
CS5412/LECTURE 23
HARDWARE ACCELERATORS

Ken Birman
CS5412 Spring 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

IN THE EARLY DAYS, DIVIDE AND CONQUER
SUFFICED
People broke web page computations into a first-tier, and then a bank of
specialized µ-services optimized for highly parallel computation.

Then sharded data and held it in memory, and created huge in-memory
(key,value) layers.

Batched programming techniques helped to amortize overheads,
introducing delays, but weak cache consistency made some delay tolerable.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

YET THIS TURNED OUT TO BE EXPENSIVE!

Cloud computing companies began to look closely
at their cost of operations, and use of energy

An efficient cloud would fully utilize hardware but also minimize energy
consumption. Those early steps were valuable and improved these metrics.

But as the model matured, inefficiencies became more apparent
 A lot of resources were “owned” but not fully used.

 Time and money and energy was being spent waiting.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

TENSION: GENERALITY VS. EFFICIENCY

If we understand the workload deeply, we can often create extremely efficient
specialized solutions, and could even create specialized chips that only include
the exact hardware ideal for the task.

But because computing workloads evolve, the solution would only be ideal for a
few years, at best. Then it would start to seem inflexible and inefficient!

Conversely, if we are overly general, we have this issue of copying data from
place to place, and perhaps computing in less than ideal ways.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

CAN WE HAVE IT ALL?

Modern datacenter hardware designers are asking:

 Can they create general purpose solutions in a normal way…

 … yet leverage specialized hardware where the benefits are large

 … in way that still can be upgraded periodically, or “repurposed”

 … and cut back on work done on the general purpose CPUs?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

BROAD HARDWARE TRENDS

There has always been a tradeoff between generality and efficiency

A general purpose CPU has considerable advantages:
 Very cost-effective (high volume sales drive costs down)
 Highly performant (Moore’s law, until ~2010. Multicore+hyperthreading

since then), flexible (lots of languages, computing models), familiar.
 Virtualization (VMs and containers) easily support sharing, so cloud

can pack jobs to keep machines busy.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

Amazon AWS server card

BUT FOR CERTAIN TASKS, SPECIALIZED
HARDWARE IS REALLY NEEDED
Basically, these are devices that can either do something in hardware that
normal CPU instructions don’t support (like direct operations on analog
signals), or they can do parallel operations very efficiently.

The parallel computing opportunity is the most intriguing, today.

Someday, the analog dimension may get more attention.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

ACCELERATORS: THE SECRET TO AZURE
PERFORMANCE!
It is important to understand how vital these accelerators are in the cloud.

People who pretend the cloud is just a rent-a-server model lose access to
the accelerators (the vendors all have security features that block you).

So because the accelerators are so amazing, you must use µ-services!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

HOW MUCH SPEEDUP CAN WE HOPE FOR?

This was a debated topic in the 1970’s.

Some people imagined that there could be magic ways to speed
computation up, and the people building the actual chips needed to find a
way to limit these unrealistic expectations!

Eventually, Gene Amdahl found a way to explain the limits.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

AMDAHL’S LAW

Consider a computational task. We can express the code in terms of actions
that can occur in parallel, and actions that can only be done sequentially.

Measure the path-length of the sequential portion. This is performance-limiting
for the whole computation!

If F is the fraction of a calculation that is sequential, and (1-F) is the fraction that
can be parallelized, then the maximum speed-up that can be achieved by using
P processors is 1/(F+(1-F)/P).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

EXAMPLES

If 90% of a calculation can be parallelized then the maximum speed-up
on 2 processors is 1/(0.1+(1-0.1)/2) or 1.8 (i.e. investing twice as much
hardware speeds the calculation up by almost 2x)

… but with 10 processors, we only get a 5.2x speedup

… on 20 processors, our speedup is 6.9x: diminishing returns!

… on 1000 processors is 1/(0.1+(1-0.1)/1000) or 9.9x

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 11

HIGHWAY ANALOGY

You buy a Tesla, take it out on California Route 101, and mash the
“Ludicrous Acceleration” button.

It can instantly accelerate to the speed of light! But you won’t get far…

Your commute will be limited by “stragglers”.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 12

THE OTHER LIMITING FACTOR: HEAT!

The clock rate might seem like a limiting factor, but a faster clock rate
pumps more energy into the circuits and logic gates.

The heat dissipated will be proportional to the square of the clock rate.

