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TODAY: BRINGING TWO IDEAS TOGETHER

Suppose our data is sharded, and needs to stay sharded.

But suppose we also need to do something like the sensor intersection 
example from lecture 6,
with a great many 
sensors, all sending data
at the same time: a big
data situation!
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THE BIG BET: IOT CAN RESHAPE THE WAY 
MACHINE LEARNING IS DONE
Machine learning for IoT settings has demanding time deadlines not seen 
in traditional cloud systems.  Moreover, the amount of data on the IoT
devices could be vastly more than we can hope to download.

Our goal today?  To understand the resulting flow of data/computing.

 Data sets are so large in these settings that only really smart 
management of flows can yield a good solution.

 This shapes a view focused on the pattern of computation in IoT settings.
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WHY NOT STICK WITH THE CLOUD “AS IS”?

Until now, big data computations have run in big “back-end” systems like 
the famous MapReduce/Hadoop framework, or high-performance 
supercomputers.

Big data processing was mostly done in batches, offline.

IoT model demands instantaneous mobile intelligence, vision, speech 
understanding, control of devices.  A batched, offline model won’t work.
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TODAY: A VERY “LONG” PIPELINE

Data acquisition….    Global File System…  Hadoop jobs

5

Machine learning typically 
lives here, at the back

GFS

Delay: milliseconds…         Seconds….                      Hours
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NEW: MOVE ML TO THE EDGE OF THE CLOUD

Data acquisition….    Global File System…  Hadoop jobs

Machine learning typically 
lives here, at the back

GFS

Delay: milliseconds…         Seconds….                      Hours

ML was at 
the back

We move data
classification

and some
aspects of

learning here

Delay: milliseconds…
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APPROACH THIS LEADS US TO?

We will use Azure functions or AWS Lambdas for “lightweight” tasks and actions

 Ideal for read-only actions like making a quick decision

 OK for reporting events that go into some kind of record or log

 But not for serious computing with heavy computation, big data, 
accelerators, or complex state machine sequences.

Then build new µ-services for the heavy-weight tasks, like learning a new
machine-learned model, or computing the optimal search path with wind.
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THERE WON’T BE JUST ONE!

Divide the set of knowledge tasks into groups.  Don’t ask one server to do everything.

Instead build distinct servers for each category of knowledge tasks.  So we would want 

 One µ-service just for “flight planning”, or even two (one for “collision avoidance”)

 One for “sailing on a breeze”, 

 One for “drone health management”, 

 One for “deciding which photos are worth downloading,” 

 One for “identifying possible crop damage areas.”
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IMPLICATIONS?

Over time there will be a large number of successful IoT companies.

Those companies will connect to enormous numbers of IoT devices and 
actuators, with data pouring in at all times.

Much of this data will be big: videos, photos, radar/lidar.  And even the 
smaller data may often require snappy responses.
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REMEMBER: AMAZON ENDED UP WITH 
HUNDREDS OF µ-SERVICES / WEB PAGE!

Learn from others who have been down this path before you.

The whole game centers on breaking up the task into chunks that are self-
contained, but “small” in scope!

If you think of this as one big monolithic task, you are certain to be 
doomed by the complexity of the overall undertaking!
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HOW TO CREATE NEW µ-SERVICES?

We can start with Jim Gray’s suggestion: use key-value sharding from the outset.

Within a shard, data will need to be replicated.  This leads to what is called the 
“state machine replication model”, which involves

 A group of replicas (and a membership service to track the set)

 Each update occurs as a message delivered to all replicas

 The updates are in the identical order

 No matter what happens (failures, restarts) “amnesia” won’t occur.
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Huge numbers of functions – this can be handled with function services that launch 
containers as needed.  The functions are stateless. So the model scales.

Huge numbers of µServices: We had a hybrid cloud and can repurpose its App 
Service.    So seemingly we can scale out here too.  More demand?  More hardware…

The µServices are currently hard to build.  Solutions like Derecho could help.

