
CS5412 / LECTURE 26
THE CHALLENGES OF INTRODUCING

RDMA INTO CLOUD DATACENTERS
Ken Birman
Spring, 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

CONTEXT FOR THIS LECTURE

We saw how the need for performance has pushed some very fancy
machine learning components into the edge, like Facebook TAO

As we connect the cloud to sensors, we’ll get an even greater demand for
real-time updates (hence replication), consistency and coordination at the
edge. FFFS and Derecho are examples of a response to that need.

But Derecho’s speed comes from RDMA. Does the edge have RDMA?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

LIFE ON THE EDGE

The edge demands disruptive changes.

… early adopters tend to experience a lot of pain.

Nothing works… the hardware may lack programming tools… is
undocumented… may even have hardware bugs. And “cutting through the
stack” may have unexpected consequences elsewhere.

 None of the rosy predictions are as easy to leverage as you might expect.

 Hint: Start by duplicating some reported result for the same setup!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

“Cut through the
stack for speed!”

LET’S THINK ABOUT DERECHO

Provides ultra-fast data replication with Paxos guarantees

Key steps:

 Identified a hardware capability that has been overlooked for data
replication tools: RDMA transfers

 Studied that hardware closely. It has many capabilities, but used two:
 Reliable “two-sided” RDMA transfers (Q posts a receive, then P’s send can start)
 Reliable “one-sided” RDMA (Q permits P to write into a memory area)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

IS DERECHO AS GREAT AS KEN CLAIMS?

All of our experiments were totally honest.

But… there are complications.

To understand them, we need to understand the hardware better

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

TODAY’S LECTURE TOPIC

What made it hard to build Derecho?

Where are the surprises?

In what ways did Paxos and virtual synchrony “evolve”

 The underlying concepts were unchanged

 But the implementations are very different than in older systems!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

DERECHO STARTS WITH A BASIC FAST
MULTICAST
What would be the best way to do an RDMA multicast with reliability
similar to N side-by-side TCP connections?

 We could just have N side-by-side reliable unicast RDMA connections

 We could use one-sided RDMA and have N “round-robin ring buffers”.
The sender could do a lock-free buffer “put” and the receiver, a lock-
free “get”.

 We could do a tree to disseminate the data using RDMA unicast

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

IT TURNS OUT THAT THERE ISN’T ONE ANSWER!

The problem with doing N side-by-side RDMA connections is that with
reliable RDMA Unicast (or with TCP!) the sender and receiver need to
agree on the size of the object being sent.

 The receiver will need to have a suitable memory buffer posted for
the incoming DMA transfer.

 So this means the sender must tell the receiver the buffer size first, then
wait for the receiver to post the buffer: an RPC interaction.

 Plus, the solution turns out to scale poorly if you do it this way.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

WITH SMALL MESSAGES, USE N RING BUFFERS

One-sided RDMA writes into ring buffers work
well for smaller messages (maybe up to 1KB).
 Inside Derecho this is called SMC.
 There needs to be one ring per destination, each with enough memory

for R messages. The memory is allocated and posted in advance
 Lock-free updates to the counters of messages in the buffer and free

slots are easy to implement.
 The round-robin buffer soaks up any mismatch in speed between the

sender and receiver.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

WITH LARGE MESSAGES, THOUGH…

Here we need something fancier.

We don’t want to do N RDMA unicast writes for a big object: inefficient.

So we need a tree.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

RDMC: MULTICAST ON RDMA
Source

Dest
Dest

Dest
DestMulticast

Binomial Tree Binomial Pipeline Final Step

11
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

KEY IDEA… AND LIMITATION…

RDMA is good at large, steady streams. RDMC is optimized for that case,
and works best as a pipeline. SMC is tuned for streams of small messages.

But protocols like Paxos also need some amount of back-and forth

SMC and RDMC aren’t matched to “2 phase” kinds of interactions.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 12

Suspected Proposal nCommit Acked nReceived Wedged

A F T F 4: -B 3 4 5 3 0 T

B F F F 3 3 3 4 4 0 F

C F F F 3 3 3 5 4 0 F

A CB

BA C BA C
mA:1
mA:2
mA:3
mA:4
mA:5

mB:1

mB:2

mB:3
mB:4

Derecho group with members {A, B, C}
in which C is receive-only

V3 = { A, B, C } Current view, showing senders A and B
C is a “receive-only” member

B fails, resulting in an
uncertain state

IMPLEMENTATION: DERECHO = RDMC/SMC + SST

13HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

DERECHO’S SHARED STATE TABLE

Derecho uses the SST for back-and-forth sharing of data:

 Instead of messages, SST lets programs talk through shared memory

 Each row is a “struct” in C++. Derecho developers define the format.