In a parallel computing device, the whole surface might be active. So very
fast clock rates make a chip run very hot.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 13

BUT IF A DEVICE GETS T OO HOT…

Even a general purpose CPU is close to the heat-dissipation limits!

Operating systems like Linux run the clock as slowly as possible for less
active computing elements, and even disable hardware components that
are not currently in use. This helps.

But the clock rate on an accelerator might actually be lower than for a
standard CPU! The (only) big win is parallelism.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 14

SO ACCELERATION OPTIONS ARE LIMITED TO
HIGHLY PARALLEL TASKS OR “BUMP IN THE WIRE”

Hardware might be able to perform highly parallel steps rapidly.

We can also use hardware to reduce the work the host computer is doing.

And if host computers can’t actually keep up with the network, we could
perhaps wire the network directly to the hardware accelerator and if
we’re lucky, the device might keep up with the incoming data!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 15

ACRONYM CITY!

So now we’ll review a staggering list of incomprehensible 4-letter terms.

You should memorize these to impress people.
But we wouldn’t see them on exams!

Sort of a “survey of the options”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 16

Dude! They run Verilog on a
Xilinx Vertix 5QV!

Cool! Can’t wait to tell Mom!

FIRST, STANDARD CPUS

As you know, prior to 2010 Moore’s law was still “in control” and we had
general purpose CPUs, with associated DRAM and caches, rotating disks.

Around 2010 rotating disks were displaced by flash memory drives. These
are actually kind of slow, so they often have some DRAM as a buffer.

Simultaneously, chip designers invented branch prediction, data
prefetching, speculative execution, hyperthreading, out-of-order exeuction

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 17

AFTER 2010 WE SAW NUMA

Today, a cloud computing data center server probably has 12 or more
cores per CPU chip, with DRAM organized into clusters, perhaps 4 chunks
of DRAM with 3 cores each. (More cores/server are likely in the future)

An on-board coherency protocol allows any core to access any memory,
but the fastest data path is to the local DRAM.

Then with container virtualization, we can run lots of programs per server.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 18

STORAGE DEVICES ARE IMPROVING TOO…

Disk I/O (even with flash SSD drives) often limits performance.

New “non-volatile memory” options like Intel’s Optane NVMe are much
faster. They use “phase change memory” technology. Today:

 NVMe is the new flash (somewhat expensive, but very fast)

 Flash is the new disk (slow, but cheaper and more capacity)

 Disk is the new tape (even slower, but massive capacity)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 19

NETWORKS HAVE EVOLVED TOO

The Network Interface Card (NIC) on your server now has a small
operating system in it, and runs programs in C! (Written by the vendor)

You can perform DMA transfers directly from machine to machine, not just
from the network in and out of the machine as before. “Remote DMA” is
like TCP (reliable, ordered, etc) but the hardware does all the work.

RDMA is way faster than TCP: we have RDMA at 200Gbps today, but the
fastest TCP solutions are easily 4x or 6x slower.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 20

RDMA FEATURES

With RDMA you can do some cool tricks

 Recall that with a NUMA machine, one core can access memory on any
DRAM, so every machine shares the full memory pool.

 With RDMA, any core in the data center can potentially DMA transfer
to memory anywhere else in the data center (but only if authorized).

 Moreover, RDMA allows direct access to variables or data structures
hosted on a remote machine, too! (Again, only if authorized)

This is like having a normal computer, but a million times more memory…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 21

GPU: A COMMON OPTION

Desktop computers generally have a multicore general-purpose computing
infrastructure, but servers have a GPU that the general machine controls.

The vendor creates a software library, so that a general purpose program can
ask the GPU to perform a computation:
 DMA transfer to copy the data from general-purpose DRAM memory

into the specialized GPU memory, which allows highly parallel access.

 GPU program executes to perform desired actions.

 Finally, the results are copied back to the general purpose host.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 22

Titan GPU cluster

GPU PROGRAMMING IS HARD!

Example of CUDA code

There has been work on taking a general program coded in Java or C#
and automatically finding “patterns” that can run on a GPU. Like a new
compilation model in which the GPU offers special “instructions”.

This gets to within 5x or 10x of hand-coded CUDA, but that isn’t enough

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 23

EVEN USING PREBUILT GPU LIBRARIES IS AN ART

If our goal was just to recolor photos, it might be easier.

But graphics and vision algorithm often do very elaborate long sequences
of matrix operations, and they may be designed with the specialized
graphic display cards in mind (those cards can “see” data directly in
memory, and can perform some operations on their own, like rescaling).