We need a scalable style of machine learning in the µServices layer.  This is hard

Huge numbers of functions – this can be handled with function services that launch 
containers as needed.  The functions are stateless. So the model scales.

Huge numbers of µServices: We had a hybrid cloud and can repurpose its App 
Service.    So seemingly we can scale out here too.  More demand?  More hardware…

The µServices are currently hard to build. Solutions like Derecho could help.

We need a scalable style of machine learning in the µServices layer.  This is hard

SO WHAT SCALING CHALLENGE IS THIS 
CREATING FOR US?
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ASIDE: WHAT IS “DERECHO”?

Derecho was mentioned in prior lectures: Cornell research solution for using 
atomic multicast / Paxos to update replicated data in shards.

Right now it isn’t very integrated with the App Service, making it annoying 
to migrate a Derecho service into a cloud – not hard, just annoying.

We’ll learn more about it in a week or two.
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THE ML CHALLENGE

Today most machine learning occurs in big-data infrastructures that run in 
the cloud, but “offline”
 We accumulate a batch of work.
 We hold the actual data in massive sharded file systems or DHTs
 Then we run a special style of “always parallel” computing to train our

ML models for big batches of updates, all processed at once.

How will we migrate this to the IoT Edge and IoT Cloud, to run in real-time?
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“ALL SHARDED, ALL THE TIME”

In computing classes, we really don’t learn to compute on data that is 
spread over devices.

IoT data will already be sharded when it enters in the system, and all 
computation needs to be parallel and to keep the work sharded.

Sharding is a magic formula for scaling, but how can people to learn to 
program in an “all-sharded, all the time” manner?
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MAPREDUCE

Invented at Google, but then spread into wide use when Yahoo! rebuilt it 
as the open-source Hadoop infrastructure.

It has a complete “ecosystem” with a sharded file system and a sharded
computing model, supported by the MapReduce/Hadoop scheduler.

The developer learns to think in terms of batch-parallel computing, all the 
time, for every task.
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HOW IS THIS DONE?

The developer thinks of everything in terms of collections of tuples.
We try to view all forms of data as a kind of “row” of content in a table
 The row has fields: (name = value, name = value, ….)
 Often one field is designated as a primary key. Depending on the task,

this key could be a file name, a GPS location, a hotel name…

Hadoop has many tools to help you transform your data into this form.

Modern programming languages embed collections into C++, C#, Python, Java, etc.
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… MORE DETAILS

We work in steps
 We collect the raw data and “tag” in various ways
 There are simple tools to help, and in any case devices already send 

meta-data such as time, GPS, etc.
 A camera might add more: focal settings, who took the photo…
 Documents can be scanned to extract data from them
 Tabular data can be viewed as a collection of rows, and each

row becomes a list of values
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NEXT, WE TREAT ALL OF THESE AS TUPLES

The term just means a series of “column” values separated by commas

 (Name = Ken Birman, Title = Professor, Current_Course = CS5412…)
 (Name = Argos Lounge, Type = Bar, Address = ….)

Notice that a tuple could have varying numbers of fields.  And one thing could 
have more than one associated tuple.  The Argos is also a bed-and-breakfast.

Google suggests: Think of the whole world as a massive table, and each “thing” 
as a set of rows, and reach row with values in just some of the columns.
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EXAMPLE, IN C#
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var studentsGroupByStandard = from s in studentList
group s by s.StandardID into sg
orderby sg.Key

select new { sg.Key, sg };

foreach (var group in studentsGroupByStandard)
{

Console.WriteLine("StandardID {0}:", group.Key);

group.sg.ToList().ForEach(st => Console.WriteLine(st.StudentName ));
}



THIS SEEMS TEDIOUS!

As noted, there are tools for automatically scanning many kinds of inputs 
and turning them into this form.

We can definitely design our IoT tools this way too.

Thus we have incoming objects, like photos, but also associated meta-data, 
which is in the form of a set of tuples, and each tuple has many fields.
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WHICH IS THE KEY?  WHICH IS THE VALUE?

