
CS5412 / LECTURE 27
PROGRAMMING THE NETWORK

Ken Birman
Spring, 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

WE DON’T OFTEN THINK ABOUT THE
NETWORK AS A “COMPUTING DEVICE”
For most of us, the network is just the Internet, or perhaps a virtually
private cloud (VPC).

But modern networks are actually programmable.

How does this work, and what are cloud companies like Amazon and
Microsoft using this for?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

OLD FASHIONED NETWORK PROGRAMMING

Network devices include

 Network interface cards (NICs)
 Switches (they support a 1:1 form of packet movement, very rigid)

 Routers (they look at the destination and send the packet on a good
path to reach that destination. Very flexible because the routing table
can be updated at runtime).

We are already “programming” a network if we configure a switch or load a
routing table into a router.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

HOW IT “WORKS”

Network administrator or the superuser has special ways to

 Connect to the device

 Send it commands via command line

 The GUI will update a set of devices if you ask it to.

There are also “routing protocols” you can enable. The routers talk to each
other continuously and dynamically discover and adapt routing paths.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

OTHER INTERESTING NETWORK-LAYER DEVICES

Firewalls: They use “rules” to block attacks like DDoS traffic or spam.

Network address translation devices (NAT boxes): They map from one network
address range to a different one, and might also map port numbers or even
byte ranges.

VLAN boxes: They create and manage VPNs and VPCs.

Cryptography “pass-through” devices: They encrypt and decrypt “on the wire”
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

MONITORING A NETWORK

An important form of programmability involves watching for conditions
important to the operator, such as individual applications grabbing too big
a share of the network.

The enabler is a feature for configuring devices to count traffic on links.

These tools often can issue program-triggered alarms: “Warning, network
overload on segment T:5-3.B. Packet drop rate spiking!” They can also
automatically modify routing to bypass broken hardware or mask issues.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

… BUT THEY CAN’T DO FANCIER KINDS OF
PROGRAMS
Suppose that I wanted to do fine-grained monitoring of just the traffic to a
specific VLAN, or even to some single microservice within my network.

Or I might want to move part of a MapReduce task right into the network
itself and have it compute the “reduce” functions with no help from the host

Or we might want to create a very flexible new form of routing that
dynamically selects specific packets and sends them to particular machines

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

WHY NOT?

These examples all require some form of filtering.

To filter and count, you need to “parse” the packet, then break out certain
fields and compare against a specific value or pattern, etc. Then count
only the packets that match your criteria (and you might make a histogram
using some other field as the “index” to decide which bin)

But this is way beyond what a standard router can do today.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

A NUMBER OF PROPOSALS HAVE BEEN MADE

OpenFlow: A router-control API that can support fancier network behavior

P4: A new language for writing programs that run directly on the routers

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

WE WILL LOOK AT SLIDES ON THE P4
LANGUAGE
Mihai Budiu was a Cornell PhD student, but he moved with a faculty
member who went to CMU and finished up there.

He helped create the Microsoft LINQ technology we learned about. Then
when Microsoft Research Silicon Valley closed, he moved to VMWare.

At VMWare he leads a P4 research group.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

P4: specifying data planes
http://P4.org

Mihai Budiu
VMware Research Group

VMware Techtalk
March 30, 2017

http://p4.org/

About Myself

12

• Ph.D. from Carnegie Mellon
• Researcher at Microsoft Research, Silicon Valley

• Distributed systems, security, compilers, cloud
platforms, machine learning, visualization

• Software engineer at Barefoot Networks
• Design and implementation of P4

• Researcher at VMware Research Group
• Big data, P4

• P4 & Programmable networks
• Why should you care?

• An introduction to P416
• P4 limitations

• Conclusions

13

Networking 101

14

routers

Data packets

Control and Data Planes

15

Control plane

Data plane

Interfaces

Switch architecture

packets

Traditional switch architecture

16

Control plane

Data plane

Table management

Look-up tables (policies)

Switch ASIC

Control-plane CPU

Software-Defined Networking

17

Dumb control plane

Data plane

Controller

Policies/signaling

Programmable data plane

SW: P4

The P4 world

18

Dumb control plane

Upload program

Policies/signaling

Not just for switches!

Programmable switches
FPGA switches
Programmable network cards
Software switches
Hypervisor switches
You name it…

19

Programmable data plane

SW: P4

Control plane

How is this possible?

20

Hello

?

DatacenterMost useful if you have
your own network playground

Data-planes

• From now on in this presentation we only talk about the data-
plane

• We expect that SDN will continue to evolve the control-plane

21

Control plane

Data plane

WHY SHOULD YOU CARE?

