
CS 5412/LECTURE 2
ELASTICITY AND SCALABILITY

Ken Birman
Spring, 2019

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

CONCEPT OF ELASTIC SCALABILITY

The sheer size of the cloud requires a lot of resources. These are
allocated elastically, meaning “on demand”.

Size: A company like Facebook needs to run data centers on every
continent, and for the United States, has four major ones plus an extra 50
or so “point of presence” locations (mini-datacenters).

A single data center might deal with millions of simultaneous users and
have many hundreds of thousands of servers.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 2

Not this kind of elastic!

LOAD SWINGS ARE INEVITABLE IN THIS MODEL

People sleep in Seattle while they are waking up in New York.

People work in Mumbia when nobody is working in the USA

So any particular datacenter sees huge variation in loads.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 3

SHOULD THESE ELASTIC SERVICES BE BUILT AS
ONE BIG THING, OR MANY SMALLER THINGS?

Much like our “how to implement a NUMA server topic”

One big thing: we would need to have all the members of the elastic pool
share a single “state”, like by holding it in a database (or replicating data
but holding it in memory).

Many small things: We split the data itself into chunks (“shards”).

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

SINGLE BIG SERVICE PERFORMS POORLY… WHY?

Until 2005 “one server” was able to scale and keep up, like for Amazon’s
shopping cart. A 2005 server often ran on a small cluster with, perhaps,
2-16 machines in the cluster.

This worked well.

But suddenly, as the cloud grew, this form of scaling broke. Companies
threw unlimited money at the issue but critical services like databases still
became hopelessly overloaded and crashed or fell far behind.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

JIM GRAY’S FAMOUS PAPER

At Microsoft, Jim Gray anticipated this as early as 1996.

He and colleagues wrote a wonderful paper from their insights:

Basic message: divide and conquer is really the only option.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

The dangers of replication and a solution. Jim Gray, Pat Helland, Patrick O'Neil, and Dennis
Shasha. 1996. In Proceedings of the 1996 ACM SIGMOD Conference. pp 173-182.
DOI=http://dx.doi.org/10.1145/233269.233330

Jim Gray
(Jan 1944 – Jan 2007)

HOW THEIR PAPER APPROACHED IT

The paper uses a “chalkboard analysis” to think about scaling for a system
that behaves like a database.

 It could be an actual database like SQL Server or Oracle

 But their “model” also covered any other storage layer where you want
strong guarantees of data consistency.

 Mostly they talk about a single replicated storage instance, but look
at structured versions too.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

THE CORE ISSUE

The paper assumes that your goal is some form of lock-based consistency,
which they model as database serializability (in CS5412 we might
prefer “state machine replication”, but the idea is similar).

So applications will be using read locks, and write locks, and because we
want to accommodate more and more load by adding more servers, the
work spreads over the pool of servers.

This is a very common way to think about servers of all kinds.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

THEIR SETUP, AS A PICTURE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

The database

Applications using
the database:
client processes

During the run, T concurrent
requests are issued. Here, 3
are running right now, but T

could be much larger.

THEIR BASIC SETUP, AS A PICTURE

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

For scalability, the number of servers (N) can be increased

Server 1 Server 2 Server N

Applications using
the database:
client processes

During the run, T concurrent
requests are issued. Here, 3
are running right now, but T

could be much larger.

WHAT SHOULD BE THE GOALS?

A scalable system needs to be able to handle “more T’s” by adding to N

Instead, they found that the work the servers must do will increase as T5

Worse, with an even split of work, deadlocks occur as N3, causing
feedback (because the reissued transactions get done more than once).

Example: if 3 servers (N=3) could do 1000 TPS, with 5 servers the rate
might drop to 300 TPS, purely because of deadlocks forcing abort/retry.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 11

WHY DO SERVICES SLOW DOWN AT SCALE?

The paper pointed to several main issues:

 Lock contention. The more concurrent tasks, the more likely that they
will try to access the same object (birthday paradox!) and wait for locks.

