
CS5412 / LECTURE 19
APACHE ARCHITECTURE

Ken Birman & Kishore
Pusukuri, Spring 2020

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 1

BATCHED, SHARDED COMPUTING
ON BIG DATA WITH APACHE
Last time we heard about big data (IoT will make things even bigger).

Today’s non-IoT systems shard the data and store it in files or other forms
of databases. We use SQL expressions in massively parallel programs
to search or compute functions over these huge data sets.

Apache is the most widely used big data processing framework

2HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

WHY BATCH?

The core issue is overhead. Doing things one by one incurs high overheads.

Updating data in a batch pays the overhead once on behalf of many
events, hence we “amortize” those costs. The advantage can be huge.

But batching must accumulate enough individual updates to justify running
the big parallel batched computation. Tradeoff: Delay versus efficiency.

3HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

A TYPICAL BIG DATA SYSTEM

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 4

Data Storage (File Systems, Database, etc.)

Resource Manager (Workload Manager, Task Scheduler, etc.)

Batch
Processing

Analytical
SQL

Stream
Processing

Machine
Learning

Other
Applications

Data
Ingestion
Systems

Popular BigData Systems: Apache Hadoop, Apache Spark

A TYPICAL BIG DATA SYSTEM

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 5

Data Storage (File Systems, Database, etc.)

Resource Manager (Workload Manager, Task Scheduler, etc.)

Batch
Processing

Analytical
SQL

Stream
Processing

Machine
Learning

Other
Applications

Data
Ingestion
Systems

Popular BigData Systems: Apache Hadoop, Apache Spark

CLOUD SYSTEMS HAVE MANY “FILE SYSTEMS”

Before we discuss Zookeeper, let’s think about file systems. Clouds have
many! One is for bulk storage: some form of “global file system” or GFS.

 At Google, it is actually called GFS. HDFS (which we will study) is an
open-source version of GFS.

 At Amazon, S3 plays this role

 Azure uses “Azure storage fabric”

 Derecho can be used as a file system too (object store and FFFSv2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 6

HOW DO THEY (ALL) WORK?

 A “Name Node” service runs, fault-tolerantly, and tracks file meta-data
(like a Linux inode): Name, create/update time, size, seek pointer, etc.

 The name node also tells your application which data nodes hold the file.
 Very common to use a simple DHT scheme to fragment the NameNode

into subsets, hopefully spreading the work around. DataNodes are
hashed at the block level (large blocks)

 Some form of primary/backup scheme for fault-tolerance, like chain
replication. Writes are automatically forwarded from the primary
to the backup.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 7

HOW DO THEY WORK?

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 8

File
MetaData

NameNode

DataNode
DataNode

DataNode
DataNode

DataNode
DataNode

DataNode
DataNode

open

Copy of metadata

read

File data

Metadata: file owner, access permissions, time
of creation, …

Plus: Which DataNodes hold its data blocks

MANY FILE SYSTEMS THAT SCALE REALLY WELL
AREN’T GREAT FOR LOCKING/CONSISTENCY

The majority of sharded and scalable file systems turn out to be slow or
incapable of supporting consistency via file locking, for many reasons.

So many application use two file systems: one for bulk data, and
Zookeeper for configuration management, coordination, failure sensing.

This permits some forms of consistency even if not everything.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9

ZOOKEEPER USE CASES

The need in many systems is for a place to store configuration, parameters, lists
of which machines are running, which nodes are “primary” or “backup”, etc.

We desire a file system interface, but “strong, fault-tolerant semantics”

Zookeeper is widely used in this role. Stronger guarantees than GFS.

 Data lives in (small) files.

 Zookeeper is quite slow and not very scalable.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 10

APACHE ZOOKEEPER AND µ-SERVICES
Zookeeper can manage information
in your system

IP addresses, version numbers, and
other configuration information of
your µ-services.

The health of the µ-service.

The step count for an iterative
calculation.

Group membership
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 11

MOST POPULAR ZOOKEEPER API?

