
CS5412 / LECTURE 8
REPLICATION AND CONSISTENCY

Ken Birman
Spring, 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

RECAP

We discussed several building blocks for creating new µ-services, and
along the way noticed that “consistency first” is probably wise.

But what additional fundamental building blocks we should be thinking
about? Does moving machine learning to the edge create new puzzles?

We’ll look at replicating data, with managed membership and consistency.
Rather than guaranteed realtime, we’ll focus on raw speed.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

REMINDER: MANY MICROSERVICES ARE
SHARDED AND USE REPLICATION
In our IoT cloud, “functions” run to react to IoT events are stateless and
rather lightweight. Heavy lifting is done in microservices.

Many of those run on a pool of machines and are sharded – we treat the
microservice as if it had many little “sub”-microservices inside.

A replicated shard (usually 2 or 3 members) uses the
the state machine replication model Lamport proposed

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

OTHER TASKS THAT REQUIRE CONSISTENT
REPLICATION

Copying programs to machines that will
run them, or entire virtual machines.

Replication of configuration parameters
and input settings.

Copying patches or other updates.

Replication for fault-tolerance, within the
datacenter or at geographic scale.

Replication so that a large set of first-
tier systems have local copies of data
needed to rapidly respond to requests

Replication for parallel processing in the
back-end layer.

Data exchanged in the “shuffle/merge”
phase of MapReduce

Interaction between members of a group
of tasks that need to coordinate

 Locking

 Leader selection and disseminating
decisions back to the other members

 Barrier coordination

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

PAXOS: OVERARCHING “APPROACH”

Paxos is the name of a collection of protocols that Lamport created to
solve state machine replication. He also showed how to prove that they
are correct and even how to verify an implementation.

There are many ways to implement Paxos.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

Paxos (Greek Island)

EXAMPLE:
CHAIN REPLICATION
A common approach is “chain replication”, used to make copies of application
data in a small group. It assumes that we know which processes participate.

Once we have the group, we just form a chain and send updates to the head.

The updates transit node by node to the tail, and only then are they applied:
first at the tail, then node by node back to the head.

Queries are always sent to the tail of the chain: it is the most up to date.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

A
(head)

B C
(tail)

Update

Ok: Do It

Update Update

DOES CHAIN REPLICATION SATISFY PAXOS?

In some ways, but it is an incomplete story.

This is actually why Lamport felt that a formal model (a mathematical one)
and a methodology for proving things about protocols was needed.

Chain replication is provably correct, but it assumes a membership
mechanism, which it does not include. Without it, the chain replication
scheme is not quite as strong as Paxos.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

MEMBERSHIP AS A DIMENSION OF
CONSISTENCY
When we replicate data, that means that some set of processes will each
have a replica of the information.

So the membership of the set becomes critical to understanding whether
they end up seeing the identical evolution of the data.

This suggests that membership-tracking is “more foundational” than
replication, and that replication with managed membership is the right goal.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

MEMBERSHIP CONCERNS FOR
CHAIN REPLICATION
Where did the group come from? How will chain be managed? State
machine replication doesn’t turn out to provide a detailed solution for this.

How to initialize a restarted member? You need to copy state from some
existing one, but the model itself doesn’t provide a way to do this.

Why have K replicas and then send all the queries to just 1 of them? If we
have K replicas, we would want to have K times the compute power!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

MEMBERSHIP MANAGED BY A “LIBRARY”

Ideally, you want to link to a library that just solves the problem.

It would automate tasks such as tracking which computers are in the service, what
roles have been assigned to them.

It would also be also be integrated with fault monitoring, management of
configuration data (and ways to update the configuration). Probably, it will
offer a notification mechanism to report on changes

With this, you could easily “toss together” your chain replication solution!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

DERECHO IS A LIBRARY, EXACTLY FOR
THESE KINDS OF ROLES!
You build one program, linked to the Derecho C++ library.

Now you can run N instances (replicas). They would read in a
configuration file where this number N (and other parameters) is specified.

As the replicas start up, they ask Derecho to “manage the reboot” and the
library handles rendezvous and other membership tasks. Once all N are
running, it reports a membership view listing the N members (consistently!).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 11

OTHER MEMBERSHIP MANAGEMENT ROLES

Derecho does much more, even at startup.