 Each machine can write to its own row, “push” to other machines

 Each has a read-only replica of the rows of others

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 14

P’s row 227 16 True

Q’s row 188 19 False

R’s row 191 18 False

SST PUSH OPERATION

P updates its row, then SST issues a series of one-sided RDMA writes.
These copy the changes to other machines

… the transfers occur “silently” and Q’s row is updated to match P’s new
version. The actual transfer is via DMA, low address in memory first,
reliable, fifo, etc. Q rereads the data to see that it changed

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 15

P’s row 227 16 True

Q’s row 188 19 False

R’s row 191 18 False

P’s row 227 23 False

Q’s row 188 19 False

R’s row 191 18 False

RDMA writes

Machines Q and R have read-only copies of P’s row

SST PROGRAMMING

Because the SST is lock-free, values can change “under your feet”.

But this is also good, in the sense that threads don’t disrupt one-another.

It motivates us to program the SST in an unusual way

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 16

SST PROGRAMMING

SST programming: via a kind of “predicates”

if (some condition holds) { … trigger this code … }

 We made a choice: we create rows of “monotonic” values that
change in one direction, like a counter (it only gets bigger)

 We define “aggregating” operators that compute things like min.
If the underlying values only get larger, min only gets larger too

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 17

STABLE AND MONOTONIC PREDICATES

A deduction (a predicate) is stable if, once it becomes true, it remains true

 Suppose counter is a column in the SST, and is monotonic

 min(counter) = v is not stable in the SST: if the counters grow, min grows

 … but min(counter) ≥ v, in contrast, remains true once it becomes true

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 18

STABLE AND MONOTONIC PREDICATES

A deduction (a predicate) is stable if, once it becomes true, it remains true

Some stable predicates are also monotonic, in this sense:
 If Pred(min(c)) holds, then ∀ v < c, Pred(v) holds.

Monotonic predicates allow receive-side batching of actions,
like delivery of messages 0..min(c)

if (… messages 0..min(c) are stable) { deliver(0, min(c)) }

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 19

THIS IS NOT AN OBVIOUS WAY TO PROGRAM!

Notice how the hardware forced us to program differently:

 The hardware is very fast, but only if used in a certain way

 To use it in that way, at that speed, we couldn’t do “normal” things,
like sending messages and waiting for acknowledgements, or votes

 So we had to invent this new shared table abstraction, and had to
rewrite the standard Paxos protocols in a totally new way

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 20

… NOT UNUSUAL WITH NEW HARDWARE!

New hardware often results in ideas like Derecho

Specialty hardware can be extremely fast, but often requires that you
use it in some very unfamiliar way.

If we just run the old style of algorithm on the new hardware, but in the
old way, we wouldn’t benefit

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 21

… OR EVEN SOME OLD HARDWARE

After building it, we realized that Derecho is actually faster on TCP too,
although not quite as fast as with RDMA.

This is because modern TCP in a datacenter is incredibly fast, only about
4x slower than RDMA if you use it “just right” (TCP won’t hit this rate out of
the box, it takes a lot of tweaking the application to get those speeds)

Also, TCP has pretty high “lowest delay” numbers (latency)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 22

2-PHASE COMMIT “VIA” SST

P writes something, like “I propose to change the view”.

Q and R echo the data, as a way to say “ok”

When all have the identical data in their rows, we consider that the
operation has committed.

In fact the SST can carry many kinds of information: values that change
(ideally, in one direction: monotonic), messages, even multicasts.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 23

A LONG SEQUENCE OF 2PC ACTIONS

For a single 2PC, SST wouldn’t be much faster

But Derecho has to do 2PC on millions of Paxos atomic multicasts/second

At those speeds, the SST monotonicity pays off

 Senders ask for votes on all messages up to n. N is a counter.

 Receivers vote ok up through k, and this allows monotonic reasoning.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 24

INITIAL CONCLUSION

We managed to make Derecho very fast, but to do so:

 Had to come up with a way to move bytes at crazy speed.

