
CS 5412/LECTURE 3: MORE
CLOUD ARCHITECTURE DETAILS

Ken Birman
Spring, 2019

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

RECAP: LIFE-CYCLE OF A CLOUD
INTERACTION
Client system connects to the cloud, makes a request

Outer tier relays the request to a logic layer where pools of compute servers
(µServices) handle distinct aspects.
 Like a “modular” decomposition of a big program.
 They rely on a deeper tier with standard vendor-supplied µServices for

tasks like key-value storage (DHT), image storage/compression/resizing, etc.
 They often use hardware accelerators

Outer tier reassembles the result and streams the reply back to the client.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

client
first
tier

µServices, each with
a pool of servers

MESSAGE BUS OR QUEUE

Two kinds of tools for relaying requests to the µServices

A message bus focuses on the members of the pool right now.

 You can ask for your request to go to any single member, or to all.

 Later the member that picked the request up can reply.

 If a timeout occurs (like because the member crashed), you reissue it.

 Sometimes called a publish/subscribe bus, or a data distribution service

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

MESSAGE QUEUE

A message queue is more like an email system. Your request has a message
group address (like an email address), and is stored under that folder.

A member of the µService pool can ask for the next “unread” message, delete a
message, reply to the sender, etc.

 For better efficiency, many applications read a batch of messages,
all at once, from the same group: “all pending messages”, or “next 100”

 Batched processing reduces overheads of talking to the bus again and again

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

queue

APP SERVICE

We saw that each µ-Service is managed by the “App Service”, which controls
how many instances are launched, when to launch/kill members, and monitors
overall load.

The intent is that “more servers ⇒ greater work capacity”.
But not every approach to scaling is equally effective.
 Scaling by running more threads is limited to the number of cores and

there are high overheads due to lock contention and NUMA memory
coherence effects.

 Threaded programming is also complicated and hence the cost to create and
maintain solutions can be high.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

THIS LED US TO RUN A POOL OF SERVERS

The conclusion was that it can be much easier and more flexible to write a
single program that isn’t heavily multi-threaded, and have each request
processed by a single program instance.

Then we can scale our service out by just running it many times.

We distinguish two major cases.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

STATELESS VERSUS STATEFUL PROGRAMS

A newly launched program has some initial state:
 Variables you initialized
 Files on the local disk that it reads as input

In the cloud, we call this local data and the local file system.

The cloud also has a global cloud file system. You talk to it via messages.
 The cloud uses Google GRPC, or the Azure/AWS equivalent

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

A LOCAL VERSUS A REMOTE SYSTEM CALL

In Linux you use the POSIX file system API to open, seek, read/write files.
If the pathname points to the local disk, these are local system calls. The
local operating system handles them.

But if you access a file system pathname that identifies a file as being “in”
the cloud’s global file system, this is automatically turned into an RPC and
the actual file access occurs on a remote server, transparently.

 One difference: there are additional possible error codes.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

BACK TO THE STATELESS MODEL

What does “state” mean to you? For a single program, it could be:

 Data in program variables, in memory, used as it runs.

 Data that the program reads but didn’t create.
♦ Information in the Linux “environment” or Windows “active directory”
♦ Data in parameter files or configuration files
♦ Data received in a request from the client.
♦ Data in files or a database that the program only reads.

 Data the program does create, or modify.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

A stateless program
actually can update
local state (nothing
stops it). But the

updates will be lost.

Stateless guy

STATELESS MODEL

So… a stateless program is a normal program, written the way you write
any computer program.

… but it follows one rule: no updates to “persistent” data (that would still
be there if I shut it down, then restart it) on the computer where it runs.

 It still has “state” in its variables and so forth. Not an issue.

 But if it needs to save something, that update has to be sent to some
other place, like into the cloud’s global file system, or a database, etc.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

THE FIRST TIER OF A CLOUD IS “STATELESS”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

This design idea dates to Professor Eric Brewer, at Berkeley

He observed very scalable pools of µ-Services are easier to build and extend if
the data used is all read-only.