22

Isn’t Open-Flow Enough?

23

12
15

36
40 41

1 1.1 1.2 1.3 1.4

Headers

Open-Flow version

Open-flow has never been enough: it keeps changing to describe new protocols

has lots at stake

• NSX is about programmable networks
• Flexibility in networking
• We are an industry leader

• P4 will change the dynamics in the industry
• Device manufacturer ≠ device programmer
• Many network capabilities exposed to software

24

Protocols = programs

• VxLAN: 175 lines of P4
• Took 4 years from proposal to wide availability

• NVGRE: 183 lines of P4

M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, J. Rexford, PISCES: A Programmable,
Protocol-Independent Software Switch
SIGCOMM 2016
• 40 times reduction in the size of the OvS parser
• Much easier to add new protocols
• Same performance

25

http://benpfaff.org/papers/pisces.pdf

Use only what you need
• IETF has issued thousands of RFCs
• Switch RAM and CPU is very expensive
• Network operators can remove protocols
• Simpler

troubleshooting

26

Network monitoring

27

measurements
(custom headers)

Monitoring
agent

In-Band Network Telemetry (INT)
Improving Network Monitoring and Management
with Programmable Data Planes
By Mukesh Hira & LJ Wobker

http://p4.org/p4/inband-network-telemetry/

Optimize your network

• Push application functionality in the network
• High speed

28

Paxos Made Switch-y
Huynh Tu Dang, Marco Canini, Fernando Pedone, Robert Soulé
CCR April 2016

http://www.sigcomm.org/sites/default/files/ccr/papers/2016/April/0000000-0000002.pdf

Network = software
• Use software engineering principles and tools
• Upgrade your network at any time
• Protocols = intellectual property

29

P4.org Consortium

30

Carriers, cloud operators, chip co.s,
networking, systems, universities,
start-ups

AN INTRODUCTION TO P416

31

Language evolution

P4: Programming Protocol-Independent Packet Processors
Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, David Walker ACM SIGCOMM Computer
Communications Review (CCR). Volume 44, Issue #3 (July 2014)

P4 v1.0 spec, reference implementation and tools released in
Spring 2015 (mostly by Barefoot Networks), Apache 2 license,
http://github.com/p4lang.

P416 spec, reference implementation and tools released in
December 2016.

32

http://www.sigcomm.org/ccr/papers/2014/July/0000000.0000004
http://github.com/p4lang

P4 Community

• http://github.com/p4lang
• http://p4.org

• Mailing lists
• Workshops
• P4 developer days

• Academic papers (SIGCOMM, SOSR)

33

http://github.com/p4lang
http://p4.org/

Available Software Tools

• Compilers for various back-ends
• Netronome chip, Barefoot chip, eBPF, Xilinx FPGA
(open-source and proprietary)

• Multiple control-plane implementations
• SAI, OpenFlow

• Simulators
• Testing tools
• Sample P4 programs
• Tutorials

34

P416

• Most recent revision of P4
• Similar to C; strongly typed
• Currently in draft form
• Spec: http://p4.org/wp-content/uploads/2016/12/P4_16-prerelease-Dec_16.pdf

• Reference compiler implementation
(Apache 2 license): http://github.com/p4lang/p4c

35

http://p4.org/wp-content/uploads/2016/12/P4_16-prerelease-Dec_16.pdf
http://github.com/p4lang/p4c

P416 data plane model

Data plane

P4 P4 P4

Programmable
blocks

Fixed function

36

Example packet processing pipeline

Programmable
parser

Packet (byte[])

Headerseth vlan ipv4

Programmable
match-action

units
Metadata

eth

mtag

ipv4

Programmable
reassembly

Packet

Payload

err bcast

port Queueing/
switching

eth mtag ipv4

Headers

37

Language elements

Programmable
parser

Programmable
match-action

units

Programmable
reassembly

State-machine;
bitfield extraction

Table lookup; bitfield manipulation;
control flow

Bitfield reassembly

38

Data-types
Bitstrings, headers,
structures, arrays

External
libraries Support for custom accelerators

Target
description Interfaces of programmable blocks

user
target

Data Types

39

typedef bit<32> IPv4Address;

header IPv4_h {
bit<4> version;
bit<4> ihl;
bit<8> tos;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
IPv4Address srcAddr;
IPv4Address dstAddr;

}
// List of all recognized headers
struct Parsed_packet {

Ethernet_h ethernet;
IPv4_h ip;

