
LECTURE 5:
MAKING DHTS DO MAGIC TRICKS!

Ken Birman
Spring, 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

TODAY’S AGENDA: TWO PARTS

Understanding how to put “anything at all” into a DHT for:

 Scalability: the capacity is determined only by how many servers
we have (and how replicated the shards are)

 Performance: DHTs can hold data in memory. When deciding between a DHT
approach and a big disk, because modern datacenter networks are much
faster than disk I/O, we can count on much faster access to DHT data

In the second half of the lecture, we’ll look at other issues a DHT creates

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

REMINDER: DHT BENEFITS (AND WHY)

The DHT idea can be traced back to work by people at Google, and to papers
like the Jim Gray paper on scalability.

We take some service and structure it into shards: sub-services with the identical
API, but handling disjoint subsets of the data.

We need some way to know where to place each data item. We use a key
here: the key is a kind of unique name for the data item, and by turning it into
an integer modulo the number of shards, we find the target shard.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

DHT PICTURE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

Client application

put(key,value)
get(key)

DHT Service on many nodes
Shards on 2-nodes each, using state-machine replication

AN ANNOYING LIMITATION

We are not given any way to do locking or 2-phase commit. In fact Jim
Gray showed us that locking across shards would be ineffective.

A get or put is an atomic action on a single shard. For fault-tolerance, the
shard update can use state machine replication (atomic multicast or Paxos).

With this approach we get “unlimited” scaling, and we can even keep all
the data in memory (as long as the number of shards is big enough).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

ANOTHER ISSUE

Data can be scattered around. In fact, this is the whole idea!

With the basic get and put API, this forces us to access each item
separately. If related data was clustered at one shard, we could design
fancier APIs that could get more work done in one atomic step.

Core issue: The DHT was created by a cloud operator and uses a hashing
scheme you don’t control. Different keys tend to go to different shards.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

SIDE REMARK

In fact it isn’t horrendously costly that the items are scattered around

 Those 100 us retrieval delays are very small and you might be able
to fetch all your data in parallel, by issuing concurrent put/get requests.

 Moreover, if the DHT was created by someone else, you probably can’t
extend the API with your own fancier operations.

So this limitation is really only relevant if you are building your own µService
using a DHT sharding approach.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

DHTS WORK BEST FOR DATA THAT DOESN’T
CHANGE AFTER IT IS INITIALLY STORED
Once a web page has been uploaded, we probably won’t update it
again. A web page that won’t change is an example of immutable data.

A DHT is ideal for this kind of data. Locking isn’t useful for a big read-
only data set even if we didn’t have sharding!

Web pages are mostly built by reading immutable data. This is one
reason DHTs became so popular: they work flawlessly here!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

EXAMPLE: AN NPR NEWS ARTICLE

This error message from a
popular news site, NPR, is
clearly caused by not finding
data in a DHT!

They probably stored their
articles in the DHT, but somehow
got an error when trying to fetch this article to build my web page.
It could be an example of CAP: When a DHT resizes elastically, sometimes
it makes errors for a few seconds afterwards…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

BUT AN NPR NEWS STORY IS TOO EASY.

For the first few years, big search companies focused on just downloading
snapshots of web pages and offering quick ways to find things.

Over time, however, there was an appreciation that the social network is
the bigger opportunity. And these evolve rapidly over time.

So we saw a growing need to store data that does change.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

HOW TO STORE “ANYTHING” AT LARGE SCALE

These data sets are huge – MUCH too big for any single computer.

Yet not only do we want to hold the data for access, we want super-fast
access: we want the data to be in memory, not on disk!

A DHT can solve this for us. The network I/O cost is a factor, but is still
much faster than disk I/O. And modern datacenter networks, with the
fastest software, can push network delays down to the 1-2us range.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 11

HOW TO STORE “ANYTHING” AT LARGE SCALE

Puzzle: A DHT officially just holds (key, value) data:

 The key is an integer. Some permit various sizes: 64 bits, 128, 256.
 The value is generally either another integer, or a byte array.

 Some DHTs are specialized for (integer, byte[]), and some for (integer,integer).
These often are used “together” for flexibility.

So how can we come up with a key for “anything at all”? And how can we use
this value model to store “anything at all”?

Solution: We use serialization. This converts an object to a byte array.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 12

COMING UP WITH SUITABLE DHT KEYS

You need a unique name for the objects you are storing.