 It handles the “layout” role of mapping your N replicas to the various
subgroups you might want in your application, and then tells each
replica what role it is playing (by instantiating objects from classes
you define, one class per role). It does “sharding” too.

 If an application manages persistent data in files or a database, it
automatically repairs any damage caused by the crash. This takes
advantage of replication: with multiple copies of all data, Derecho
can always find any missing data to “fill gaps”.

 It can initialize a “blank” new member joining for the first time.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 12

SPLIT BRAIN CONCERNS

Suppose your µ-service plays a key role, like air traffic control. There
should only be one “owner” for a given runway or airplane.

But when a failure occurs, we want to be sure that control isn’t lost. So in
this case, the “primary controller” role would shift from process P to some
backup process, Q.

The issue: With networks, we lack an accurate way to sense failures,
because network links can break and this looks like a crash. Such a
situation risks P and Q both trying to control the runway at the same time!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 13

Tes.com

SOLVING THE SPLIT BRAIN PROBLEM

We use a “quorum” approach.

Our system has N processes and only allows progress if more than half
agree on the next membership view. Example: if N=5, we say that after a
failure, we need 3 or more of the original N to resume.

Since there can’t be two subsets that both have more than half, it is
impossible to see a split into two subservices.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 14

Cache Layer

Back-end Store

Multicasts
used for cache
invalidations, updates

Load balancer

External clients use standard RESTful RPC
through a load balancer

… BEYOND SHARDING, DERECHO CAN EVEN
SUPPORT STRUCTURES LIKE THIS!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 15

A PROCESS JOINS A GROUP

16

At first, P is just a normal program, with purely local private variables

P still has its own private variables, but now it is able to keep them aligned with
track the versions at Q, R and S

P Q R

SP Q R SInitial state

g.Join(“SomeGroup”)
… Automatically transfers state (“sync” of S to P,Q,R)

Now S will receive new updates

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

A PROCESS RECEIVING A MULTICAST

17

All members see the same “view” of the group, and see the multicasts in
the identical order.

SP Q R S

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

A PROCESS RECEIVING AN UPDATE

18

In this case the multicast invokes a method that changes data.

SP Q R S

Foo(1, 2.5, “Josh Smith”);
Foo(1, 2.5, “Josh Smith”);

Foo(1, 2.5, “Josh Smith”);
Foo(1, 2.5, “Josh Smith”);

Bar(12345);Bar(12345);Bar(12345);Bar(12345);

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

SO, SHOULD WE USE CHAIN REPLICATION IN
THESE SUBGROUPS AND SHARDS?
It turns out that once we create a subgroup or shard, there are better
ways to replicate data.

Derecho delivers ordered multicasts in a way that it extremely efficient,
using the hardware in a smarter way than chain replication.

A common goal is to have every member be able to participate in
handling work: this way with K replicas, we get K times more “power”.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 19

WHAT EXACTLY DOES STATE MACHINE
REPLICATION GIVE US?
First, in Derecho implements, it gives us membership tracking and also
layout tracking: the mapping from members to subgroup/shard roles.
Next, automated repair of damage after a crash.
Then, when active and healthy, it offers a way to send an “atomic
multicast” or a “Paxos durable update” to all the members of a subgroup
or a shard.
 If any process delivers such a multicast, or persists an updated state,

all non-failed processes do, and they deliver in the same order.
 Data will be durable if desired: recovered after a crash.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 20

THE “METHODS” PERFORM STATE MACHINE
UPDATES. YOU GET TO CODE THESE IN C++.
In these examples, we send an update by “calling” a method, Foo or Bar.
The atomic multicast or Paxos is used to do the call, invisible to you.

Even with concurrent requests, every replica performs the identical sequence
of Foo and Bar operations. We require that they be deterministic.

With an atomic multicast, everyone does the same method calls in the same
order. So, our replicas will evolve through the same sequence of values.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 21

VIRTUAL SYNCHRONY: MANAGED GROUPS

Epoch: A period from one membership view until the next one.

Joins, failures are “clean”, state is transferred to joining members

Multicasts reach all members, delay is minimal, and order is identical…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 22

P

Q

R

S
T

U

VIRTUAL SYNCHRONY: MANAGED GROUPS

Epoch: A period from one membership view until the next one.