}

header = struct + valid bit

Other types: array of headers,
error, boolean, enum

Parsing = State machines

40

parser Parser(packet_in b, out Parsed_packet p) {
state start {

b.extract(p.ethernet);
transition select(p.ethernet.type) {

0x0800: parse_ipv4;
default: reject;

}
}
state parse_ipv4 {

b.extract(p.ip);
transition accept;

}
}

src IP headerdst IP payloadtype

ethernet header

start

parse_ipv4

rejectaccept

Actions

41

action Set_nhop(IPv4Address ipv4_dest, PortId port) {
nextHop = ipv4_dest;
outCtrl.outputPort = port;

}

Action data; from control plane

• ~ Objects with a single method.
• Straight-line code.
• Reside in tables; invoked automatically on table match.

class Set_nhop {
IPv4Address ipv4_dest;
PortId port;
void run() {

nextHop = ipv4_dest;
outCtrl.outputPort = port

}
} Java/C++ equivalent code.

Tables

dstAddr action

0.0.0.0 drop

10.0.0.1 Set_nhop(10.4.3.4, 4)

224.0.0.2 drop

192.168.1.100 drop

10.0.1.10 Set_nhop(10.4.2.1, 6)

42

table ipv4_match() {
key = { headers.ip.dstAddr: exact; }
actions = { Drop_action; Set_nhop; }
default_action = Drop_action;

}

Populated by
the control plane

• HashMap<K, Action>

Match-Action Processing

43

Lookup table
headers &
metadata

Lo
ok

up

Lookup key
Action

action
data

action
code

Ex
ec

ut
e

Control plane

headers &
metadata

key action

Code & data

control Pipe(inout Parsed_packet headers,
in InControl inCtrl,// input port
out OutControl outCtrl) { // output port

IPv4Address nextHop; // local variable

action Drop_action() { … }
action Set_nhop(…) { … }
table ipv4_match() { … }
…

apply { // body of the pipeline
ipv4_match.apply();
if (outCtrl.outputPort == DROP_PORT) return;
dmac.apply(nextHop);
if (outCtrl.outputPort == DROP_PORT) return;
smac.apply();

}
}

Control-Flow
Ipv4_match

dmac

smac

44

Packet Reassembly

45

control Deparser(in Parsed_packet p, packet_out b) {
apply {

b.emit(p.ethernet);
b.emit(p.ip);

}
}

Convert headers back into a byte stream.
Only valid headers are emitted.

P4 Program structure

#include <core.p4> // core library
#include <target.p4> // target description
#include "library.p4" // library functions
#include "user.p4" // user program

46

Architecture declaration

47

struct input_metadata { bit<12> inputPort; }
struct output_metadata { bit<12> outputPort; }

parser Parser<H>(packet_in b, out H headers);

control Pipeline<H>(inout H headers,
in input_metadata input,
out output_metadata output);

control Deparser<H>(in H headers, packet_out p);

package Switch<H>(Parser<H> p, Pipeline<H> p, Deparser<H> d);

Provided by the target manufacturer

H = user-specified header type

Parser Pipeline Deparser

Switch

Support for custom “accelerators”
extern bit<32> random();

extern Checksum16 {
void clear(); // prepare unit for computation
void update<T>(in T data); // add data to checksum
void remove<T>(in T data); // remove data from checksum
bit<16> get(); // get the checksum for data added

}

48

External function

External object with methods. Methods can be invoked like functions.
Some external objects can be accessed from the control-plane.

Execution model

• When a block is invoked (parser, control) it
executes to completion on a separate thread
• All local variables are thread-local
• Only inter-thread communication possible

through extern objects and functions
• Execution triggered by outside event

(e.g., packet arrival)
• Actions execute atomically

• @atomic annotation for futher user-level control

49

P4 program

P4
architecture

model
Data plane

P4
compiler

Tables
Dataplane
runtime

Control-plane

target

User-supplied

API

Manufacturer supplied

control
signals

extern
objects

API

LOAD

LOAD

P4 software workflow

50

P4 LIMITATIONS

51

Limitations of P416

• The core P4 language is very small
• Highly portable among many targets
• But very limited in expressivity

• Accelerators can provide additional functionality
• May not be portable between different targets
• Under construction: library of standard accelerators

52

What is missing

• Floating point
• Pointers, references
• Data structures, recursive data types
• Dynamic memory management
• Loops, iterators (except the parser state-machine)
• Recursion
• Threads

• => Constant work/byte of header

53

What cannot be done in (pure) P4

• Multicast or broadcast
• Queueing, scheduling, multiplexing
• Payload processing: e.g., encryption
• Packet trailers
• Persistent state across packets
• Communication to control-plane
• Inter-packet operations

(fragmentation and reassembly)
• Packet generation
• Timers

54

How are these done?