 Abort. Many consistency mechanisms have some form of optimistic
behavior built in. Now and then, they must back out and retry. Deadlock
also causes abort/retry sequences.

The paper actually explores multiple options for structuring the data, but
ends up with similar negative conclusions except in one specific situation.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 12

SHARDING: THIS WORKS… BUT CAREFULLY

We will often see this kind of picture. Cloud IoT systems make very heavy
use of key-based sharding. A (key,value) store holds data in the shards.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 13

Sharded storage
µ-service with 2
servers per shard

A shard with 2 replicas
handling Hash(key)%K=2

A transaction

A read or write to some (key,value) tuple.
Here, Hash(key)%K=1

K shards

SHARDING: THIS WORKS… BUT CAREFULLY

If a transaction does all its work at just one shard, never needing to access
two or more, we can use state machine replication to do the work.

No locks or 2-phase commit are required. This scales very well.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 14

Storage
µ-service

Each transaction
accesses just one shard

DEFN: STATE MACHINE REPLICATION

We have a set of servers: {P, Q, R, … }
Each server holds a replica of some data and has the identical logic (code).

Any server can handle a read: the code just reads the local replica.

To do an update, we use an atomic multicast or a durable Paxos write (multicast if
the state is kept in-memory, and durable if on disk).

Replicas see the same updates in the same order, hence stay in the same state.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 15

STATE MACHINE REPLICATION ON SHARDS DOESN’T
SUPPORT ARBITRARY TRANSACTIONS

Transactions that touch multiple shards require complex locking. Jim Gray’s
analysis applies: as we scale this case up, performance collapses.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 16

Storage
µ-service

These transactions read
and write multiple shards

and need atomicity.

STATE MACHINE REPLICATION IN WHICH EACH
SHARD IS TOTALLY INDEPENDENT WORKS

If updates and queries are done entirely on one shard, Jim’s analysis does
not apply. This is because we can actually avoid locking (the update order
is enough to ensure sequential progress of the replicas, with consistency).

An application could also access multiple shards, but independently,
without any “cross shard” guarantees.

This is how sharded storage is used in today’s cloud.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 17

EXAMPLE: A µ-SERVICE FOR CACHING

Let’s look closely at the concept of caching as it arises in a cloud, and at
how we can make such a service elastic.

This is just one example, but in fact is a great example because key-value
data structures are very common in the cloud.

Our example makes use of Google’s GRPC: one of a few tools for helping
client programs talk to server programs

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 18

GOOGLE RPC (GRPC)

Server declares the callable procedures, “stubs” are created. These are
methods with identical arguments. There is one each for client & server

Client program links to the client stub. Client code can call GetPhoto(“ken”)

The stub starts by looking up server’s network address (“binding”). If the
server is running, the client makes a TCP connection.

Now the caller’s arguments are serialized into a message, and it is sent on
the TCP connection to the server. The server stub deserializes them.

When the called procedure is done, a reply is sent back to the caller.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 19

Client Server
GetPhoto(“ken”)

stub stub

Key=Birman

ACCESSING SHARDED STORAGE, WITH
SHARDS OF SIZE 1 (ONE SERVER PER SHARD)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 20

Value=

Hash(“Birman”)%100000

Each machine has a set of
(key,value) tuples stored in a local
“Map” or perhaps on NVMe

IN EFFECT, TWO LEVELS OF HASHING!

Client Pool of servers
implementing a single

sharded µ-service

WITH TWO SERVERS PER SHARD, WE ADD
STATE MACHINE REPLICATION

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 21

Key=“Ken” Value=

Hash(“Ken”)%100000

These two machines both store a copy of the (key,value)
tuple in a local “Map” or perhaps on NVMe

IN EFFECT, TWO LEVELS OF HASHING!

TERMINOLOGY

Our service in this example is called a “key value store” (KVS) or a
“distributed hash table” (DHT)

Each replica holds a “shard” of the KVS: a distinct portion of the data.

Hashing is actually done using a cryptographic function like SHA 256.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 22

ELASTICITY ADDS A FURTHER DIMENSION

If we expect changing patterns of load, the cache may need a way to
dynamically change the pattern of sharding.