 Sometimes he called this “soft state”, meaning the “hard version is elsewhere”

 But most people just call this a stateless model.

A stateless server is easy to shut down (kill it, throw away any files it created).
11

WHICH CAN WE DO IN A STATELESS WAY?

Consider the Amazon shopping web pages. We can build these by
looking up data held in other services.

 A µ-service that tracks your purchase history.

 A µ-service that computes recommendations.

 A µ-service that resizes images of products to fit your screen

 A µ-service that manages the shopping cart

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 12

WHICH CAN WE DO IN A STATELESS WAY?

Consider the Amazon shopping web pages. We can build these by
looking up data held in other services.

 A µ-service that hosts (keeps) your purchase history.

 A µ-service that computes recommendations.

 A µ-service that resizes images of products to fit your screen

 A µ-service that manages the shopping cart (and remembers the list)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 13

OFTEN WE PAIR A STATELESS FRONT END
WITH STATEFUL µ-SERVICES
Stateful services are harder to build, so usually vendors like Oracle (the
database company) or Amazon or Microsoft do that for you.

The cloud file system is the most obvious example. Others include the image
storage service (in addition it usually can resize photos, segment them, perhaps
even recognize who is in them), databases, DHTs, etc.

Then we might build a stateless service that sits in front and adds some of our
own logic but relays anything that needs to be saved into the stateful tier.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 14

SOME IMPORTANT STATEFUL SERVERS IN THE
CLOUD
Azure: The global file system, the Cosmos Database, the BLOB store. The
nessage queue service. Various DHT products, like Cassandra

AWS: Many of the same options, plus DynamoDB, Amazon’s scalable DHT

Note: Even though these may use the term “database”, and you access
them with SQL, Cosmos and Dynamo are not true databases. The model is
“NoSQL” (meaning “This is not transactional SQL”)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 15

HELPFUL IDEAS FOR STATELESS DESIGN

Use a scalable DHT as a cache for any data the program reads. With
luck we will get a good hit rate (like in Facebook) and this will shield the
big stateful systems at the back-end from most of the load.

A DHT can hold much more stuff than any single computer could ever hold.

Be tolerant of staleness. This a high cost to be sure our cached data. For
example, if a site says “2 Xbox Series X units left at this price”, that could
be a bit stale… I wouldn’t notice.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 16

KEY IDEAS FOR STATELESS DESIGN

Soft state can easily be regenerated, so don’t worry much about fault tolerance.

In our DHT examples last week, we talked about state machine replication for
fault-tolerance, but this involves using atomic multicast or Paxos for updates, to
ensure that all replicas see the same update sequence.

If we don’t care about losing data during a crash, we can skip that step.

 The real data would live in a back-end database or file system.

 Since we are only keeping cached data in the DHT, if a shard gets
amnesia, we can always fetch it from the back-end system a second time.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 17

DEFINITIONS (SLIGHTLY INFORMAL!)
Consistency: The system responds using the most current values (updates).
Conflicting updates are performed in some system-selected order by all
replicas. Queries thus will see a “single system” and will be up to date.
Availability: The system is rapidly responsive, and will self-repair if some
single component fails, restoring normal functionality asap. Of course
fault-tolerance isn’t always possible: if too many components fail all at
once, availability is lost.
Partition Tolerant: A data center can have network issues, or entire
services can be down. Yet as seen from outside, the cloud should continue to
respond even if its first-tier services are temporarily unable to talk to some
inner services they would normally depend upon.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 18

IN THE CLOUD, NOT EVERY SUBSYSTEM
NEEDS THE STRONGEST GUARANTEES

At Berkeley, Eric Brewer captured this insight with a “theorem”

CAP is short for “Consistency, Availability and Partition Tolerance”

Basically, Eric argues that:

 The theoretically “best” solution often brings heavy costs.
 Consistency is one example: conflicting database updates can be forced into

an agreed order, but this takes time and involves node-node dialog (hence ¬P).