Joins, failures are “clean”, state is transferred to joining members

Multicasts reach all members, delay is minimal, and order is identical…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 23

P

Q

R

S
T

U
Epoch 1

Epoch Termination

Epoch 2 Epoch 3 Epoch 4

Active epoch: Totally-
ordered multicasts or

durable Paxos updates

Epoch Termination
State Transfer

DERECHO’S VERSION OF PAXOS

Derecho splits its Paxos protocol into two sides.

One side handles message delivery within an epoch: a group with
unchanging membership.

The other is more complex and worries about membership changes (joins,
failures, and processes that leave for other reasons).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 24

HOW DOES DERECHO TRANSFER
DATA? IT USES “RDMA”.
RDMA: Direct zero copy from source memory to destination memory. But it
is like TCP: a one-to-one transfer, not a one-to-many transfer.

RDMA can actually transfer data to a remote machine faster than a local
machine can do local copying.

Like TCP, RDMA is reliable: if something goes wrong, the sender or receiver
gets an exception. This only happens if one end crashes

25

Source

Optical link

Dest

Unicast

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

SMALL MESSAGES USE
A DIRECT RDMA COPYING
PROTOCOL WE CALL SMC.

26

Mellanox 100Gbps RDMA on ROCE (fast Ethernet)

100Gb/s = 12.5GB/s

SMC Protocol, 1 byte messages

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

LARGE MESSAGES USE A RELAYING
METHOD WE CALL RDMC

Source
Dest

Dest
Dest

Dest

Multicast

Binomial Tree Binomial Pipeline Final Step

27
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

RDMC SUCCEEDS IN OFFLOADING WORK TO
HARDWARE

28

Trace a single multicast through our system… Orange is time “waiting for action by
software”. Blue is “RDMA data movement”.

RDMA
(hardware)

RDMC (software)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HOW DOES DERECHO PUT MESSAGES IN ORDER?

Derecho asks each subgroup or shard to designate which members are
“active senders” in a given view.

 Within the senders, Derecho just uses round-robin order: message 1
from P: P:1 Q:1 R:1 P:2 Q:2 R:2…

 If some process has nothing to send Derecho automatically inserts
a null message. P:1 Q:1 - - Q:2 R:2…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 29

ARE WE FINISHED?

We still need to understand how to end one epoch, and start the next.

Derecho’s method for this is a bit too complex for this lecture, but in a
nutshell it cleans up from failures, then runs a protocol (based on quorums)
to agree on the next view (the next epoch membership), then restarts.

If a multicast was disrupted by failure, it then will be reissued.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 30

SP R S

Failure: If a message was committed by any process, it commits at every
process. But some unstable recent updates might abort.

A PROCESS FAILS

31

SP Q R S

X0 X1 X2 Xk Xk+1 Xk+2. . .

Committed

Now

Update Xk+1

Update Xk+2

Derecho “trims” disrupted
updates, like Xk+2

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HOW MUCH COST DOES ORDERING AND
PAXOS RELIABILITY OF THIS KIND ADD?
We can compare the “basic” RDMC multicast (the one seen earlier) with an
ordered Paxos protocol layered on RDMC in Derecho.

Our next slide shows what we get for various object sizes and group sizes.

Red: “a video” (100MB), Blue: “a photo” (1MB), Green: “an email” (10K).

Again, 3 cases: all send (solid), half send (dashed), one sends (dash dot)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 32

Mellanox 100Gbps RDMA on ROCE (fast Ethernet)DERECHO:
LARGE MESSAGES 100Gb/s = 12.5GB/s

Raw RDMC multicast via Derecho API Derecho Atomic Multicast (Vertical Paxos)

Derecho can make 16 consistent replicas at
2.5x the bandwidth of making one in-core

copy

memcpy (large, non-cached objects): 3.75GB/s

Raw RDMC is faster, but
performance loss is small
Raw RDMC is faster, but
performance loss is small

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 33

DERECHO CAN ALSO RUN ON TCP. WE FIND
THAT RDMA IS 4X FASTER
Derecho Atomic Multicast: 100G RDMA Derecho on TCP, 100G Ethernet

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 34

TCP INCREASES DELAYS BY ABOUT 125US

Derecho Atomic Multicast: 100G RDMA Derecho on TCP, 100G Ethernet

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 35

CONSISTENCY: A PERVASIVE GUARANTEE

Every application has a consistent view of membership, and ranking, and
sees joins/leaves/failures in the same order.
Every member has identical data, either in memory or persisted
Members are automatically initialized when they first join.
Queries run on a form of temporally precise consistent snapshot

Yet the members of a group don’t need to act identically. Tasks can be
“subdivided” using ranking or other factors

36HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

REPLICATION: MANY WAYS TO GET THERE!