As a result, hard-core gaming or imaging companies hire specialists.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 24

LIMITING ISSUES WITH GPU?

First, heat: on a GPU chip, we do a form of single-instruction, multiple data
processing (like “multiply every pixel by this value”). Expends a lot of energy

But also copying: You also do a lot of copying from the general purpose host
memory to the GPU memory, then back. (Hidden in GPU library, but costly).

The GPU has “extra logic” not really needed for machine learning. If we could
just power those features down, we could reduce these costs.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 25

“GPU FOR MACHINE LEARNING”?

There has been more and more pressure to equip every computer in the
cloud with a GPU, but this is very costly if those GPU units aren’t all in use.

Still, many data centers take this approach.

Google is betting that GPUs just aren’t cost-effective at scale and decided
to strip the concept down to a minimum: TPUs == “Tensor Processing Units”

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 26

TPU IDEA

If the main demand for GPU is from machine learning, not full graphics
code, we only need to support a subset of operations.

Google focuses on “tensor arithmetic” (a tensor is just a matrix, but with d
dimensions rather than just 1 or 2).

Because less heat is produced by “unnessary circuitry” we can reduce
energy costs, or even run the clock a bit faster.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 27

Google’s first TPU unit

TENSOR FLOW LANGUAGE?

Tensor flow is a version of Python extended to have a built-in concept of
tensor objects and TPUs. Easy to express machine learning code this way.

The typical program is a kind of data-flow graph in which nodes compute
and these tensors “flow” from input sources to outputs.

Mostly, tensor flow programs run on one NUMA machine, taking
advantage of the attached TPU unit to accelerate the mathematical steps.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 28

FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

As you know, a CPU chip just maps instructions down to gate-level
operations like AND, OR, XOR, NOT.

Xilinx invented a way to take a chip and “download” a wiring diagram
and a logic diagram to it. So you can “configure” your chip to have, say,
an ARM or i86 processor on it. Of course that would be silly.

But you can also design your own specialized chip, and in theory, it could
do anything a GPU or TPU could do, or anything else, really.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 29

FPGA PROGRAMMING IS HARD!

Chip designers use Verilog, and FPGA designers do too.

Normal chips are carefully debugged. If you try to create your own
FPGA chip and it has bugs, you can cause the FPGA device to hang.

So FPGAs are often built up from libraries of logic blocks that are
carefully tested, but this makes FPGA programming a specialized task.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 30

EVEN SO…

FPGA turns out to be a very cost-effective option for some important cases
seen in today’s cloud!

Cryptography is one example: As a “bump in the wire”, we can use FPGA
chips to perform whatever cryptographic action is needed for various
network security protocols (there are many).

You could create an “Application Specific Integrated Circuit” (ASIC) for
each protocol, but an FPGA solution can be reconfigured as needed…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 31

EVEN SO…

There is also very exciting work on mapping deep neural networks to
clusters of FPGA chips.

This yields very rapid and cost-effect image classification solutions, or
voice recognition ones. The future of vision and speech could easily
depend on these FPGA clusters.

But these ideas depend on having a cloud full of data (the models used
are massive, and there may be one model per “situation”)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 32

NICS AND ROUTERS

We mentioned that NICs are able to do RDMA and run a kind of TCP on
the card, in a dedicated processor.

But NICs and Routers are actually becoming programmable

Useful for many tasks: “smart routing” that looks into packets and directs
packets based on content. Network virtualization. And there is even talk
of running machine-learning tasks “directly” in the network itself.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 33

AND THERE IS EVEN MORE!

I didn’t even mention

 iSGX: Intel’s hardware-based privacy and security model

 Bitcoin mining and BlockChain “proof of work” codes

 Special chips for performing tasks like FFTs and Sonar/Radar/Lidar

 Chips with analog components, or optical components

 Quantum computing accelerators …

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 34

OPTICAL NETWORKS

Looking to the future, people are noticing that we can run multiple
wavelengths on a typical strand of optical network fiber.

So why not have multiple side-by-side networks?

And if the application owns its own “wavelength”, why not make that
network specialized in various ways: a “software defined optical
wavelength” just for the particular application!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 35

HYPERSTORAGE

Other cool ideas involve storage systems with insane capacity!

 A single cube of computing-quality silicon can “record” 7-bit “numbers”
using a tricky laser “zap” system (in a “write once” model)

 Then the data will persist for as long as 100,000 years!

 One silica chip of this kind could hold all the movies ever made, plus
the whole library of Congress, and would only be ~1/3 full.