 Then had to come up with a “control plane” that can run separate from
the data plane.

 Turned out it needed a lot of 2PC kinds of mechanism. To get those to
be fast we invented this whole way to program the SST.

 A lot of work, but the payoff was extreme speed.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 25

DERECHO: THE REMAINING PUZZLES

To get the full speed of the technology

 You need to work in C++. But many people prefer Python, Java…

 Programs need to be “zero copy”. But most people have no idea
if the packages they use do copying

 Your code needs to be nearly lock free and rather pipelined.
Few people are used to coding this way

Is it worth it? Derecho is as much as 15,000x faster than other options…
but only if you use it properly!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 26

ZERO COPY REQUIREMENT

Moreover, to get the full possible speed of Derecho, you need to write
code that won’t involve any copying (even using memcpy, or even
automated copying done in the programming language runtime).

Copying is slower than RDMA!

This is quite tricky: Your application needs to use RDMA “everywhere” for
large objects where performance will be critical.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 27

OTHER ACCELERATORS: SIMILAR STORIES

GPU units require entire special programming languages (CUDA) and a
really peculiar programming style (move object into GPU, load program,
press “run”, move results back into CPU memory)

FPGA accelerators have to be coded in a gate-level language, like the
ones used for VLSI chip design.

Network interfaces can be programmed, but the run a very strange kind
of code focused on moving messages (P4, but it isn’t yet a standard).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 28

NOW WE KNOW ALL
ABOUT DERECHO.

Should everyone
switch to it in all their
edge systems?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 29

THERE IS A SMALL ISSUE…

Not so fast… RDMA doesn’t really work in datacenters! A long history…
 RDMA was invented in connection with a novel networking approach

called Infiniband. It competes with optical ethernet
 In ethernet, senders send packets, and packets are dropped if

congestion (overload) occurs.
 This causes loss if the packets are part of UDP messages, but TCP

retransmits missing chunks.
 It “backs off” (slows down) if loss occurs
 Additive increase, multiplicative backoff

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 30

INFINIBAND ISN’T ETHERNET

In Infiniband, no device sends unless it has permission to send from the
receiving device first

So when a router transmits a packet to another router, for example, the
receiver has granted “credit” for the sender to send B bytes.

This is true for every step along the route!

 Hop by hop, no data is moved without assurance of a place to put it

 The optical network layer is so reliable that Infiniband is lossless!
 More precisely: Loss is incredibly rare and usually caused by some form of crash

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 31

SUPERCOMPUTERS LOVE INFINIBAND

The “market share” for Infiniband in HPC systems is extremely high

Ethernet is unpopular because those packet drops aren’t rare, and this
causes erratic performance.
So we now have 15 years of experience with Infiniband with as many as
hundreds of thousands of datacenter computers!

RDMA was born in this world: DMA transfer over Infiniband works because
hop by hop, no loss ever occurs. Every piece of data is moved reliably
at “optical network” speed. Today: 200Gbps (bi-directional) is available

 In contrast, memcpy with a single core is more like 36 Gbps for large
transfers that can’t leverage the L2 cache.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 32

RDMA ON CONVERGED ETHERNET: ROCE

The idea emerged of running RDMA over optical ethernet, around 2010

Puzzle: RDMA doesn’t do retransmits over Infiniband, and a full TCP-style
solution wouldn’t be nearly as fast

So, how to get RDMA to run in a setting without sender credits?

They introduced a concept of “Priority Pause Frames”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 33

RDMA ON CONVERGED ETHERNET: ROCE

The idea emerged of running RDMA over optical ethernet, around 2010
They introduced a concept of “Priority Pause Frames”
 An overloaded router or switch or NIC sends PPFs to the sender of a

flow if it becomes overloaded by incoming data
 The RDMA NIC pauses, then restarts the transfer (the entire transfer)

if it receives even a single PPF
… but unfortunately, PPF didn’t work very well
 It can generate PPF “storms” and RDMA performance collapse

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 34

“BUT DOES ROCE WORK??”

There are many stories of datacenter technologies that didn’t work well

They include optical Ethernet multicast (broadcast), early web server
technologies, early packet routing solutions, early ways of connecting
browsers to web servers, early DDoS attack filters

Often, they disabled entire datacenters when they malfunctioned!