In the way we access the tuples, we actually can specify the key we want 
to work with, and the value(s) we are interested in.

Effectively, the world looks like a huge collection of SQL databases.

The programming style looks like SQL, but runs in the non-transactional 
NoSQL model.  Each “action” is atomic, but sequences of actions are not 
glued into atomic transactions.  No begin/commit/abort.
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VISUALIZE THE RESULTING COMPUTATION?

At a thousand places, we have some kind of stored data, or new data 
arriving from an IoT device.

At each of those places we apply some small bit of code.

The output of this code is a set of tuples (name = value, name = value, …)

Then we can use these tuples as input and form a kind of graph.
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DOES THIS CONNECT TO DHTS?

Yes!  When we compute on tuples, we often specify a key.  A sharding
pattern is then formed for us, at runtime.  So if our tuples have keys, we 
can store them into DHTs or use the keys to connect “related” things

For example, we take a lot of unstructured data, extract tuples, select the 
ones that we want to compute on, and store them into a DHT.

This happens in a massively parallel computation on hundreds of machines
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MAP-REDUCE PATTERN IN PICTURES.
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Leader This is called a 
“map” operation

Shuffle

Full Shuffle is an n x n pattern: every shard sends data to every other shard!  This avoids 
ever having all our work concentrated on any single process.

Places where our raw 
data resides, or our 
IoT data was saved

(1) At each of those locations, a small fragment of 
code runs (probably in Python or C#) and 

transforms our raw data into a collection of tuples.

(2) Now we can select interesting tuples and 
designate some value as a key.  Each is “sent” 

to the corresponding server in DHT style

(3) On arrival, we group the incoming tuples 
that have the same key and combine them.  This 
is a “reduce” step, and yields one tuple per key.



EXAMPLE FROM LECTURE 6

We had sensors in groups
of 3 (this is showing one
group over time).

Then we wanted to combine the
output by looking for a “box overlap”
to compensate for sensor errors.

In a MapReduce pattern, how might this work?
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FOR ONE SENSOR GROUP

We can have tuples that include (group-id, sensor-number, “box”)

 The sensor is assigned to a group, so the function layer can look this up

 The sensor-number comes to the function layer from the IoT Hub

 The “box” is the reading – this sensor saw 69.5 degrees at 10:59am
 In fact the sensor output for this example is a single point.
 But by looking up the clock precision and the sensor accuracy, the function can

turn that one point into a box ([10:58.850, 10:59.150], [69.4, 69.7])

 Output of this operation: our “tuple”
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THINK OF THE FUNCTION AS A FIRST MAP STEP

We actually have 3 sensors,  each caused an event, and they trigger 3 
separate functions to run.

Each function creates one such tuple.  It stores its tuple in the DHT.

After, say, one second, we can run the shuffle and reduce operation.
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IN PICTURES.
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Leader

The reduce step is where we take the three values and merge them to find the overlap 
region, which now becomes our new “clean” sensor output

Once-per-second 

Sensor

(group-id=1899, sensor-id=6619, time_range=[…], value_range=[….])

Tuple

Function DHT-put

Shuffle



THE COMPUTATION HAS STAGES

Once we have our new overlap region, it lets us extend the curve we are 
building of the temperature for this one sensor

 Stage one: the sensors submit their values, triggering the functions

 Stage two: we’ve accumulated our data in the DHT (temporarily)

 Stage three: the periodic trigger causes us to do this shuffle/reduce

 Stage four: we extend the prior curve with one more data point
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NOW IMAGINE THAT WE HAVE MANY SENSORS

We would be collecting data from all of them “at once”
 So there will be many sensor groups, all doing this simultaneously
 The shuffle won’t shuffle data for one group… it will run for many
 The reduce won’t occur on one node, for one group… it runs on many

nodes, for many different groups, and extends many curves.

