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CONCEPT OF ELASTIC SCALABILITY

The sheer size of the cloud requires a lot of resources.   These are 
allocated elastically, meaning “on demand”. 

Size: A company like Facebook needs to run data centers on every 
continent, and for the United States, has four major ones plus an extra 50 
or so “point of presence” locations (mini-datacenters).  

A single data center might deal with millions of simultaneous users and 
have many hundreds of thousands of servers.
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Not this kind of elastic!    



LOAD SWINGS ARE INEVITABLE IN THIS MODEL

People sleep in Seattle while they are waking up in New York.

People work in Mumbia when nobody is working in the USA

So any particular datacenter sees huge variation in loads.
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SHOULD THESE ELASTIC SERVICES BE BUILT AS 
ONE BIG THING, OR MANY SMALLER THINGS?

Much like our “how to implement a NUMA server topic”

One big thing: we would need to have all the members of the elastic pool 
share a single “state”, like by holding it in a database (or replicating data 
but holding it in memory).

Many small things: We split the data itself into chunks (“shards”).
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SINGLE BIG SERVICE PERFORMS POORLY… WHY?

Until 2005 “one server” was able to scale and keep up, like for Amazon’s 
shopping cart.  A 2005 server often ran on a small cluster with, perhaps, 
2-16 machines in the cluster.

This worked well.

But suddenly, as the cloud grew, this form of scaling broke.  Companies 
threw unlimited money at the issue but critical services like databases still 
became hopelessly overloaded and crashed or fell far behind.
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JIM GRAY’S FAMOUS PAPER

At Microsoft, Jim Gray anticipated this as early as 1996.

He and colleagues wrote a wonderful paper from their insights:

Basic message: divide and conquer is really the only option.
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The dangers of replication and a solution. Jim Gray, Pat Helland, Patrick O'Neil, and Dennis 
Shasha. 1996. In Proceedings of the 1996 ACM SIGMOD Conference.  pp 173-182. 
DOI=http://dx.doi.org/10.1145/233269.233330

Jim Gray
(Jan 1944 – Jan 2007)



HOW THEIR PAPER APPROACHED IT

The paper uses a “chalkboard analysis” to think about scaling for a system 
that behaves like a database.

 It could be an actual database like SQL Server or Oracle

 But their “model” also covered any other storage layer where you want
strong guarantees of data consistency.

 Mostly they talk about a single replicated storage instance, but look
at structured versions too.
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THE CORE ISSUE

The paper assumes that your goal is some form of lock-based consistency, 
which they model as database serializability (in CS5412 we might
prefer “state machine replication”, but the idea is similar).

So applications will be using read locks, and write locks, and because we 
want to accommodate more and more load by adding more servers, the 
work spreads over the pool of servers.

This is a very common way to think about servers of all kinds.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8



THEIR SETUP, AS A PICTURE
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The database

Applications using 
the database: 
client processes

During the run, T concurrent 
requests are issued.  Here, 3 
are running right now, but T 

could be much larger.



THEIR BASIC SETUP, AS A PICTURE
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For scalability, the number of servers (N) can be increased

Server 1 Server 2 Server N

Applications using 
the database: 
client processes

During the run, T concurrent 
requests are issued.  Here, 3 
are running right now, but T 

could be much larger.



WHAT SHOULD BE THE GOALS?

A scalable system needs to be able to handle “more T’s” by adding to N

Instead, they found that the work the servers must do will increase as T5

Worse, with an even split of work, deadlocks occur as N3, causing 
feedback (because the reissued transactions get done more than once).

Example: if 3 servers (N=3) could do 1000 TPS, with 5 servers the rate 
might drop to 300 TPS, purely because of deadlocks forcing abort/retry.
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WHY DO SERVICES SLOW DOWN AT SCALE?

The paper pointed to several main issues:

 Lock contention.  The more concurrent tasks, the more likely that they
will try to access the same object (birthday paradox!) and wait for locks.

 Abort.  Many consistency mechanisms have some form of optimistic
behavior built in.  Now and then, they must back out and retry. Deadlock
also causes abort/retry sequences.