… so datacenter operators are not eager to embrace
RoCE yet, because “a little unstable” can mean “my
datacenter could be toast”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 35

ETHERNET “BROADCAST STORMS”

A long story, but we’ll abbreviate it…

Your friendly local ethernet supports broadcast (all receive everything) but
also a more selective “multicast” (it has a form of topics, represented by
an integer, and only machines subscribing to the topic receive the
messages for that topic).

… but, the integers must be in a fairly small range (12 bits)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 36

IMAGINE A MASSIVE DATACENTER

Suppose it was using this feature

With widespread use, we run low on multicast addresses

And it turns out that even if we fix this (IPv6) the hardware has the same
issue for a different reason!

… with a few thousand addresses in use, it treats multicast as broadcast

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 37

WHAT DOES THIS MEAN? “TREATS ETHERNET
MULTICAST AS A BROADCAST”?
In your design, some message was intended for 2 receivers, perhaps even
in the same rack (it won’t be forwarded, when things work properly).

Instead, it gets delivered to every computer in the whole data center.

We end up with all-to-all messages: broadcasts, and everyone receives
every single one of them!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 38

TRY TO VISUALIZE THE PATTERN

Suppose that we have a half million machines

Some application forms small groups of perhaps 4 machines. There are
10,000 machines running this: 2,500 small groups. The groups have a
message traffic of 20 msgs/s (the 4 members send ~5 msgs/s each).

Now suppose that due to this hardware problem, every multicast behaves
like a broadcast. How many messages/second are delivered to an
average machine in the data center, one not part of the 10,000?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 39

Every machine suddenly
receives 50,000 msgs/s

COULD RDMA MULTICAST OR DERECHO
TRIGGER SUCH A STORM?
No, not in a literal sense
 The multicast storm was caused by a feature of routing and NICS

specific to the way that Ethernet class-D multicast forwarding is done
 In fact the “cause” is that a hardware hash-table fills up and overflows

(underlying limitation: “Bloom filter” hash tables are too small)

But in the larger sense, the story is about how a technology used by one
subsystem can overwhelm the whole datacenter and disrupt other systems
 So you need to ask: “Could enabling use of RDMA disrupt the cloud?”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 40

TURNING THIS INTO A TECHNICAL QUESTION

The cloud is stable because TCP congestion control is stable.

RDMA doesn’t use TCP congestion control.

Does this imply that if we use RDMA heavily, our TCP traffic will be
starved and our data center will become unstable?

In fact… yes. RDMA can be destabilizing in this way! Enter… DCQCN

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 41

DCQCN

Data Center Quantum Congestion Notification is a new idea from
Microsoft and Mellanox that uses end-to-end congestion notification
Basically, these are the same as credits in Infiniband
Experiments on modest datacenter clusters worked well!
 RDMA + DCQCN enabled RDMA to work in normal datacenters!
 A disruptive and transformational development!

Not so fast… does it really work? At full scale?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 42

MICROSOFT AZURE SET UP A RED TEAM

Goal: Deploy DCQCN side by side with normal
TCP/IP in a new Microsoft datacenter, during the
burn-in testing period (about six weeks long)

Test aggressively – try and see if they can trigger problems.

 Includes misconfiguration, but not “breaking the logic”

 They want to know: are we getting into trouble here?

Guess what? It didn’t work!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 43

ISSUES THAT WERE IDENTIFIED

RDMA and normal TCP/IP interfered with each other.
PPF standard requires “Enterprise VLAN” feature on switches. Azure
doesn’t use this technology.

But they solved these
 They repurposed another (also unused) feature called “DiffSrv”
 There was a DiffSrv packet format that could be reused for PPFs
 DiffSrv also allowed TCP/IP to run side-by-side with RDMA, isolated

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 44

… IT STILL DIDN’T WORK

They discovered that RDMA + DCQCN + DiffSrv + PPF could cause a new
kind of routing / congestion loop
It was triggered by a form of resource exhaustion because the TCP/IP
layer and the RDMA layer were sharing buffers inside NICs, switches and
routers.
By dividing the resources into pools, this could be solved. But their
hardware lacked a way to do that. They solved it by “overprovisioning”
 They bought more memory for the routers and switches than needed
 Then configured to make sure that the memory never gets used up

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 45

“Jim, it dinna work.
Antimatter containment

will fail in 3 minutes!”