They offer a novel form of “conditional file replace”

 Exactly like the conditional “put” operation in Derecho’s object store.

 Files have version numbers in Zookeeper.

 A program can read version 5, update it, and tell the system to replace
the file creating version 6. But this can fail if there was a race and you
lost the race. You could would just loop and retry from version 6.

 It avoids the need for locking and this helps Zookeeper scale better.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 12

THE ZOOKEEPER SERVICE

ZooKeeper Service is replicated over a set of machines

All machines store a copy of the data in memory (!). Checkpointed to disk if you wish.

A leader is elected on service startup

Clients only connect to a single ZooKeeper server & maintains a TCP connection.

Client can read from any Zookeeper server.

Writes go through the leader & need majority consensus.
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ProjectDescription

These are your
µ-services

Zookeeper is itself an
interesting distributed
system

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 13

IS ZOOKEEPER USING PAXOS?

Early work on Zookeeper actually did use Paxos, but it was too slow

They settled on a model that uses atomic multicast with dynamic
membership management and in-memory data (like virtual synchrony).

But they also checkpoint Zookeeper every 5s if you like (you can control
the frequency), so if it crashes it won’t lose more than 5s of data.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 14

REST OF THE APACHE HADOOP ECOSYSTEM

15

Yet Another Resource
Negotiator (YARN)

Map
Reduce Hive

Spark
Stream

Other
Applications

Data Ingest
Systems

e.g., Apache
Kafka, Flume,

etc

Hadoop NoSQL Database (HBase)

Hadoop Distributed File System (HDFS)

Pig

Cluster

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

HDFS is the storage layer for Hadoop BigData System

HDFS is based on the Google File System (GFS)

Fault-tolerant distributed file system

Designed to turn a computing cluster (a large collection of loosely
connected compute nodes) into a massively scalable pool of storage

Provides redundant storage for massive amounts of data -- scales up to
100PB and beyond

16HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HDFS: SOME LIMITATIONS

Files can be created, deleted, and you can write to the end, but not
update them in the middle.

A big update might not be atomic (if your application happens to crash
while writes are being done)

Not appropriate for real-time, low-latency processing -- have to close
the file immediately after writing to make data visible, hence a real
time task would be forced to create too many files

Centralized metadata storage -- multiple single points of failures

17

Name node is a scaling (and potential reliability) weak spot.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HADOOP DATABASE (HBASE)

A NoSQL database built on HDFS

A table can have thousands of columns

Supports very large amounts of data and high throughput

HBase has a weak consistency model, but there are ways to use it safely

Random access, low latency

18HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE

Hbase design actually is based on Google’s Bigtable

A NoSQL distributed database/map built on top of HDFS

Designed for Distribution, Scale, and Speed

Relational Database (RDBMS) vs NoSQL Database:

RDBMS → vertical scaling (expensive) → not appropriate for BigData

NoSQL → horizontal scaling / sharding (cheap) appropriate for
BigData

19HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

REMINDER: RDBMS VS NOSQL (1)

20

•BASE not ACID:
 RDBMS (ACID): Atomicity, Consistency, Isolation, Durability

 NoSQL (BASE): Basically Available Soft state Eventually consistency

•The idea is that by giving up ACID constraints, one can achieve
much higher availability, performance, and scalability
 e.g. most of the systems call themselves “eventually consistent”,

meaning that updates are eventually propagated to all nodes

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

RDBMS VS NOSQL (2)

21

•NoSQL (e.g., CouchDB, HBase) is a good choice for 100
Millions/Billions of rows

•RDBMS (e.g., mysql) is a good choice for a few
thousand/millions of rows

•NoSQL eventual consistency (e.g., CouchDB) or weak
consistency (HBase). HBase actually is “consistent” but only
if used in specific ways.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE: DATA MODEL (1)

22HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE: DATA MODEL (2)

23

•Sorted rows: support billions of rows

•Columns: Supports millions of columns

•Cell: intersection of row and column
 Can have multiple values (which are time-stamped)