Since a cache “works” even if empty, we could simply shut it down and
restart with some other number of servers and some other sharding policy.
But cold caches perform very badly.

Instead, we would ideally “shuffle” data.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 23

ELASTIC SHUFFLE

Perhaps we initially had data spread over 4 shards.

We could drop down to 2 shards during low-load periods. Of course half
our items (hopefully, less popular ones) are dropped.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 24

Shard A Shard B Shard C Shard D

ELASTIC SHUFFLE
Here, we shuffle data to map from 4 shards down to 2.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 25

Shard A Shard B Shard C Shard D

Shard A’ Shard B’

… later, we could shuffle it again to elastically expand the cache.

BUT HOW WOULD OTHER SERVICES KNOW
WHICH SERVERS OWN WHICH SHARDS?
A second issue now arises: how can applications that use the cache find out that
the pattern just changed?

Typically, big data centers have a management infrastructure that owns this kind
of information and keeps it in files (lists of the processes currently in the cache,
and the parameters needed to compute the shard mapping).

If the layout changes, applications are told to reread the configuration. Later
we will learn about one tool for this (Zookeeper). GRPC would consult this
configuration data to find the server that the client needs to talk to.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 26

TYPICAL DHT API?

The so-called MemCached API was the first widely popular example. We saw it
on Christina’s slides on Tuesday.

Today there are many important DHTs (Cassandra, Dynamo DB, MemCached,
and the list just goes on and on).

All support some form of (key,value) put, get, and (most) offer watch.

Some hide these basic operations behind file system APIs, or “computer-to-
computer email” APIs (publish-subscribe or queuing), or database APIs.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 27

USE CASE: FB CONTENT DELIVERY NETWORK

Facebook’s CDN is a cloud-scale infrastructure that runs on point of
presence datacenters in which key-value caches are deployed.

Role is to serve videos and images for end-users. Weak consistency is fine
because videos and images are immutable (each object is written once,
then read many times).

Requirements include speed, scaling, fault-tolerance, self-management

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 28

THE FB BLOB CACHE IS PART OF A HIERARCHY
DEPLOYED AT GLOBAL SCALE…

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 29

We think of Facebook as havine one core database or
knowledge repository… but in fact the data is replicated

Point of Presence mini-datacenters

Fully Capable datacenters

… THE DATA IS JUST “BLOBS”
Facebook image data is stored in “blobs”: Binary Large Objects
 This includes original images, videos
 Resized versions, and ones with different playback quality
 Versions that have been processed to tag people, augmented reality

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 30

HAYSTACK

Holds the real image and video data in huge “film strips”, write-once.

Designed to retrieve any object with a single seek and a single read.
Optimized for SSD (these have good transfer rates but are best for write-once,
reread many loads, and have a long delay for starting a write).
Facebook doesn’t run a lot of copies

 One on the West Coast, one more on the East Coast

 Each has a backup right next to it.

Main issue: Haystack would easily get overloaded without caching
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 31

A CACHE FOR BLOBS?

The keys would be photo or video id’s.

For each unique blob, FB has a special kind of tag telling us the resized
dimensions of the particular instance we are looking at.

Resizing takes time and requires a GPU. So
FB wants to avoid recomputing them.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 32

$$$

Goal: a µ-service we can run
anywhere, and that can

adapt in size as loads vary.

Facebook
Edge Cache

Big Datacenter

Browser
Cache

Client

Origin
Cache Haystack

True data center
holds the original
photo in Haystack

If you’ve recently seen the image, Facebook
finds the blob in a cache on your computer

First, FB fetches your feed.
This will have URLs with the
image ID embedded in them.
The browser tells the system
what size of screen it has.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 33

Facebook
Edge Cache

Big Datacenter

Browser
Cache

Client

Origin
Cache Haystack

With a UID and a
target size, we can
search for the blob
in the nearest point of
presence cache.

