
CS5412 / LECTURE 7
THE PUZZLE OF “ALWAYS SHARDED”

IOT DATA AND COMPUTING
Ken Birman
Spring, 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

TODAY: BRINGING TWO IDEAS TOGETHER

Suppose our data is sharded, and needs to stay sharded.

But suppose we also need to do something like the sensor intersection
example from lecture 6,
with a great many
sensors, all sending data
at the same time: a big
data situation!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

THE BIG BET: IOT CAN RESHAPE THE WAY
MACHINE LEARNING IS DONE
Machine learning for IoT settings has demanding time deadlines not seen
in traditional cloud systems. Moreover, the amount of data on the IoT
devices could be vastly more than we can hope to download.

Our goal today? To understand the resulting flow of data/computing.

 Data sets are so large in these settings that only really smart
management of flows can yield a good solution.

 This shapes a view focused on the pattern of computation in IoT settings.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

WHY NOT STICK WITH THE CLOUD “AS IS”?

Until now, big data computations have run in big “back-end” systems like
the famous MapReduce/Hadoop framework, or high-performance
supercomputers.

Big data processing was mostly done in batches, offline.

IoT model demands instantaneous mobile intelligence, vision, speech
understanding, control of devices. A batched, offline model won’t work.

4HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

TODAY: A VERY “LONG” PIPELINE

Data acquisition…. Global File System… Hadoop jobs

5

Machine learning typically
lives here, at the back

GFS

Delay: milliseconds… Seconds…. Hours
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

NEW: MOVE ML TO THE EDGE OF THE CLOUD

Data acquisition…. Global File System… Hadoop jobs

Machine learning typically
lives here, at the back

GFS

Delay: milliseconds… Seconds…. Hours

ML was at
the back

We move data
classification

and some
aspects of

learning here

Delay: milliseconds…
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

APPROACH THIS LEADS US TO?

We will use Azure functions or AWS Lambdas for “lightweight” tasks and actions

 Ideal for read-only actions like making a quick decision

 OK for reporting events that go into some kind of record or log

 But not for serious computing with heavy computation, big data,
accelerators, or complex state machine sequences.

Then build new µ-services for the heavy-weight tasks, like learning a new
machine-learned model, or computing the optimal search path with wind.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

THERE WON’T BE JUST ONE!

Divide the set of knowledge tasks into groups. Don’t ask one server to do everything.

Instead build distinct servers for each category of knowledge tasks. So we would want

 One µ-service just for “flight planning”, or even two (one for “collision avoidance”)

 One for “sailing on a breeze”,

 One for “drone health management”,

 One for “deciding which photos are worth downloading,”

 One for “identifying possible crop damage areas.”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

IMPLICATIONS?

Over time there will be a large number of successful IoT companies.

Those companies will connect to enormous numbers of IoT devices and
actuators, with data pouring in at all times.

Much of this data will be big: videos, photos, radar/lidar. And even the
smaller data may often require snappy responses.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

REMEMBER: AMAZON ENDED UP WITH
HUNDREDS OF µ-SERVICES / WEB PAGE!

Learn from others who have been down this path before you.

The whole game centers on breaking up the task into chunks that are self-
contained, but “small” in scope!

If you think of this as one big monolithic task, you are certain to be
doomed by the complexity of the overall undertaking!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

HOW TO CREATE NEW µ-SERVICES?

We can start with Jim Gray’s suggestion: use key-value sharding from the outset.

Within a shard, data will need to be replicated. This leads to what is called the
“state machine replication model”, which involves

 A group of replicas (and a membership service to track the set)

 Each update occurs as a message delivered to all replicas

 The updates are in the identical order

 No matter what happens (failures, restarts) “amnesia” won’t occur.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 11

Huge numbers of functions – this can be handled with function services that launch
containers as needed. The functions are stateless. So the model scales.

Huge numbers of µServices: We had a hybrid cloud and can repurpose its App
Service. So seemingly we can scale out here too. More demand? More hardware…

The µServices are currently hard to build. Solutions like Derecho could help.

We need a scalable style of machine learning in the µServices layer. This is hard

Huge numbers of functions – this can be handled with function services that launch
containers as needed. The functions are stateless. So the model scales.