There is another massive scale concept that uses DNA as a
medium. DNA memory can potentially be read-write

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 36

Microsoft Silica Zettabyte Storage Unit

DISAGGREGATION

Some people believe that eventually, data centers will evolve into what
they call a “disaggregated” model.

In this we will have racks of identical components: one kind of rack
specialized for CPU, another for memory, for storage, for TPU / GPU, etc.

Then the network wiring will evolve to let us “assemble” the ideal virtual
processor on the fly, with exactly the hardware for the specific use case.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 37

SO WHAT’S THE PROBLEM?

The cloud is becoming massively complex and specialized! And yet if you
ignore all this stuff, your performance would be very poor.

The only possible answer is to learn to use the vendor-provided µ-services,
because those take full advantage of this special hardware.

When you use their services and don’t try to roll-your-own, you get cost-
effective and scalable performance (and don’t need to learn Verilog).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 38

VENDORS HAVE A PROBLEM TOO:
LINUX ISN’T UP TO THE NEW ROLE

Employees at cloud companies want to write programs in a normal way!

(Even Microsoft has become a mostly Linux company.)

But Linux wasn’t designed for specialized accelerators and cross-computer
memory access and computation occurring at every level of every device…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 39

You can bolt stuff to a Model T, but
it still is a Model T underneath!

LINUX ISSUES…

Its basic model is of a program with memory…

 But for most of this hardware the program actually controls some sort
of device “outside” the computer, with its own memory, and maybe
its own network connection.

 Even copying just once might be 10x or 100x slower than what the
device could have done directly on the wire

We also lack a security model for this kind of distributed sharing,
and we don’t understand how stable these new technologies will be

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 40

TODAY’S SITUATION?

As the owner of an infrastructure, a company like Google, Microsoft or
Amazon can build µ-services that leverage all sorts of specialized
hardware to accelerate important tasks.

But as a developer, you can only benefit if you use their µ-service, not by
trying to leverage these devices “directly”.

Why? Because they worry about the risk of instabilities (very real).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 41

TECH TALES FROM THE CRYPT

 The data center that couldn’t stop rebooting

 Bob forgot to verify his Verilog

 Oracle maxed out... on Black Friday

 Attack of the zombie refrigerators

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 42

“They that live by the sword shall die by it…”

BUT WHY ARE THOSE RELEVANT?

Only some involve new hardware.

But they all illustrate how when we change the way we do things,
unexpected disruptions are a common consequence.

Even success can be a cause of technology collapse – risks are inevitable.
But don’t panic. The game is to just accept that we need to climb this
endless slope: better technology, that creates opportunity, but brings issues.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 43

SUMMARY?

Specialized hardware is a key to cost-effective modern cloud computing. Yet
these innovations are also creating new “risks”.

Accelerators will be even more critical if the future IoT edge needs a lot of
support for very rapid computer vision, speech recognition, and intelligence. But
these devices will need to live near the edge.

Accelerators can only be used in a µ-service model. The main exception is that
end-users do have ways to access TPU and GPU accelerators from their code,
via libraries of numerical methods.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 44

	CS5412/Lecture 23�Hardware Accelerators
	In The early days, divide and Conquer Sufficed
	Yet this turnED out to be expensive!
	Tension: Generality vs. Efficiency
	Can we have it all?
	Broad Hardware Trends
	But for certain tasks, specialized hardware is really needed
	Accelerators: The Secret to Azure Performance!
	How much speedup can we hope for?
	AmdahL’s law
	Examples
	Highway analogy
	The other limiting factor: Heat!
	But if a device Gets too hot…
	So acceleration options are limited to highly parallel tasks or “bump in the wire”
	Acronym City!
	First, standard CPUs
	After 2010 we saw NUMA
	Storage devices are improving too…
	Networks have evolved too
	RDMA features
	GPU: A Common option
	GPU Programming is hard!
	Even using prebuilt GPU libraries is an ART
	Limiting issues with GPU?
	“GPU For machine learning”?
	TPU idea
	Tensor Flow language?
	Field Programmable Gate Arrays (FPGA)
	FPGA programming is hard!
	Even so…
	Even so…
	NICS and Routers
	And there is even more!
	Optical Networks
	Hyperstorage
	Disaggregation
	So what’s the problem?
	Vendors have a problem too:�Linux isn’t up to the new role
	Linux issues…
	Today’s Situation?
	 Tech tales from the crypt
	But why are those relevant?
	Summary?