If the image wasn’t found in
your browser cache, maybe it

can be found in an “edge”
cache

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 34

Facebook
Edge Cache

Datacenter

Browser
Cache

Client

Origin
Cache Haystack

Cache layers

Origin:
Coordinated
FIFO
Main goal:
traffic sheltering

In the limit, fetch from
Haystack. It has a cache too

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 35

ARCHITECTURAL DETAIL (COMPLEX)
DARK GRAY: WE INSTRUMENTED IT
PALE GRAY: WE CAN FIGURE OUT ITS BEHAVIOR

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 36

ARCHITECTURAL DETAIL (WE WEREN’T
ABLE TO INSTRUMENT THE PINK PART)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 37

BLOB-SERVING STACK (THE FB PORTION)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 38

WHAT WE OBSERVED

Month long trace of photo accesses, which we sampled and anonymized.
Captures cache hits and misses at every level.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 39

CACHES SEE “CIRCADIAN” PATTERNS
Accesses vary by time of day…

… and by photo: Some are far more popular than others

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 40

PHOTO CACHEABILITY BY POPULARITY

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 41

The main job of each layer
is different.

This is further evidence that cache
policy should vary to match
details of the actual workload

GEO-SCALE CACHING

One way to do far better turns out to be for caches to collaborate at a
WAN layer – some edge servers may encounter “suddenly popular”
content earlier than others, and so those would do resizing operations first.

WAN collaboration between Edge caches is faster than asking for it from
Haystack, and also reduces load on the Haystack platform.

Key insight: the Facebook Internet is remarkably fast and stable, and this
gives better than scaling because the full cache can be exploited.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 42

Remote fetch:
cooperation between
point-of-presence
cache systems to share
load and resources

In Ithaca, most of your content probably comes from a point of presence in
the area, maybe the red one (near Boston)

But if Boston doesn’t have it or is overloaded, they casually reach out to
places like Spokane, or Arizona, especially during periods when those are
lightly loaded, like 5am PT!

People are sleeping in Seattle

People are having breakfast in Ithaca

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 43

CACHE RETENTION/EVICTION POLICY

Facebook was using an
LRU policy.

We used our trace to
evaluate a segmented
scheme called S4LRU

It outperforms all other
algorithms we looked at

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 44

HERE WE SEE THAT S4LRU IS FAR BETTER
THAN NORMAL LRU

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 45

SO… SWITCH TO S4LRU, RIGHT?

They decided to do so…

Total failure!

Why didn’t it help?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 46

S4LRU DIDN’T REALLY WORK WELL!

It turned out that the algorithm worked well in theory but created a
pattern of reads and writes that were badly matched to flash memory

Resulted in a whole two year project to redesign the “operating system”
layer for big SSD disk arrays based on flash memory: the RIPQ project.

Once this change was made, S4LRU finally worked as hoped!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 47RIPQ will not be on exams

RIPQ: KEY INNOVATIONS

Only write large objects to the SSD once: treats SSD like an append-only
“strip of images”. Same trick was needed in Haystack.

 SSD is quite good at huge sequential writes. So this model is good.

But how can they implement “priority”?

 The cache is an in-memory data structure with pointers onto the SSD.

 They checkpoint the whole cache periodically, enabling warm restart.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 48RIPQ will not be on exams

RIPQ ENTRIES ARE P OIN T E R S TO SSD OBJECTS

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 49RIPQ will not be on exams

ADDITIONAL OPTIMIZATIONS

They actually store data in long “strips” to amortize the access delay across
a large number of reads or writes.