In fact we could do this for more than one customer, each customer having 
many IoT sensors.  And that would be a serious “big data” pattern!
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AT SCALE…

IoT systems will want to implement this pattern of computation (lots of 
instances of it, maybe millions running in parallel):

 At the edge, in the µ-services layer

 Information will need to be replicated on their behalf, at very high speed

 The reduced (key-value) data will be a sharded representation of new
knowledge deduced by the computation!
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WE END UP WITH A GRAPH PER USE CASE!  THERE 
MIGHT BE THOUSANDS AT THE SAME TIME
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Vast numbers of 
data sources

Functions used to handle simple 
events and absorb load

Heavily sharded edge µ-services do real-time knowledge 
acquisition and decision making using ML computational models



BIG DATA?

Definitely!

These arrows might carry photos or videos: megabytes or even hundreds 
of megabytes per “object”.

Just moving the data becomes a cost concern: in the cloud, copying isn’t 
very fast.  But recall that Derecho’s object store uses RDMA for big-data 
movement operations.  So Derecho is an example of a viable solution.
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HOW MUCH CONSISTENCY?

For many tasks, modern machine learning is “stochastic” meaning that the 
learning algorithm converges in a non-deterministic way and could settle 
on any of a number of result states.

Consistent replication of IoT input is a common need, even for applications 
that use stochastic, noise-tolerant techniques.   The reason is that “random 
noise” is very different from “stale or misleading input data”.

Again, Derecho is a good fit to the requirement.
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HOW MUCH FAULT TOLERANCE?

If we want FarmBeats to be reliable, we should plan on “riding out” some 
failures.  By some estimates, one failure every few hours might be common.

Moreover, elasticity forces reconfigurations, like to add more servers or 
drop servers.

So the shards and computations need to be done in a fault-tolerant and 
elastic manner.  Derecho has built-in help for this, too.
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SO, BUILDER TOOLS COULD PLAY KEY ROLES!

Azure IoT and Amazon lack a tool like Derecho today.  The IDE cartoon 
stories are very limited at this point.

But Derecho itself does run on both of these platforms, and we are 
working with the Azure IoT team to integrate it cleanly into their IDE 
environments, and maybe even to get permission to use RDMA too.

In CS5412 projects, we encourage you to work with it for any new µ-
services you need to create.
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SOME NEW ISSUES SEEN ONLY IN THE EDGE

The MapReduce pattern depends on having a lot of data ready for 
parallel computational analysis.

But with IoT, especially under real-time pressure, the new data arrives 
when events occur, “one by one”, and we have to compute immediately.

MapReduce was very efficient because of the batching.  Can we find ways 
to make IoT reasonably efficient too?  If not it won’t be cost-effective.
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HARDWARE ACCELERATORS

One way that big data frameworks gain performance and efficiency at 
scale is to use programmable hardware to speed up key steps.

For example, there a lot of use of GPU computing (or at Google, TPUs).

If we want our edge systems to do things that currently are common in the 
big data back end frameworks, how will we get a cost-effective hardware 
accelerator capability near the edge, where the data arrives?
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Schedule the vet!

GPUGPU

REMINDER: FROM LECTURE 4

KEN BIRMAN (KEN@CS.CORNELL.EDU)                                 40

Photo 
upload

Key-hash

Sharded, replicated blob store

Done!

Event 
meta-data IoT Hub

Function

Key-hash

Sharded knowledge store

Hoof crack, p=.78

GPU-accelerated computation

Rough terrain, p=.03

router

Hoof crack, p=.78

2-node shard
N1 N2

replica

N3 N4
Function Svc

Thick line denotes “large objects”



SUMMARY

To support intelligence near the IoT device, we need to make the IoT Edge or the 
Cloud first tiers intelligent.

This requires building new “smart” µServices, which will be
 Sharded, for scale, and perhaps leveraging hardware accelerators like GPU
 And may need to support MapReduce styles of computing.  In fact we 

would ideally want to use existing MapReduce code near the edge.

The devices are the easy part.  The really big challenge is to figure out how this 
style of computing can be done at scale, in real-time, cost-effectively!
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