The paper actually explores multiple options for structuring the data, but 
ends up with similar negative conclusions except in one specific situation.
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SHARDING: THIS WORKS… BUT CAREFULLY

We will often see this kind of picture.  Cloud IoT systems make very heavy 
use of key-based sharding.  A (key,value) store holds data in the shards.
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Sharded storage 
µ-service with 2 
servers per shard

A shard with 2 replicas 
handling Hash(key)%K=2

A transaction

A read or write to some (key,value) tuple.  
Here, Hash(key)%K=1

K shards



SHARDING: THIS WORKS… BUT CAREFULLY

If a transaction does all its work at just one shard, never needing to access 
two or more, we can use state machine replication to do the work.

No locks or 2-phase commit are required.  This scales very well.
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Storage 
µ-service

Each transaction 
accesses just one shard



DEFN: STATE MACHINE REPLICATION

We have a set of servers: {P, Q, R, … }
Each server holds a replica of some data and has the identical logic (code).

Any server can handle a read: the code just reads the local replica.

To do an update, we use an atomic multicast or a durable Paxos write (multicast if 
the state is kept in-memory, and durable if on disk).

Replicas see the same updates in the same order, hence stay in the same state.  
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STATE MACHINE REPLICATION ON SHARDS DOESN’T 
SUPPORT ARBITRARY TRANSACTIONS

Transactions that touch multiple shards require complex locking.  Jim Gray’s 
analysis applies: as we scale this case up, performance collapses.
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Storage 
µ-service

These transactions read 
and write multiple shards 

and need atomicity.



STATE MACHINE REPLICATION IN WHICH EACH 
SHARD IS TOTALLY INDEPENDENT WORKS

If updates and queries are done entirely on one shard, Jim’s analysis does 
not apply.  This is because we can actually avoid locking (the update order 
is enough to ensure sequential progress of the replicas, with consistency).

An application could also access multiple shards, but independently, 
without any “cross shard” guarantees.

This is how sharded storage is used in today’s cloud.
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EXAMPLE: A µ-SERVICE FOR CACHING

Let’s look closely at the concept of caching as it arises in a cloud, and at 
how we can make such a service elastic.

This is just one example, but in fact is a great example because key-value 
data structures are very common in the cloud.

Our example makes use of Google’s GRPC: one of a few tools for helping 
client programs talk to server programs
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GOOGLE RPC (GRPC)

Server declares the callable procedures, “stubs” are created.  These are 
methods with identical arguments.  There is one each for client & server

Client program links to the client stub.  Client code can call GetPhoto(“ken”)

The stub starts by looking up server’s network address (“binding”).  If the 
server is running, the client makes a TCP connection.

Now the caller’s arguments are serialized into a message, and it is sent on 
the TCP connection to the server.  The server stub deserializes them.

When the called procedure is done, a reply is sent back to the caller.
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Client Server
GetPhoto(“ken”)

stub stub



Key=Birman

ACCESSING SHARDED STORAGE, WITH 
SHARDS OF SIZE 1 (ONE SERVER PER SHARD)
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Value=

Hash(“Birman”)%100000

Each machine has a set of 
(key,value) tuples stored in a local 
“Map” or perhaps on NVMe

IN EFFECT, TWO LEVELS OF HASHING!

Client Pool of servers 
implementing a single 

sharded µ-service



WITH TWO SERVERS PER SHARD, WE ADD 
STATE MACHINE REPLICATION
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Key=“Ken” Value=

Hash(“Ken”)%100000

These two machines both store a copy of the (key,value) 
tuple in a local “Map” or perhaps on NVMe

IN EFFECT, TWO LEVELS OF HASHING!



TERMINOLOGY

Our service in this example is called a “key value store” (KVS) or a 
“distributed hash table” (DHT)

Each replica holds a “shard” of the KVS: a distinct portion of the data.

Hashing is actually done using a cryptographic function like SHA 256.
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ELASTICITY ADDS A FURTHER DIMENSION

If we expect changing patterns of load, the cache may need a way to 
dynamically change the pattern of sharding.

Since a cache “works” even if empty, we could simply shut it down and 
restart with some other number of servers and some other sharding policy.  
But cold caches perform very badly.

Instead, we would ideally “shuffle” data.  
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ELASTIC SHUFFLE

Perhaps we initially had data spread over 4 shards.