Huge numbers of µServices: We had a hybrid cloud and can repurpose its App
Service. So seemingly we can scale out here too. More demand? More hardware…

The µServices are currently hard to build. Solutions like Derecho could help.

We need a scalable style of machine learning in the µServices layer. This is hard

SO WHAT SCALING CHALLENGE IS THIS
CREATING FOR US?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 12

ASIDE: WHAT IS “DERECHO”?

Derecho was mentioned in prior lectures: Cornell research solution for using
atomic multicast / Paxos to update replicated data in shards.

Right now it isn’t very integrated with the App Service, making it annoying
to migrate a Derecho service into a cloud – not hard, just annoying.

We’ll learn more about it in a week or two.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 13

THE ML CHALLENGE

Today most machine learning occurs in big-data infrastructures that run in
the cloud, but “offline”
 We accumulate a batch of work.
 We hold the actual data in massive sharded file systems or DHTs
 Then we run a special style of “always parallel” computing to train our

ML models for big batches of updates, all processed at once.

How will we migrate this to the IoT Edge and IoT Cloud, to run in real-time?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 14

“ALL SHARDED, ALL THE TIME”

In computing classes, we really don’t learn to compute on data that is
spread over devices.

IoT data will already be sharded when it enters in the system, and all
computation needs to be parallel and to keep the work sharded.

Sharding is a magic formula for scaling, but how can people to learn to
program in an “all-sharded, all the time” manner?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 15

MAPREDUCE

Invented at Google, but then spread into wide use when Yahoo! rebuilt it
as the open-source Hadoop infrastructure.

It has a complete “ecosystem” with a sharded file system and a sharded
computing model, supported by the MapReduce/Hadoop scheduler.

The developer learns to think in terms of batch-parallel computing, all the
time, for every task.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 16

HOW IS THIS DONE?

The developer thinks of everything in terms of collections of tuples.
We try to view all forms of data as a kind of “row” of content in a table
 The row has fields: (name = value, name = value, ….)
 Often one field is designated as a primary key. Depending on the task,

this key could be a file name, a GPS location, a hotel name…

Hadoop has many tools to help you transform your data into this form.

Modern programming languages embed collections into C++, C#, Python, Java, etc.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 17

… MORE DETAILS

We work in steps
 We collect the raw data and “tag” in various ways
 There are simple tools to help, and in any case devices already send

meta-data such as time, GPS, etc.
 A camera might add more: focal settings, who took the photo…
 Documents can be scanned to extract data from them
 Tabular data can be viewed as a collection of rows, and each

row becomes a list of values

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 18

NEXT, WE TREAT ALL OF THESE AS TUPLES

The term just means a series of “column” values separated by commas

 (Name = Ken Birman, Title = Professor, Current_Course = CS5412…)
 (Name = Argos Lounge, Type = Bar, Address = ….)

Notice that a tuple could have varying numbers of fields. And one thing could
have more than one associated tuple. The Argos is also a bed-and-breakfast.

Google suggests: Think of the whole world as a massive table, and each “thing”
as a set of rows, and reach row with values in just some of the columns.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 19

EXAMPLE, IN C#

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 20

var studentsGroupByStandard = from s in studentList
group s by s.StandardID into sg
orderby sg.Key

select new { sg.Key, sg };

foreach (var group in studentsGroupByStandard)
{

Console.WriteLine("StandardID {0}:", group.Key);

group.sg.ToList().ForEach(st => Console.WriteLine(st.StudentName));
}

THIS SEEMS TEDIOUS!

As noted, there are tools for automatically scanning many kinds of inputs
and turning them into this form.

We can definitely design our IoT tools this way too.

Thus we have incoming objects, like photos, but also associated meta-data,
which is in the form of a set of tuples, and each tuple has many fields.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 21

WHICH IS THE KEY? WHICH IS THE VALUE?

In the way we access the tuples, we actually can specify the key we want
to work with, and the value(s) we are interested in.

Effectively, the world looks like a huge collection of SQL databases.

The programming style looks like SQL, but runs in the non-transactional
NoSQL model. Each “action” is atomic, but sequences of actions are not
glued into atomic transactions. No begin/commit/abort.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 22

VISUALIZE THE RESULTING COMPUTATION?

At a thousand places, we have some kind of stored data, or new data
arriving from an IoT device.

At each of those places we apply some small bit of code.