By now we have heard of many ways to implement similar functionality.

 The actual Paxos protocols Leslie proposed. Those are slow.

 There are many famous “variations” on Paxos. RaFT is popular. Not
faster, but easier to implement.

 Chain replication, but with a suitable membership service.

 A tool called Zookeeper that we didn’t discuss. Used in Hadoop.

 Derecho, fastest of them all!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 37

CASCADE: DERECHO OBJECT STORE

Not everyone finds it easy to use a Paxos or atomic multicast API. DHTs are
easier to use: put, get, maybe “scan”. Derecho’s object store is a DHT:

 It offers a (key,value) API with operations like put(k,v), get(k), watch(k).
 Like FFFS, it understands time, and supports put(k,v,t) and get(k,t).

The object store is a library within a library: it was built on top of Derecho.
 It can be used as a library “within Derecho”,
 Or, you can set it up to run as a µ-service and talk to it from a function in the

Azure function server.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 38

LAYERS ON LAYERS!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 39

Virtual synchrony membership layer

Fancy structures with subgroups and sharding

Data replication: Streaming over RDMC The shared state table (coordination)

Derecho’s version of atomic multicast and durable Paxos

Higher level tools, like the versioned, temporally indexed
Derecho object store (the key-value store)

Familiar APIs, like a file system or message bus or blob
store

Library you
link to

Complete free-standing
self-managed µ-service

SOME PRACTICAL COMMENTS

Derecho is very flexible and strongly typed when used from C++.

But people working in Java and Python can only use the system with byte array
objects (size_t, char*).

You can’t directly call a “templated” API from Java or Python, so:
 First you create a DLL with non-templated methods, compile it.
 Then you can load that DLL and call those methods.
 You still need to know some C++, but much less.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 40

CONCLUSIONS?

A software library like Derecho automates many aspects of creating a
new µ-service.

The Paxos model is used to ensure consistency, fault-tolerance. There are
two cases: ordered multicast (non-durable) and persistent (on disk).

You code in an event-driven style.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 41

	CS5412 / Lecture 8�Replication and Consistency
	Recap
	Reminder: Many Microservices are sharded and use replication
	Other Tasks that require Consistent Replication
	Paxos: Overarching “approach”
	Example:�Chain Replication
	Does chain replication satisfy paxos?
	Membership as a dimension of consistency
	Membership concerns for �chain replication
	Membership Managed by a “library”
	Derecho is a library, exactly for �these kinds of roles!
	Other membership management roles
	Split brain concerns
	Solving the split brain problem
	… Beyond Sharding, Derecho can even support structures like this!
	A process joins a group
	A process receiving a Multicast
	A process receiving an update
	So, should we use chain replication In�these subgroups and shards?
	What exactly does state machine replication give us?
	The “methods” perform state machine�updates. You get to code these in C++.
	Virtual synchrony: Managed Groups
	Virtual synchrony: Managed Groups
	Derecho’s version of Paxos
	How does Derecho transfer�Data? It uses “RDMA”.
	small messages Use �a direct RDMA copying�Protocol we call SMC.
	Large messages use a relaying�method we call RDMC
	RDMC succeeds in offloading work to Hardware
	How does Derecho put messages in order?
	Are we finished?
	A process FAILS
	How much cost does Ordering and �Paxos reliability of this kind add?
	Derecho:�Large messages
	Derecho can Also run on TCP. We find�that RDMA is 4x Faster
	TCP increases Delays by about 125us
	Consistency: A Pervasive Guarantee
	Replication: Many ways to Get There!
	Cascade: Derecho Object Store
	Layers on Layers!
	Some practical comments
	Conclusions?