We could drop down to 2 shards during low-load periods.  Of course half 
our items (hopefully, less popular ones) are dropped.
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Shard A Shard B Shard C Shard D



ELASTIC SHUFFLE
Here, we shuffle data to map from 4 shards down to 2.
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Shard A Shard B Shard C Shard D

Shard A’ Shard B’

… later, we could shuffle it again to elastically expand the cache.



BUT HOW WOULD OTHER SERVICES KNOW 
WHICH SERVERS OWN WHICH SHARDS?
A second issue now arises: how can applications that use the cache find out that 
the pattern just changed?

Typically, big data centers have a management infrastructure that owns this kind 
of information and keeps it in files (lists of the processes currently in the cache, 
and the parameters needed to compute the shard mapping).

If the layout changes, applications are told to reread the configuration.  Later 
we will learn about one tool for this (Zookeeper).  GRPC would consult this 
configuration data to find the server that the client needs to talk to.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 26



TYPICAL DHT API?

The so-called MemCached API was the first widely popular example.  We saw it 
on Christina’s slides on Tuesday.

Today there are many important DHTs (Cassandra, Dynamo DB, MemCached, 
and the list just goes on and on).

All support some form of (key,value) put, get, and (most) offer watch.

Some hide these basic operations behind file system APIs, or “computer-to-
computer email” APIs (publish-subscribe or queuing), or database APIs.
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USE CASE: FB CONTENT DELIVERY NETWORK

Facebook’s CDN is a cloud-scale infrastructure that runs on point of 
presence datacenters in which key-value caches are deployed.

Role is to serve videos and images for end-users.  Weak consistency is fine 
because videos and images are immutable (each object is written once, 
then read many times).

Requirements include speed, scaling, fault-tolerance, self-management
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THE FB BLOB CACHE IS PART OF A HIERARCHY 
DEPLOYED AT GLOBAL SCALE…
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We think of Facebook as havine one core database or 
knowledge repository… but in fact the data is replicated

Point of Presence mini-datacenters

Fully Capable datacenters



… THE DATA IS JUST “BLOBS”
Facebook image data is stored in “blobs”: Binary Large Objects
 This includes original images, videos
 Resized versions, and ones with different playback quality
 Versions that have been processed to tag people, augmented reality
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HAYSTACK

Holds the real image and video data in huge “film strips”, write-once.

Designed to retrieve any object with a single seek and a single read.   
Optimized for SSD (these have good transfer rates but are best for write-once, 
reread many loads, and have a long delay for starting a write).
Facebook doesn’t run a lot of copies

 One on the West Coast, one more on the East Coast

 Each has a backup right next to it.

Main issue: Haystack would easily get overloaded without caching
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A CACHE FOR BLOBS?

The keys would be photo or video id’s.  

For each unique blob, FB has a special kind of tag telling us the resized 
dimensions of the particular instance we are looking at.

Resizing takes time and requires a GPU.  So
FB wants to avoid recomputing them.
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$$$

Goal: a µ-service we can run 
anywhere, and that can 

adapt in size as loads vary.



Facebook 
Edge Cache

Big Datacenter

Browser 
Cache

Client

Origin 
Cache Haystack

True data center
holds the original 
photo in Haystack

If you’ve recently seen the image, Facebook 
finds the blob in a cache on your computer

First, FB fetches your feed.  
This will have URLs with the 
image ID embedded in them.  
The browser tells the system 
what size of screen it has.
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Facebook 
Edge Cache

Big Datacenter

Browser 
Cache

Client

Origin 
Cache Haystack

With a UID and a
target size, we can
search for the blob
in the nearest point of 
presence cache.

If the image wasn’t found in 
your browser cache, maybe it 

can be found in an “edge” 
cache
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Facebook 
Edge Cache

Datacenter

Browser 
Cache

Client

Origin 
Cache Haystack

Cache layers

Origin:
Coordinated
FIFO
Main goal:
traffic sheltering

In the limit, fetch from 
Haystack.  It has a cache too
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ARCHITECTURAL DETAIL (COMPLEX)
DARK GRAY: WE INSTRUMENTED IT
PALE GRAY: WE CAN FIGURE OUT ITS BEHAVIOR
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ARCHITECTURAL DETAIL (WE WEREN’T 
ABLE TO INSTRUMENT THE PINK PART)
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BLOB-SERVING STACK (THE FB PORTION)
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WHAT WE OBSERVED

Month long trace of photo accesses, which we sampled and anonymized.  
Captures cache hits and misses at every level.
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CACHES SEE “CIRCADIAN” PATTERNS
Accesses vary by time of day…

… and by photo: Some are far more popular than others
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PHOTO CACHEABILITY BY POPULARITY
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The main job of each layer
is different.