The output of this code is a set of tuples (name = value, name = value, …)

Then we can use these tuples as input and form a kind of graph.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 23

DOES THIS CONNECT TO DHTS?

Yes! When we compute on tuples, we often specify a key. A sharding
pattern is then formed for us, at runtime. So if our tuples have keys, we
can store them into DHTs or use the keys to connect “related” things

For example, we take a lot of unstructured data, extract tuples, select the
ones that we want to compute on, and store them into a DHT.

This happens in a massively parallel computation on hundreds of machines

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 24

MAP-REDUCE PATTERN IN PICTURES.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 25

Leader This is called a
“map” operation

Shuffle

Full Shuffle is an n x n pattern: every shard sends data to every other shard! This avoids
ever having all our work concentrated on any single process.

Places where our raw
data resides, or our
IoT data was saved

(1) At each of those locations, a small fragment of
code runs (probably in Python or C#) and

transforms our raw data into a collection of tuples.

(2) Now we can select interesting tuples and
designate some value as a key. Each is “sent”

to the corresponding server in DHT style

(3) On arrival, we group the incoming tuples
that have the same key and combine them. This
is a “reduce” step, and yields one tuple per key.

EXAMPLE FROM LECTURE 6

We had sensors in groups
of 3 (this is showing one
group over time).

Then we wanted to combine the
output by looking for a “box overlap”
to compensate for sensor errors.

In a MapReduce pattern, how might this work?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 26

FOR ONE SENSOR GROUP

We can have tuples that include (group-id, sensor-number, “box”)

 The sensor is assigned to a group, so the function layer can look this up

 The sensor-number comes to the function layer from the IoT Hub

 The “box” is the reading – this sensor saw 69.5 degrees at 10:59am
 In fact the sensor output for this example is a single point.
 But by looking up the clock precision and the sensor accuracy, the function can

turn that one point into a box ([10:58.850, 10:59.150], [69.4, 69.7])

 Output of this operation: our “tuple”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 27

THINK OF THE FUNCTION AS A FIRST MAP STEP

We actually have 3 sensors, each caused an event, and they trigger 3
separate functions to run.

Each function creates one such tuple. It stores its tuple in the DHT.

After, say, one second, we can run the shuffle and reduce operation.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 28

IN PICTURES.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 29

Leader

The reduce step is where we take the three values and merge them to find the overlap
region, which now becomes our new “clean” sensor output

Once-per-second

Sensor

(group-id=1899, sensor-id=6619, time_range=[…], value_range=[….])

Tuple

Function DHT-put

Shuffle

THE COMPUTATION HAS STAGES

Once we have our new overlap region, it lets us extend the curve we are
building of the temperature for this one sensor

 Stage one: the sensors submit their values, triggering the functions

 Stage two: we’ve accumulated our data in the DHT (temporarily)

 Stage three: the periodic trigger causes us to do this shuffle/reduce

 Stage four: we extend the prior curve with one more data point

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 30

NOW IMAGINE THAT WE HAVE MANY SENSORS

We would be collecting data from all of them “at once”
 So there will be many sensor groups, all doing this simultaneously
 The shuffle won’t shuffle data for one group… it will run for many
 The reduce won’t occur on one node, for one group… it runs on many

nodes, for many different groups, and extends many curves.

In fact we could do this for more than one customer, each customer having
many IoT sensors. And that would be a serious “big data” pattern!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 31

AT SCALE…

IoT systems will want to implement this pattern of computation (lots of
instances of it, maybe millions running in parallel):

 At the edge, in the µ-services layer

 Information will need to be replicated on their behalf, at very high speed

 The reduced (key-value) data will be a sharded representation of new
knowledge deduced by the computation!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 32

WE END UP WITH A GRAPH PER USE CASE! THERE
MIGHT BE THOUSANDS AT THE SAME TIME

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 33

Vast numbers of
data sources

Functions used to handle simple
events and absorb load

Heavily sharded edge µ-services do real-time knowledge
acquisition and decision making using ML computational models

BIG DATA?

Definitely!

These arrows might carry photos or videos: megabytes or even hundreds
of megabytes per “object”.

Just moving the data becomes a cost concern: in the cloud, copying isn’t
very fast. But recall that Derecho’s object store uses RDMA for big-data
movement operations. So Derecho is an example of a viable solution.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 34

HOW MUCH CONSISTENCY?