• Multicast, broadcast, queueing, scheduling,
multiplexing
• By target device, controlled by P4 metadata

• Persistent state across packets (e.g. per-flow state)
• External objects: registers, counters, meters

• Communication to control-plane
• External objects: learning providers

• Packet generation
• Control-plane, or external objects

• Reassembly, trailers:
• Not currently done

55

P4 is not…

• Active networking:
a way for packets to inject new code

• Programming the control plane:
that is Software-Defined Networking

• A tool for third parties to program the network
• A language for:

• distributed computations
• network middleboxes (NFV)
• network operating systems

56

Why use P4?

• It is a language:
you can specify the data-plane precisely

• Expressive:
express many packet-forwarding policies

• High-level, type-safe:
compiler-managed abstract resources

• Software:
treat network devices like software

• Killer app:
network monitoring

57

Control plane

Data plane

58

U
P
L
O
A
D

The P4 Programming-
Language Interface

USE CASES IN CLOUD SETTINGS (back on topic)

59

P4 GENERATED A LOT OF EXCITEMENT AT
FIRST
The idea of a fully programmable network thrilled the data center
operators, who find it hard to “adapt” the data center to prioritize some
flows while treating others as second class.

But P4 is like the assembler language for packet process. What’s the HLL?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 60

HIGH LEVEL LANGUAGES (HLLS) FOR NETWORKS

This is a big, tough topic! Nate Foster is a world expert

Goal: we would like to write sophisticated programs that compile into
code that runs “everywhere” and carries out policies that were described
“somewhere”, with sound semantic foundations.

The code could compile to a mix of P4 + host logic on router coprocessors.
The P4 steps are blindingly fast, but very limited…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 61

THE HLL SIDE HAS BEEN THE BARRIER

P4 was remarkably quick to hit the market and for a while, pushed the
prior programmability tool (OpenFlow SDNs) to the side.

Yet neither has really become the mainstream story because the HLL
options remain complex and their semantics are hard to work with.

Until someone finds an HLL that would be easy to use but also easy to
compile into P4, we won’t see P4 (or successors) in their full power.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 62

WHAT’S THE REAL BARRIER?

The core problem is that a network has lots of moving parts, at many
places. But the HLL interaction with the P4 layer is slow and asynchronous

A program normally has a kind of sequentiality. But this doesn’t map
easily to updating the P4 network and switching from one control pattern
to a different one “transparently”.

As a result, HLLs tend to lock the whole network, update the P4, then
unlock it… and this is not really viable.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 63

CONCLUSIONS?

Network programmability is one of those ideas that feels as if it will
always be 10 years in the future!

But IoT was like that… until now, when suddenly IoT is a real thing.

Don’t bet against network programming “coming soon”!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 64

	CS5412 / Lecture 27�Programming The Network
	We don’t often think about the network as a “computing device”
	Old fashioned network programming
	How it “works”
	Other interesting network-layer devices
	Monitoring a network
	… but they can’t do fancier kinds of programs
	Why not?
	A number of proposals have been made
	We will look at slides on the P4 language
	P4: specifying data planes�http://P4.org�
	About Myself
	Slide Number 13
	Networking 101
	Control and Data Planes
	Traditional switch architecture
	Software-Defined Networking
	The P4 world
	Not just for switches!
	How is this possible?
	Data-planes
	WHY SHOULD YOU CARE?
	Isn’t Open-Flow Enough?
	 has lots at stake
	Protocols = programs
	Use only what you need
	Network monitoring
	Optimize your network
	Network = software
	 P4.org Consortium
	AN INTRODUCTION to P416
	Language evolution
	P4 Community
	Available Software Tools
	P416
	P416 data plane model
	Example packet processing pipeline
	Language elements
	Data Types
	Parsing = State machines
	Actions
	Tables
	Match-Action Processing
	Control-Flow
	Packet Reassembly
	P4 Program structure
	Architecture declaration
	Support for custom “accelerators”
	Execution model
	P4 software workflow
	P4 LIMITATIONS
	Limitations of P416
	What is missing
	What cannot be done in (pure) P4
	How are these done?
	P4 is not…
	Why use P4?
	Slide Number 58
	Use cases in Cloud Settings
	P4 generated a lot of excitement at first
	High Level Languages (HLLs) for Networks
	The HLL side has been the barrier
	What’s the real barrier?
	Conclusions?