 Remember that to earn the most money, you need the fastest possible responses.
Eric concluded that this means you might have to relax consistency: CAP.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 19

\

ERIC BREWER’S CAP THEOREM

Claim: A system can only have 2 out of 3 from CAP.

What to do?
 Relax consistency (C),
 Gain faster response (A).
 Generate responses even when unable to talk to

back-end servers (P).
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 20

… ONE TINY NIT

The theorem isn’t actually true. You actually can have all three at once.

How? As we will see, you need to have a stateful cloud (even the outer
tiers), using consistent replication for fault-tolerance and availability. A
Cornell tool called Derecho assists for this.

Call CAP more of a folk theorem: A useful rule of thumb.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 21

BASE METHODOLOGY: GOES WITH CAP

Invented at eBay, adopted by Amazon and others
 Basic Availability, Soft State and Eventual Consistency

“Use CAP. It may cause inconsistency.

Clean up later.”
How BASE works: cache data but don’t worry about cache
entries getting stale (hey, they were valid a little while ago).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 22

BASE ≡ “CAP in practice”

TODAY’S CLOUD IS A CAP+BASE “WORLD”

By and large, cloud systems manage with stale data / weak consistency.

Most applications are read-only and are fine with slightly stale data.

In IoT, though, this will change. When we look at IoT we will need more.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2019SP 23

A STATELESS SERVICE IS JUST A POOL OF
STATELESS PROGRAMS
 You upload a program, and the configuration data and parameter files.

 You tell the cloud App Service how many instances to launch and when
to adjust the pool size. It knows how to monitor the request queue.

 The App Service will dynamically launch or kill your servers as needed.

It manages a collection of computers on which these servers can be launched

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 24

BUT INSTALLING PROGRAMS IS TRICKY!

Often, even if you don’t think of it, a program has a lot of dependencies.

 The runtime system of the programming language you picked.

 Other specialized libraries you may have downloaded and used.

 You may have trained a machine-learned model, and the program
might need the model, the hyperparameters, and the trained parameter
set to operate correctly.

 The program may only be able to run if other µ-Services on which it
depends are already running. We call these bindings.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 25

WHY DOES THIS POSE A PROBLEM?

It means that our App Service will be managing some pool of µServices. It
needs to launch 5 more instances of “myService” (the one you wrote)

 It has to first pick 5 suitable servers (enough memory, maybe they need
accelerators, maybe they have to be on machines that don’t share the
same power supply…)

 It has to copy your program and these dependencies to it.

 It has to verify that the bindings don’t require launching additional
µServices, and launch them if needed.

 Now it can start your program – your servers – by launching your code
with any arguments you told it to pass in.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 26

ISSUES THAT ARISE

How do we “tell” all of this to the App Service?

 You use a little configuration management application. It outputs a file
in a format called JSON, and you can later tweak that file.

 All of the things the App Service needs to know go in the file.

 At the same time, it needs to bundle your program up in a convenient
form for copying to a machine, and installing.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 27

ISSUES THAT ARISE

There are dozens of popular versions of Linux, plus different revision levels
of everything. You can’t necessarily run a program that was built on
Ubuntu Bionic Beaver (18.04) on a machine running CentOS 6.10

Package installation isn’t always trivial and might require some kind of
licensing. Sometimes you need to rerun the install script.

Even installing the “most current” release isn’t automatically a safe choice!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 28

SO, HOW CAN WE PACKAGE A PROGRAM AND
THE THINGS IT DEPENDS ON?
A common approach, in the early days, was to use a virtual machine.

This is a technology for making a snapshot of a computer system, as a single file,
and then later running the snapshot on some other computer, perhaps one that
doesn’t even normally support that same operating system. A VM Microkernel or
Hypervisor translates VM requests to whatever the actual computer supports.

In the early days, the main goal was back-compatibility for versions and for
operating systems.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 29

TODAY: EXAMPLES OF VM PLATFORMS

Many people use Oracle Virtual Box

This is easily installed, and once you run it, you can create VMs, load ones
your friend gave you or package one to send to a friend, etc.