For many tasks, modern machine learning is “stochastic” meaning that the
learning algorithm converges in a non-deterministic way and could settle
on any of a number of result states.

Consistent replication of IoT input is a common need, even for applications
that use stochastic, noise-tolerant techniques. The reason is that “random
noise” is very different from “stale or misleading input data”.

Again, Derecho is a good fit to the requirement.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 35

HOW MUCH FAULT TOLERANCE?

If we want FarmBeats to be reliable, we should plan on “riding out” some
failures. By some estimates, one failure every few hours might be common.

Moreover, elasticity forces reconfigurations, like to add more servers or
drop servers.

So the shards and computations need to be done in a fault-tolerant and
elastic manner. Derecho has built-in help for this, too.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 36

SO, BUILDER TOOLS COULD PLAY KEY ROLES!

Azure IoT and Amazon lack a tool like Derecho today. The IDE cartoon
stories are very limited at this point.

But Derecho itself does run on both of these platforms, and we are
working with the Azure IoT team to integrate it cleanly into their IDE
environments, and maybe even to get permission to use RDMA too.

In CS5412 projects, we encourage you to work with it for any new µ-
services you need to create.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 37

SOME NEW ISSUES SEEN ONLY IN THE EDGE

The MapReduce pattern depends on having a lot of data ready for
parallel computational analysis.

But with IoT, especially under real-time pressure, the new data arrives
when events occur, “one by one”, and we have to compute immediately.

MapReduce was very efficient because of the batching. Can we find ways
to make IoT reasonably efficient too? If not it won’t be cost-effective.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 38

HARDWARE ACCELERATORS

One way that big data frameworks gain performance and efficiency at
scale is to use programmable hardware to speed up key steps.

For example, there a lot of use of GPU computing (or at Google, TPUs).

If we want our edge systems to do things that currently are common in the
big data back end frameworks, how will we get a cost-effective hardware
accelerator capability near the edge, where the data arrives?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 39

Schedule the vet!

GPUGPU

REMINDER: FROM LECTURE 4

KEN BIRMAN (KEN@CS.CORNELL.EDU) 40

Photo
upload

Key-hash

Sharded, replicated blob store

Done!

Event
meta-data IoT Hub

Function

Key-hash

Sharded knowledge store

Hoof crack, p=.78

GPU-accelerated computation

Rough terrain, p=.03

router

Hoof crack, p=.78

2-node shard
N1 N2

replica

N3 N4
Function Svc

Thick line denotes “large objects”

SUMMARY

To support intelligence near the IoT device, we need to make the IoT Edge or the
Cloud first tiers intelligent.

This requires building new “smart” µServices, which will be
 Sharded, for scale, and perhaps leveraging hardware accelerators like GPU
 And may need to support MapReduce styles of computing. In fact we

would ideally want to use existing MapReduce code near the edge.

The devices are the easy part. The really big challenge is to figure out how this
style of computing can be done at scale, in real-time, cost-effectively!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 41

	CS5412 / Lecture 7�The Puzzle of “always sharded” �IOT data and computing
	Today: Bringing two ideas together
	The big bet: IoT can Reshape the way machine learning is done
	Why Not stick with the cloud “as is”?
	Today: a very “long” pipeline
	New: Move ML to the edge Of the cloud
	Approach this leads us to?
	There won’t be just one!
	Implications?
	Remember: Amazon ended up with hundreds of -services / web page!
	How to create new -Services?
	So what scaling challenge is this creating for us?
	Aside: What is “Derecho”?
	The ML challenge
	“All Sharded, all the time”
	MapReduce
	How is this Done?
	… More details
	Next, we treat all of these as tuples
	Example, in C#
	This seems tedious!
	Which is the key? Which is the value?
	Visualize the resulting computation?
	Does this connect to DHTs?
	Map-Reduce Pattern in Pictures.
	Example from Lecture 6
	For one sensor group
	Think of the function as a first map step
	In pictures.
	The computation has stages
	Now imagine that we have many sensors
	At scale…
	We end up with a graph per use case! There might be thousands at the same time
	Big data?
	How much consistency?
	How much fault tolerance?
	So, Builder Tools could play key roles!
	Some new issues seen only in the edge
	Hardware accelerators
	Reminder: From Lecture 4
	Summary