And they cache hot images, plus have an especially efficient representation
of the lists of pointers (for the various levels of the cache)

All of this ensures that they run the SSD in its best performance zone.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 50RIPQ will not be on exams

RIPQ HAS HIGH FIDELITY

51

O
bj

ec
t-w

is
e

hi
t-r

at
io

 (%
)

20

25

30

35

40

45

SLRU-1 SLRU-2 SLRU-3 GDSF-1GDSF-2GDSF-3 FIFO

Exact

RIPQ

FIFO

RIPQ achieves ≤0.5% difference for all algorithms

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SPRIPQ will not be on exams

RIPQ HAS HIGH FIDELITY

52

O
bj

ec
t-w

is
e

hi
t-r

at
io

 (%
)

20

25

30

35

40

45

SLRU-1 SLRU-2 SLRU-3 GDSF-1GDSF-2GDSF-3 FIFO

Exact

RIPQ

FIFO

+16% hit-ratio  23% fewer backend IOs

+16%

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SPRIPQ will not be on exams

RIPQ HAS HIGH THROUGHPUT

53

Th
ro

ug
hp

ut
 (r

eq
./s

ec
)

RIPQ throughput comparable to FIFO (≤10% diff.)

0

5000

10000

15000

20000

25000

30000

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3

RIPQ

FIFO

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SPRIPQ will not be on exams

WHAT DID WE LEARN TODAY?

A good example of a µ-service is a key-value cache, sharded by key.

The shard layout will depend on how many servers are running, and
whether they are replicated. These are examples of configuration data.

Many µ-services are designed to vary the number of servers elastically.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 54

MORE TAKE-AWAYS

Even a sharded cache poses questions about consistency.

In fact for a cache of images, CAP is a great principle.

But this doesn’t make the problem trivial, it just takes us to the next level of
issues.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 55

MORE TAKE-AWAYS

A company like Facebook wants critical µ-services to make smart use of
knowledge about photo popularity, and about patterns of access.

With this information it can be intelligent about what to retain in the cache,
and could even prefetch data or precompute resized versions it will
probably need.

Fetching from another cache, even across wide-area links, is advantageous.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 56

CONCLUSIONS?

In a cloud setting, we need massive scalability. This comes from hierarchy,
replication and sharding. But we also need to match solutions to the setting.

Sharing in a (key,value) model is a great way to deal with scale. But that
only gets you to the next set of questions. At cloud-scale nothing is trivial!

Facebook’s caching “product” is an amazing global system. Even if it was
based on simple decisions, the global solution isn’t simple at all!

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 57

	CS 5412/Lecture 2 �Elasticity and Scalability
	Concept of Elastic scalability
	Load swings are inevitable in this model
	Should these elastic services be built as one big thing, or many smaller things?
	Single big service performs poorly… why?�
	Jim Gray’s Famous Paper
	How their paper approached it
	The core issue
	Their setup, as a picture
	Their Basic setup, as a picture
	What should be The goals?
	Why do services slow down at scale?
	Sharding: This works… but carefully
	Sharding: This works… but carefully
	DefN: State Machine Replication
	State machine replication on shards doesn’t support arbitrary transactions
	State machine replication in which each shard is totally independent works
	Example: A -service for caching
	Google RPC (GRPC)
	Accessing Sharded Storage, with shards of size 1 (one server per shard)
	With two servers per shard, we add state machine replication
	Terminology
	Elasticity Adds a Further dimension
	Elastic shuffle
	Elastic shuffle
	But how would other services know which servers own which shards?
	Typical DHT API?
	Use case: FB Content Delivery Network
	The FB BLOB cache is part of A hierarchy deployed at global scale…
	… the data is just “Blobs”
	Haystack
	A cache for blobs?
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Architectural detail (Complex)�Dark Gray: We instrumented it�Pale Gray: We can figure out its behavior
	Architectural detail (we weren’t able to instrument the pink part)
	Blob-Serving Stack (the FB portion)
	What we Observed
	Caches see “circadian” Patterns
	Photo cacheability by popularity
	GEO-Scale Caching
	Slide Number 43
	Cache retention/eviction policy
	Here we see that S4LRU is far better than normal LRU
	So… switch to S4LRU, right?
	S4LRU didn’t really work well!
	RIPQ: Key Innovations
	RIPQ entries are pointers to SSD objects
	Additional optimizations
	RIPQ Has High Fidelity
	RIPQ Has High Fidelity
	RIPQ Has High Throughput
	What did we learn today?
	More take-aways
	More take-aways
	Conclusions?