For example: Ken’s dog was named Biscuit. But “Biscuit”
is not a unique name. The DHT could have some other
object with that name too.

On the other hand, “Ken Birman/pet/Biscuit” is a unique key, and we can
hash it with SHA64 or SHA128 into a unique integer.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 13

… BUT THAT RULE MIGHT NOT WORK IN
GENERAL.
Some pet owners really love to use the same name for every pet.

How would you come up with a genuinely unique key?
 Microsoft and AWS both have “registry” services that are able to generate them.

 But now you run into the problem of having a key that has no obvious connection
to the name of the object.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 14

EXAMPLE: MICROSOFT REGISTRY

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 15

NAME SPACES AND KEYS

A name space is some sort of user-oriented, semantically sensible, place to
store names of objects. We could actually have one object in many name
spaces, if the same object makes sense in different situations.

The namespace is used as a “service” to map from a name that makes
sense to the user, to a unique internal key that makes sense in a DHT.

A cloud file system always has a namespace server as one component.
We think of the storage servers as a separate, distinct, component.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 16

“What is in a name? That which we call a rose
By any other name would smell as sweet…”

Juliet, in Shakespeare’s Romeo and Juliet

KEN’S PETS

So we could, for example, have a kind of table listing all the pets Ken has
had, with information about them

This table would be a “name space” if we the photo list was a list of keys

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 17

Pet Name Period Species Photo List Health Status

Nerd 1961-1962 Gerbil Empty Deceased

Susie 1970-1986 Keeshund IMG-17171, … Deceased

Biscuit 2003-2013 Golden Retriever IMG-22187, … Deceased

MANY THINGS CAN BE GIVEN UNIQUE KEYS

We could have a unique key for each row in a table.

We could have a unique key for each photo in a photo album. The album
itself could be “named” but also have a key: its value would be a list of
the keys for photos in the album.

Cloud systems use this approach very broadly!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 18

COULD KEYS “COLLIDE”?

Yes, if the keys don’t have a large enough range of values, or the random
number generator isn’t very effective.

Most cloud systems favor fairly large keys, like 256 bits. And some key
generators use a variety of tricks to make sure that they won’t give out the
same key twice. A random number generator wouldn’t necessarily work.

Collisions would cause problems because two different objects would end
up sharing what should be a unique name – a serious inconsistency.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 19

WHAT PROBABLY HAPPENED IN THE NPR SITE?

It probably wasn’t a key collision.

In fact, I get news alerts for certain kinds of news stories, like confirmed
first-encounters with space aliens. So… NPR posts a first-encounter story.
And I receive an immediate alert!

The story was saved into a DHT, but maybe the DHT replication scheme is
a bit slow, or it was resizing just at that moment for elasticity reasons. Until
it “settles”, the key is correct but the story just can’t be found.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 20

HOW DID THIS RELATE BACK TO CAP?

CAP was all about how we often face these choices:

 Give a super fast response on a web page, or an instant notification
 But this means not waiting for the elastic reconfiguration to finish, or

for the replicated update to fully propagate to all the replicas.

 We might operate in an inconsistent way, briefly!

CAP says: you can’t have all three from {C,A,P} at the same time.

Relax consistency to get better availability and respond immediately even if a
service you would have liked to check with is temporarily not responsive.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 21

SUPPOSE WE HAD A LIST OF PHOTOS

The list itself is a data structure of objects that are linked by pointers.

The objects could be something like a photo description, and the photo (or
other kinds of photo properties: “meta-data”).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 22

HOW TO STORE “ANYTHING” AT LARGE SCALE

These objects all have type names the
application understands, data that matches.

But the DHT wouldn’t know these object types! Amazon created the DHT
long before you wrote the code defining this class.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 23

class myPet {
int uid;
animal species;
hashset<string,photo> photo_collection;
….

}

myPet biscuit {
uid := 5731,
species := animal::dog,
photo_collection := { [“on a rug”, •],

[“in the woods”, •]}
}

NEXT ISSUE: CLOUD DATA FORMS A HUGE,
COMPLICATED GRAPH

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 24

Ken belongs to Entrepreneurs’ Org The entrepreneurs shared a viral (completely exaggerated,
basically fake) story about a complete cure for cancer.

SERIALIZATION CONCEPT

With a single object, a serializer just emits a self-describing data structure
as a byte array, listing the field-types and their values.

If an object has sub-fields, it uses a recursive descent to serialize the inner
object too. The self-describing byte array has a way to represent: “this is
an object too, and the next 184 bytes describe it”.