Powerful, easily used and quite flexible.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 30

MAIN ISSUE IS SLOWDOWN

VMs can usually run plain old code at the full speed of the computer. So
individual cores don’t slow down.

But generally, system calls like file I/O pay a cost, and sometimes this cost
is quite high.

VM approaches also use a lot of memory, making them expensive in $$
terms too.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 31

CONTAINERS

This model emerged a few years ago in a project called Docker.

The idea was to run a normal Linux system, but to have individual
processes see a virtualized world in which it would look as if they were
alone on a VM.

Today, there are other solutions, notably Kubernetes, that are widely
popular and used more commonly than Docker. Kubernetes is “cluster
aware”, while Docker and Virtual Box are “single machine oriented”.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 32

WHY DO CONTAINERS WIN?

Containers actually map everything to the same operating system and
platform, so there is no need to emulate (for example) a Windows OS API
on a Mac OS 10 computer. The running program pays no overhead when
it issues a file system call, or sends a message, or allocates memory.

The operating system can more easily notice that containers have some
identical pages, and will avoid duplication, so less memory is wasted.

The delay to launch a new container is much smaller than for a new VM.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 33

SO… IN OUR APP SERVER MANAGED POOLS

Each pool corresponds to:

 An application “defined” by a JSON file

 The file pointed to a container image, and the App Server copied that
to machines where it might sometimes want to launch your server.

 At runtime, it needs to run 5 copies of myServer. It picks 1 to 5 physical
machines and launches your container on them, 5 instances in total.

 Are we done?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 34

MORE ISSUES THAT ARISE

What about the network, or files that get created?

Your program may need a way for servers to talk to one-another. How
will that work?

And if your programs create files, where do those go if the App Server
shuts down some instances?

And what if two containers clash in the way they operate?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 35

… MANY DETAILS!

Kubernetes is normally told to create what looks like a private network just
for you. Your applications sees a single network address space.

Kubernetes hides unrelated containers from one-another. They won’t notice
that they are sharing a computer.

But local files will typically be deleted when the container is shut down. A
stateless design helps: those aren’t allowed to hold hard state!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 36

OTHER USES OF CONTAINERS

When we look at IoT programming, we will see that in IoT settings, we
often want to launch a lightweight container to handle events that
originate at sensors, like cameras.

This is done in something called the “Function Server”. It is a lot like the
App Service, but focuses on event processing.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 37

SUMMARY

We revisited the basic cloud model

We didn’t discuss the client platform itself, or the Internet, or load-balancer

But we saw how the first tier receives a request, relays it to one or more
µServices via a message bus or queue, and how these pools are managed.
We also learned that the programs are typically packaged in containers,
like docker to reduce the risk of interference/conflicts, with low overheads.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 38

client
first tier

Message
bus/queue

µServices
managed by the

App Service
(second tier)

	CS 5412/Lecture 3: More Cloud Architecture Details
	Recap: Life-Cycle of a Cloud�interaction
	Message bus or queue
	Message queue
	App Service
	This led us to run a Pool Of servers
	Stateless versus stateful programs
	A local versus a remote system call
	Back to the Stateless model
	Stateless Model
	The first tier of a cloud is “stateless”
	Which can we do in a stateless way?
	Which can we do in a stateless way?
	Often we pair a stateless front end with stateful -Services
	Some important Stateful Servers in the cloud
	Helpful ideas for stateless design
	Key Ideas for Stateless Design
	Definitions (Slightly informal!)
	In the cloud, not every subsystem �needs the strongest guarantees
	Eric Brewer’s Cap Theorem
	… one tiny nit
	BASE Methodology: Goes with CAP
	Today’s Cloud is a CAP+BASE “world”
	A stateless service is just a pool of stateless programs
	But installing programs is tricky!
	Why does this pose a problem?
	Issues that arise
	Issues that arise
	So, how can we package a program and the things it depends on?
	Today: Examples of VM platforms
	Main issue is slowdown
	Containers
	Why do containers win?
	So… in our APP Server managed Pools
	More Issues that arise
	… many details!
	Other uses of containers
	Summary