 Can be empty. No storage/processing overheads

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE: TABLE

24HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE: HORIZONTAL SPLITS (REGIONS)

25HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE ARCHITECTURE (REGION SERVER)

26HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE ARCHITECTURE

27HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE ARCHITECTURE: COLUMN FAMILY (1)

28HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE ARCHITECTURE: COLUMN FAMILY
(2)

29HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE ARCHITECTURE: COLUMN FAMILY (3)

30

•Data (column families) stored in separate files (Hfiles)

•Tune Performance
 In-memory

 Compression

•Needs to be specified by the user

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE ARCHITECTURE (1)

31

Region Server:

 Clients communicate with RegionServers
(slaves) directly for accessing data

 Serves data for reads and writes.

 These region servers are assigned to the
HDFS data nodes to preserve data
locality.

HBase is composed of three types of servers in a master slave
type of architecture: Region Server, Hbase Master, ZooKeeper.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE ARCHITECTURE (2)

32

HBase Master: coordinates region servers, handles DDL (create,
delete tables) operations.

Zookeeper: HBase uses ZooKeeper as a distributed coordination
service to maintain server state in the cluster.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HDFS USES ZOOKEEPER AS ITS COORDINATOR

33

Maintains region server state in the cluster

Provides server failure notification

Uses consensus to guarantee common shared state

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HOW DO THESE COMPONENTS WORK TOGETHER?

34

Region servers and the active HBase Master connect with a session to ZooKeeper

A special HBase Catalog table “META table” Holds the location of the regions in
the cluster.

ZooKeeper stores the location of the META table.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE: META TABLE

35

The META table is an HBase table that keeps a list of all regions in the system.

This META table is like a B Tree

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE: READS/WRITES

36

The client gets the Region server that hosts the META table from ZooKeeper

The client will query (get/put) the META server to get the region server
corresponding to the rowkey it wants to access

It will get the Row from the corresponding Region Server.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE: SOME LIMITATIONS

37

Not ideal for large objects (>50MB per cell), e.g., videos --
the problem is “write amplification” -- when HDFS
reorganizes data to compact large unchanging data,
extensive copying occurs

Not ideal for storing data chronologically (time as primary
index), e.g., machine logs organized by time-stamps cause
write hot-spots.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HBASE VS HDFS

38

Hbase is a NoSQL distributed store layer (on top of HDFS). It is for faster
random, realtime read/write access to the big data stored in HDFS.

HDFS
• Stores data as flat files
• Optimized for streaming access of large

files -- doesn’t support random read/write
• Follows write-once read-many model

HBase
• Stores data as key-value stores in columnar

fashion. Records in HBase are stored according
to the rowkey and that sequential search is
common

• Provides low latency access to small amounts of
data from within a large data set

• Provides flexible data model

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP

HADOOP RESOURCE
MANAGEMENT

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 39

Yet Another Resource Negotiator (YARN)

➢ YARN is a core component of Hadoop, manages all the resources of a
Hadoop cluster.

➢ Using selectable criteria such as fairness, it effectively allocates resources of
Hadoop cluster to multiple data processing jobs
○ Batch jobs (e.g., MapReduce, Spark)
○ Streaming Jobs (e.g., Spark streaming)
○ Analytics jobs (e.g., Impala, Spark)

HADOOP ECOSYSTEM (RESOURCE
MANAGER)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 40

Yet Another Resource
Negotiator (YARN)

Map
Reduce Hive

Spark
Stream

Other
Applications

Data Ingest
Systems

e.g., Apache
Kafka, Flume,

etcHadoop NoSQL
Database (HBase)

Hadoop Distributed
File System (HDFS)

Pig

Resource
manager

YARN CONCEPTS (1)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 41

Container:

➢ YARN uses an abstraction of resources called a container for managing
resources -- an unit of computation of a slave node, i.e., a certain amount of
CPU, Memory, Disk, etc., resources. Tied to Mesos container model.

➢ A single job may run in one or more containers – a set of containers would
be used to encapsulate highly parallel Hadoop jobs.