The serializer output is often larger than the original object

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 25

ALSO, RECURSION ONLY HELPS FOR WHAT IS
LOGICALLY A “SINGLE NODE”
The serializer knows how to do recursive serialization but only for what is
logically a single object (and its subobjects).

Key = “Ken Birman/pets/Photos of Biscuit”
Value = [0xFF 0xA6 0x1B 0x00 0x99 0x11 0x03 0xFF 0xFF …]

A deserializer is used to recreate the data structure. This is also sometimes
called marshalling and demarshalling.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 26

REASONS SERIALIZATION CAN BE COSTLY

We generally like the byte array to be in a “hardware-independent
format”, meaning that both Intel and ARM (and other devices) can
reconstruct the object into their local data representation.
 There are several opinions about the best byte-order for integers
 Floating point formats are hardware-specific
 Some systems null-terminate strings; others just view a string as bytes
 Memory “alignment” rules differ from machine to machine.
 Compilers can make additional optimization choices

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 27

WHAT ABOUT A MORE COMPLEX STRUCTURE?

In homework 2 we are looking at using a DHT to hold a massive B-Tree
 They keep data sorted, which is useful, and you can do “range queries”
 You can also estimate the “statistics” of a data set, needed in AI/ML

The B-Tree is much too large to hold on one computer.

The data can be something complicated, but in addition, inner nodes have
“pointers” to child nodes.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 28

A 2,3 B-TREE EXAMPLE (WIKIPEDIA)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 29

GOOD NEWS

We can use the idea of replacing pointers with some form of key or node-
id. Pick an approach that makes sense in the given situation.

 A node-id is probably just a 32-bit integer.

 A key might need to be 256 bits in size: wasteful, if not needed.

If a B-Tree uses memory pointers, it only can make sense on one single
computer (server). But if it uses node-ids as “pointers”, this works even if
the nodes are stored in different DHT shards!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 30

(“Ken Birman/pets/Biscuit”,)

HOW CAN AN INTEGER NODE-ID BE USED AS
IF IT WAS A POINTER?
How does a pointer work in Java or Python or C++?

 We have an object in memory at some location.

 The pointer might point to that location, or to a structure that describes
the object (in Java and Python, the structure approach is used. C++
uses a genuine pointer to the actual data and code).

 At runtime, we make sure the operation is legal (in Java and Python,
this is for runtime error detection and polymorphism). Then we access
the data directly.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 31

MODIFIED BEHAVIOR?

We would need to check: is this node-id for a local node, or one in some
other DHT shard?

 If local, return a pointer to it.

 If remote, fetch it via a network RPC. Allocate memory (temporarily)
to hold the copy. If the application modifies the object, write it back
using another RPC. Free the memory when the access is finished.

In homework 2, you will “hide” this in a getter/setter

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 32

WHAT WILL THIS COST?

Now every node access might require a DHT get operation.

We can do a bit better: if we run our B-Tree logic on the same computers that
run our DHT, then local get operations will be free. Only remote ones will be
costly.

In Homework 2 we do this and even go one step further: we imagine building a
kind of smart B-Tree search that can do a “piece” of a search. It talks to the
local DHT shard, and goes as far as it can, then tells where to check next.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 33

WHAT WILL THIS COST?

This idea of a combined DHT + B-Tree can go even further.

You can do a smarter node-id numbering scheme, or even a smarter hash
function for the DHT, or both.

In Homework 2 we challenge you to come up with the best possible mix of
node-id numbering scheme and hashing scheme, to minimize network costs.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 34

DHTS CAN BE “TOO GENERAL” FOR SOME USES

At Facebook, the early work on social networking used one shared DHT.

But the social networking graph was huge, very complicated, and very
heavily used. Facebook decided that it was just not an efficient solution.

They redesigned it, and later in the course we will learn about their
solution: Facebook TAO, a specialist for social network graph storage.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 35

A WORRY ABOUT GARBAGE COLLECTION!

When we use a distributed solution, such as a DHT, we often need to make
copies of objects. For example, server A uses get to fetch a copy of some node
that resides on server B.

But these copies then occupy memory, and we need to free that memory when
finished with the copy. Otherwise, memory will leak and the server will
eventually crash.

Fortunately, modern languages automate this step (in C++, use shared pointer
template for the same behavior).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 36

WHAT ABOUT STORAGE IN THE DHT ITSELF?