This is further evidence that cache
policy should vary to match 
details of the actual workload



GEO-SCALE CACHING

One way to do far better turns out to be for caches to collaborate at a 
WAN layer – some edge servers may encounter “suddenly popular” 
content earlier than others, and so those would do resizing operations first.

WAN collaboration between Edge caches is faster than asking for it from 
Haystack, and also reduces load on the Haystack platform.

Key insight: the Facebook Internet is remarkably fast and stable, and this 
gives better than scaling because the full cache can be exploited.
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Remote fetch:
cooperation between
point-of-presence 
cache systems to share
load and resources

In Ithaca, most of your content probably comes from a point of presence in 
the area, maybe the red one (near Boston)

But if Boston doesn’t have it or is overloaded, they casually reach out to 
places like Spokane, or Arizona, especially during periods when those are 
lightly loaded, like 5am PT!

People are sleeping in Seattle

People are having breakfast in Ithaca
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CACHE RETENTION/EVICTION POLICY

Facebook was using an 
LRU policy.  

We used our trace to 
evaluate a segmented 
scheme called S4LRU

It outperforms all other 
algorithms we looked at
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HERE WE SEE THAT S4LRU IS FAR BETTER 
THAN NORMAL LRU
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SO… SWITCH TO S4LRU, RIGHT?

They decided to do so…

Total failure!

Why didn’t it help?
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S4LRU DIDN’T REALLY WORK WELL!

It turned out that the algorithm worked well in theory but created a 
pattern of reads and writes that were badly matched to flash memory

Resulted in a whole two year project to redesign the “operating system” 
layer for big SSD disk arrays based on flash memory: the RIPQ project.

Once this change was made, S4LRU finally worked as hoped!
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RIPQ: KEY INNOVATIONS

Only write large objects to the SSD once: treats SSD like an append-only 
“strip of images”.  Same trick was needed in Haystack.

 SSD is quite good at huge sequential writes.  So this model is good.

But how can they implement “priority”?

 The cache is an in-memory data structure with pointers onto the SSD.  

 They checkpoint the whole cache periodically, enabling warm restart.
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RIPQ ENTRIES ARE P OIN T E R S TO SSD OBJECTS
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ADDITIONAL OPTIMIZATIONS

They actually store data in long “strips” to amortize the access delay across 
a large number of reads or writes.

And they cache hot images, plus have an especially efficient representation 
of the lists of pointers (for the various levels of the cache)

All of this ensures that they run the SSD in its best performance zone.
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RIPQ HAS HIGH FIDELITY
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RIPQ HAS HIGH FIDELITY
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RIPQ HAS HIGH THROUGHPUT
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WHAT DID WE LEARN TODAY?

A good example of a µ-service is a key-value cache, sharded by key.  

The shard layout will depend on how many servers are running, and 
whether they are replicated.  These are examples of configuration data.

Many µ-services are designed to vary the number of servers elastically.
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MORE TAKE-AWAYS

Even a sharded cache poses questions about consistency.

In fact for a cache of images, CAP is a great principle.

But this doesn’t make the problem trivial, it just takes us to the next level of 
issues.
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MORE TAKE-AWAYS

A company like Facebook wants critical µ-services  to make smart use of 
knowledge about photo popularity, and about patterns of access.

With this information it can be intelligent about what to retain in the cache, 
and could even prefetch data or precompute resized versions it will 
probably need.  

Fetching from another cache, even across wide-area links, is advantageous.
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CONCLUSIONS?

In a cloud setting, we need massive scalability.  This comes from hierarchy, 
replication and sharding.  But we also need to match solutions to the setting.

Sharing in a (key,value) model is a great way to deal with scale.  But that 
only gets you to the next set of questions.  At cloud-scale nothing is trivial!

Facebook’s caching “product” is an amazing global system.  Even if it was 
based on simple decisions, the global solution isn’t simple at all!
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