➢ The main goal of YARN is effectively allocating containers to multiple data
processing jobs.

YARN CONCEPTS (2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 42

Three Main components of YARN:

Application Master, Node Manager, and Resource Manager (a.k.a. YARN
Daemon Processes)

➢ Application Master:
○ Single instance per job.
○ Spawned within a container when a new job is submitted by a client
○ Requests additional containers for handling of any sub-tasks.

➢ Node Manager: Single instance per slave node. Responsible for monitoring
and reporting on local container status (all containers on slave node).

YARN CONCEPTS (3)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 43

Three Main components of YARN:

Application Master, Node Manager, and Resource Manager (aka The YARN
Daemon Processes)

➢ Resource Manager: arbitrates system resources between competing jobs. It has
two main components:
○ Scheduler (Global scheduler): Responsible for allocating resources to the

jobs subject to familiar constraints of capacities, queues etc.
○ Application Manager: Responsible for accepting job-submissions and

provides the service for restarting the ApplicationMaster container on failure.

YARN CONCEPTS (4)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 44

How do the components
of YARN work together?

Image source: http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/YARN.html

HADOOP ECOSYSTEM (PROCESSING LAYER)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 45

Yet Another Resource
Negotiator (YARN)

Map
Reduce Hive

Spark
Stream

Other
Applications

Data Ingest
Systems

e.g., Apache
Kafka, Flume,

etcHadoop NoSQL
Database (HBase)

Hadoop Distributed
File System (HDFS)

Pig
Processing

HADOOP DATA PROCESSING FRAMEWORKS

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 46

Hadoop data processing (software) framework:

➢ Abstracts the complexity of distributed programming
➢ For easily writing applications which process vast amounts of data in-

parallel on large clusters

Two popular frameworks:

➢MapReduce: used for individual batch (long running) jobs
➢ Spark: for streaming, interactive, and iterative batch jobs

Note: Spark is more than a framework. We will learn more about this in future lectures

MAP REDUCE (“JUST A TASTE”)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 47

MapReduce allows a style of parallel programming designed for:

➢ Distributing (parallelizing) a task easily across multiple nodes of a cluster
○ Allows programmers to describe processing in terms of simple map

and reduce functions
➢ Invisible management of hardware and software failures
➢ Easy management of very large-scale data

MAPREDUCE: TERMINOLOGY

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 48

➢ A MapReduce job starts with a collection of input elements of a single
type -- technically, all types are key-value pairs

➢ A MapReduce job/application is a complete execution of Mappers and
Reducers over a dataset
○ Mapper applies the map functions to a single input element
○ Application of the reduce function to one key and its list of values is a

Reducer
➢Many mappers/reducers grouped in a Map/Reduce task (the unit of

parallelism)

MAPREDUCE: PHASES

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 49

Map
➢ Each Map task (typically) operates on a single HDFS block -- Map tasks (usually) run

on the node where the block is stored
➢ The output of the Map function is a set of 0, 1, or more key-value pairs

Shuffle and Sort
➢ Sorts and consolidates intermediate data from all mappers -- sorts all the key-value

pairs by key, forming key-(list of values) pairs.
➢ Happens as Map tasks complete and before Reduce tasks start

Reduce
➢ Operates on shuffled/sorted intermediate data (Map task output) -- the Reduce

function is applied to each key-(list of values). Produces final output.

EXAMPLE: WORD COUNT (1)

The Problem:

We have a large file of documents (the input elements)

Documents are words separated by whitespace.

Count the number of times each distinct word appears in the file.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 50

EXAMPLE: WORD COUNT (2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 51

Why Do We Care About Counting Words?