A DHT doesn’t necessarily know how to garbage collect the (key,value)
objects stored into it!

It does keep track: each DHT object has a user-id (who created it), and the
user’s account gets charged for the space consumed.

 Benefits? Total control, plus keys only need to be unique for the user
or the application, not across the whole cloud.

 Problem: Many people are careless about freeing up the space!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 37

DHT CLEANUP SUGGESTIONS

Always give an expiration time for every (key,value) tuple. If you want to
keep an object longer, use a longer expiration time, but not infinite.

In your code, try to explicitly delete any temporary content you load into a
DHT. Put it there, run for a while, but then delete it.

Commercial products offer fancier and powerful features, such as “delete
these objects when such-and-such a server shuts down.” Use them!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 38

THE CLOUD CAN BE A VERY EXPENSIVE PLACE

When used properly, a cloud is often cheaper than owning hardware.

This is because you are sharing costs such as buying it and managing it
with other users, and your share is potentially much lower.

But carelessness in storage management can leave all sorts of junk that
might never be deleted, and you will be charged for it!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 39

OTHER THINGS TO THINK ABOUT

Some DHT products allow you to control the hash function they will use. But
this is not a standard thing – many do not.

Every DHT allows you to pick your own keys. And most DHTs tell you what
hash function they will use, so you can pick keys “intelligently” if you wish.

Hot spots can be an issue. Even uniformly random inserts might be clumpy.
And you can’t know which keys will be queried: some may be very popular

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 40

ONE DHT? OR ONE PER APPLICATION?

Amazon and Azure both urge you to use their DHT products: AWS Dynamo
and Azure Cosmos.

But this means that many applications and even many users would
potentially share the same storage infrastructure!

Is this a bad thing?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 41

ISSUES TO THINK ABOUT

The DHT server will be more efficient in its use of space if shared by many
users, so it will be ecologically greener and hence cheaper to use.

It will also stay busy all the time. If we plan to own a server and power it
up, keeping it busy makes a lot of sense. But a shared server could
become a hot spot because of some other user who pounds on some
specific DHT item and overloads that shard.

 Your performance would suffer, and yet you have no way to know why!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 42

SHARING CAN CREATE SECURITY ISSUES

Another form of leakage arises if data from one application or one user
becomes visible to some other application or user, without permissions.

A DHT with distinct key spaces shouldn’t leak information, but there could
be software bugs or even performance behaviors that actually do reveal
sensitive content, unintentionally.

We will discuss this in a future lecture. It is not a huge risk, but it is worth
being aware of it.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 43

SUMMARY

Almost anything can be stored into a DHT. The cloud does this. But it isn’t free:
you need to be clever to encode your application into a DHT.

Think about keys, object sizes, access patterns, costs. Be wary of “leakage”
(neglecting to delete temporary data) or you will get a BIG monthly bill!

In homework 2, one of the challenge questions at the end focuses on minimizing
access costs. This is typical of the issues seen in cloud systems that need to sort
huge data sets, and that put the B-Tree nodes in a DHT.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 44

	Lecture 5: �Making DHTs do magic tricks!
	Today’s agenda: Two parts
	Reminder: DHT benefits (and why)
	DHT picture
	An annoying limitation
	Another issue
	Side remark
	DHTs work best for data that doesn’t change after it is initially stored
	Example: An NPR news Article
	But an NPR news story is too easy.
	How to Store “Anything” at large scale
	How to Store “Anything” at large scale
	Coming up with suitable DHT keys
	… But that rule might not work in general.
	Example: Microsoft Registry
	Name Spaces and keys
	Ken’s Pets
	Many things can be given Unique keys
	Could keys “collide”?
	What probably happened in the NPR site?
	How did this relate back to CAP?
	Suppose we had a list of photos
	How to Store “Anything” at large scale
	Next issue: Cloud Data forms a huge, complicated Graph
	Serialization concept
	Also, Recursion only helps for what is logically a “single node”
	Reasons serialization can be costly
	What about a more complex structure?
	A 2,3 B-Tree example (Wikipedia)
	Good news
	How can an integer node-id be used as if it was a pointer?
	Modified behavior?
	What will this cost?
	What will this cost?
	DHTs can be “too general” for some uses
	A worry about garbage collection!
	What about storage in the DHT itself?
	DHT cleanup suggestions
	The cloud can be a very expensive place
	Other things to think about
	ONE DHT? Or one per application?
	Issues to think about
	Sharing can create security issues
	Summary