MORE LIMITATIONS

RDMA only works if the application is working from “pinned” memory
pages, and works best if the memory pages are huge.
 Seems to be at odds with virtualization
 Advances in RDMA hardware may help reduce these issues

When an RDMA transfer finishes, the program can definitely access the
data. But if you instantly do a DMA transfer to disk, or try to display it on
a graphics device, caches and pipelines may need to be flushed first.
 There is no standard way to actually do this.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 46

IN THE END, THEY GOT IT RUNNING!
Today, Azure uses RDMA, but only for system services (for now)
Azure HPC actually does have application-layer RDMA, but only for
people who use a package called MPI.
 In fact, MPI doesn’t share the devices with normal TCP/IP
 Instead, Azure HPC computers have an entire extra Infiniband network

In the future, Microsoft may expand use of RDMA to allow some trusted
subsystems to also use it. Probably it will never be free for general use.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 47

… SO, CAN YOU USE DERECHO ON AZURE?

Nope. It may be possible to run Derecho on Azure HPC soon, and
perhaps also on Azure containers.

But virtualization seems to be incompatible with RDMA

And even where Microsoft has RDMA, they don’t allow you to access it yet.

Plus, if you had Derecho, would you be able to get the full speed?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 48

RDMA IS JUST ONE OF MANY “PLAYERS”

This story of RDMA as an accelerator in the cloud is just one of a few

Each technology has many hurdles to overcome!

 Is it way faster than not using it?

 Will it save the cloud owner money?

 Is it stable? Really stable?

 How hard will it be to “manage”?

 How hard is it to program?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 49

PROGRAMMABLE COMPONENTS

General purpose cores on NUMA machines
Network Interface Card (NIC) for modern RoCE (RDMA-capable Converged
Optical Ethernet). Optical network itself.
Storage components (SSD)
Network Switches and Routers
Field Programmable Gate Array (FPGA), FPGA clusters, ASICs.

GPU (graphics accelerator) and GPU clusters.
TPU (tensor processor unit) and TPU clusters.

Quantum computing hardware

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 50

AGAIN, A SIMILAR STORY

Every one of these has amazing potential, but to leverage it can require
changing all sorts of things that used to be standard in Linux

As the modern data center evolves, we will run into that issue often.

Yes, we want accelerators. But the pain level is substantial!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 51

ROUGH ROAD AHEAD!
The latest new thing always sounds amazing…

100x Speedups have a chance of adoption, if your pain tolerance is high!
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 52

The boss: Paid to say “no”!

The pitch. What could go wrong?

Paradise awaits!

Road to Paradise

	CS5412 / Lecture 26�The Challenges of Introducing RDMA into cloud datacenters
	Context for this lecture
	Life on the edge
	Let’s think about Derecho
	Is Derecho as great as Ken claims?
	Today’s Lecture topic
	Derecho Starts with a basic fast multicast
	It turns out that there isn’t one answer!
	With small messages, use N ring buffers
	With large messages, though…
	RDMC: Multicast oN RDMA
	Key idea… and Limitation…
	Implementation: Derecho = RDMC/SMC + SST
	Derecho’s Shared State Table
	SST Push operation
	SST Programming
	SST Programming
	Stable and Monotonic predicates
	Stable and Monotonic predicates
	This is not an obvious way to program!
	… Not unusual with new hardware!
	… or even some old hardware
	2-phase commit “via” SST
	A long sequence of 2PC actions
	Initial conclusion
	Derecho: The remaining puzzles
	Zero Copy requirement
	Other accelerators: Similar stories
	Now we know all �about Derecho.
	There is a small issue…
	Infiniband isn’t Ethernet
	Supercomputers love Infiniband
	RDMA on Converged Ethernet: RoCE
	RDMA on Converged Ethernet: RoCE
	“But Does ROCE work??”
	Ethernet “broadcast storms”
	Imagine a massive datacenter
	What does this mean? “Treats Ethernet multicast as a broadcast”?
	Try to visualize the pattern
	Could RDMA multicast or Derecho trigger such a storm?
	Turning this into a technical question
	DCQCN
	Microsoft Azure Set up a red team
	Issues that were identified
	… it still didn’t work
	More limitations
	In the end, they got it running!
	… So, can you use Derecho on Azure?
	RDMA is just one of many “players”
	Programmable components
	Again, a similar story
	Rough Road Ahead!

