT

If we use the method of Chandy and Lamport we get a consistent
snapshot: there won’t be any duplicates or mashup effect!

Goal of a consistent snapshot is to let us combine data from multiple
processes (machines) in a distributed system, but only count each thing
once, with no causal gaps or duplication.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 34
Drill down: Consistency

CONSISTENT CUTS AND SNAPSHOTS

Recall: Lamport looks at “pictures” of such a system, like these

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 35

P

Q

E

FR

S
T

U

B

C

H

G

A “cut” across
the systemD

Drill down: Consistency

CONSISTENT CUTS AND SNAPSHOTS

A cut is consistent if no “message arrows” go backwards through it

… this cut is a consistent one.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 36

P

Q

E

FR

S
T

U

B

C

H

G

D

Drill down: Consistency

CONSISTENT CUTS AND SNAPSHOTS

A cut is inconsistent if “message arrows” do go backwards through it

… this cut is inconsistent. C → D, and the cut included D, yet it omits C.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 37

P

Q

E

FR

S
T

U

B

C

H

G

D
A backwards

message

Drill down: Consistency

A CONSISTENT CUT IS LIKE A PHOTO

It shows a state the system might actually have once been in

You could use that state for garbage collection, or to do an audit of a
bank, or to detect deadlocks.

But an inconsistent cut is broken. It omits parts of the past and any
conclusion from it would be incorrect. A real system could never have been
in an inconsistent state of this kind.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 38
Drill down: Consistency

ARE THEY UNIQUE?

Suppose you are standing on a timeline of some process at time T.

You want to know what the associated consistent cut/snapshot would be. In fact
there isn’t just one!

Events on which your state depends occurred in the past. Events depending on
your event are in the future.

But this leaves a lot of freedom to include or exclude “concurrent” states.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 39Extra: not important, will cover if time permits

HOW TO CREATE ONE?

In fact any set of concurrent events forms a consistent snapshop.

They give protocols that will create an event “do a local snapshot now”
such that those events are concurrent, one per process.

This is a mechanism found in many systems. For example, it is the very best
way to do a distributed checkpoint in a long-running application.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 40Extra: not important, will cover if time permits

DISCOVERY BY THEO (OUR TA!)

Within these concurrent event sets, suppose we look for a consistent cut with
actual time values (clock values) are close as possible to the current clock time at
T, but still along a consistent cut.

If we use a type of hybrid timestamp invented by Sandeep Kulkarni, there is a
deterministic algorithm for doing this. These have both a real-time part and a
new kind of logical timestamp part.

With Theo’s algorithm, you can always find the identical consistent cut. We’ll see
how he uses this idea in the next lecture.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 41Extra: not important, will cover if time permits

SUMMARY

Systems with time, but imperfect clocks, should use causality as their “time
measuring tool”, not actual time on a clock.

If we want to put a timestamp on an event in this approach, we should use
Lamport’s “causal” timestamp approach, or a vector timestamp.

 A causal timestamp is just one integer, so many systems use it

 A vector timestamp would cover all cases, but needs one integer per
machine. So these vectors can be too large for practical use.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 42

	CS 5412: Lecture 6 �Timestamped Data
	Today: Drill down on Time
	Time in the real world
	Time in computer Systems
	In what ways can we talk about Time?
	vendors prefer limited accuracY!
	Lamport’s Causal Order
	How does he define causality?
	How does he define causality
	Notation for representing causality
	Why would we want to track A B?
	Lamport’s point
	Tracking A B
	Developing a solution
	A space-time Diagram for this case
	A space-time Diagram for this case
	Aha!
	A space-time Diagram for this case
	We now have a cheap partial solution!
	A space-time Diagram for this case
	Logical clocks only work in one direction.
	Detecting insider trading
	Intuition behind vector clocks
	Vector Clocks are easy to implement
	A space-time Diagram for this case
	A space-time Diagram for this case
	Vector Clocks solve the SEC problem!
	So why not always use vector clocks?
	More fun with Causality
	Consistent Cuts and Snapshots
	Consistent and inconsistent snapshot
	Consistent and inconsistent snapshot
	Consistent and inconsistent snapshot
	Consistent Snapshot
	Consistent Cuts and Snapshots
	Consistent Cuts and Snapshots
	Consistent Cuts and Snapshots
	A consistent Cut is like a photo
	Are they unique?
	How to create one?
	Discovery by Theo (our TA!)
	Summary