➢Word count is challenging over massive amounts of data
○ Using a single compute node would be too time-consuming
○ Using distributed nodes requires moving data
○ Number of unique words can easily exceed available memory -- would

need to store to disk
➢Many common tasks are very similar to word count, e.g., log file

analysis

WORD COUNT USING
MAPREDUCE (1)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 52

map(key, value):
// key: document ID; value: text of
document

FOR (each word w IN value)
emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers

result = 0;
FOR (each integer v on value-list)

result += v;
emit(key, result);

WORD COUNT USING
MAPREDUCE (2)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 53

the cat sat on the mat

the aardvark sat on the sofa

Map & Reduce
aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Input
Result

WORD COUNT: MAPPER

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 54

the 1
cat 1
sat 1
on 1
the 1
mat 1

Input

the cat sat on the mat

the aardvark sat on the sofa

Map

Map

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

WORD COUNT: SHUFFLE & SORT

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 55

the 1
cat 1
sat 1
on 1
the 1
mat 1

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1

Mapper
Output

aardvark 1
cat 1
mat 1
on 1,1
sat 1,1
sofa 1

the 1,1,1,1

Shuffle & Sort

Intermediate Data

WORD COUNT: REDUCER

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 56

aardvark 1
cat 1
mat 1
on 1,1
sat 1,1
sofa 1

the 1,1,1,1

Intermediate Data

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Reducer Output

aardvark 1

cat 1

mat 1

on 2

sat 2

sofa 1

the 4

Result

MAPREDUCE: COPING WITH
FAILURES

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 57

➢MapReduce is designed to deal with compute nodes failing to execute
a Map task or Reduce task.

➢ Re-execute failed tasks, not whole jobs/applications.
➢ Key point: MapReduce tasks produce no visible output until the entire

set of tasks is completed. If a task or sub task somehow completes
more than once, only the earliest output is retained.

➢ Thus, we can restart a Map task that failed without fear that a Reduce
task has already used some output of the failed Map task.

SUMMARY
With really huge data sets, or changing data collected from huge
numbers of clients, it often is not practical to use a classic database
model where each incoming event triggers its own updates.

So we shift towards batch processing, highly parallel: many updates and
many “answers” all computed as one task.

Then cache the results to enable fast tier-one/two reactions later.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 58

	CS5412 / Lecture 19�Apache Architecture
	Batched, Sharded computing �on BIG DATA with Apache
	Why batch?
	A Typical Big Data System
	A Typical Big Data System
	Cloud systems have many “file Systems”
	How do they (all) work?
	How do they work?
	Many file systems that scale really well aren’t great for locking/consistency
	Zookeeper use cases
	Apache Zookeeper and -services
	Most popular Zookeeper API?
	The ZooKeeper Service
	Is Zookeeper using Paxos?
	Rest of the Apache Hadoop Ecosystem
	Hadoop Distributed File System (HDFS)
	HDFS: Some Limitations
	Hadoop Database (HBase)
	HBase
	Reminder: RDBMS vs NoSQL (1)
	RDBMS vs NoSQL (2)
	HBase: Data Model (1)
	HBase: Data Model (2)
	HBase: Table
	HBase: Horizontal Splits (Regions)
	Hbase Architecture (Region Server)
	HBase Architecture
	HBase Architecture: Column Family (1)
	HBase Architecture: Column Family (2)
	HBase Architecture: Column Family (3)
	HBase Architecture (1)
	HBase Architecture (2)
	HDFS uses ZooKeeper as its coordinator
	�How do these components work together?
	HBase: Meta table
	HBase: Reads/Writes��
	HBase: Some Limitations
	HBase vs HDFS
	Hadoop Resource Management
	Hadoop Ecosystem (Resource Manager)
	YARN Concepts (1)
	YARN Concepts (2)
	YARN Concepts (3)
	YARN Concepts (4)
	Hadoop Ecosystem (Processing Layer)
	Hadoop Data Processing Frameworks
	Map Reduce (“Just a taste”)
	MapReduce: Terminology
	MapReduce: Phases
	Example: Word Count (1)
	Example: Word Count (2)
	Word Count Using MapReduce (1)
	Word Count Using MapReduce (2)
	Word Count: Mapper
	Word Count: Shuffle & Sort
	Word Count: Reducer
	MapReduce: Coping With Failures
	SUMMARY

