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BATCHED, SHARDED COMPUTING 
ON BIG DATA WITH APACHE
Last time we heard about big data (IoT will make things even bigger).  

Today’s non-IoT systems shard the data and store it in files or other forms 
of databases.    We use SQL expressions in massively parallel programs 
to search or compute functions over these huge data sets.

Apache is the most widely used big data processing framework
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WHY BATCH?

The core issue is overhead.  Doing things one by one incurs high overheads.

Updating data in a batch pays the overhead once on behalf of many 
events, hence we “amortize” those costs.  The advantage can be huge.

But batching must accumulate enough individual updates to justify running 
the big parallel batched computation.  Tradeoff: Delay versus efficiency.
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A TYPICAL BIG DATA SYSTEM
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CLOUD SYSTEMS HAVE MANY “FILE SYSTEMS”

Before we discuss Zookeeper, let’s think about file systems.  Clouds have 
many! One is for bulk storage: some form of “global file system” or GFS.

 At Google, it is actually called GFS.  HDFS (which we will study) is an 
open-source version of GFS.

 At Amazon, S3 plays this role

 Azure uses “Azure storage fabric”

 Derecho can be used as a file system too (object store and FFFSv2)
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HOW DO THEY (ALL) WORK?

 A “Name Node” service runs, fault-tolerantly, and tracks file meta-data 
(like a Linux inode): Name, create/update time, size, seek pointer, etc.

 The name node also tells your application which data nodes hold the file. 
 Very common to use a simple DHT scheme to fragment the NameNode

into subsets, hopefully spreading the work around.  DataNodes are 
hashed at the block level (large blocks)

 Some form of primary/backup scheme for fault-tolerance, like chain 
replication.  Writes are automatically forwarded from the primary 
to the backup.
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HOW DO THEY WORK?
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MANY FILE SYSTEMS THAT SCALE REALLY WELL 
AREN’T GREAT FOR LOCKING/CONSISTENCY

The majority of sharded and scalable file systems turn out to be slow or 
incapable of supporting consistency via file locking, for many reasons.

So many application use two file systems: one for bulk data, and 
Zookeeper for configuration management, coordination, failure sensing.

This permits some forms of consistency even if not everything.

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 9



ZOOKEEPER USE CASES

The need in many systems is for a place to store configuration, parameters, lists 
of which machines are running, which nodes are “primary” or “backup”, etc.

We desire a file system interface, but “strong, fault-tolerant semantics”

Zookeeper is widely used in this role.  Stronger guarantees than GFS.

 Data lives in (small) files.  

 Zookeeper is quite slow and not very scalable.
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APACHE ZOOKEEPER AND µ-SERVICES
Zookeeper can manage information 
in your system

IP addresses, version numbers, and 
other configuration information of 
your µ-services.

The health of the µ-service.

The step count for an iterative 
calculation.

Group membership
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MOST POPULAR ZOOKEEPER API?

They offer a novel form of “conditional file replace”

 Exactly like the conditional “put” operation in Derecho’s object store.

 Files have version numbers in Zookeeper.

 A program can read version 5, update it, and tell the system to replace 
the file creating version 6. But this can fail if there was a race and you
lost the race.  You could would just loop and retry from version 6.

 It avoids the need for locking and this helps Zookeeper scale better.
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THE ZOOKEEPER SERVICE

ZooKeeper Service is replicated over a set of machines

All machines store a copy of the data in memory (!).  Checkpointed to disk if you wish.

A leader is elected on service startup

Clients only connect to a single ZooKeeper server & maintains a TCP connection.

Client can read from any Zookeeper server.

Writes go through the leader & need majority consensus.
https://cwiki.apache.org/confluence/display/ZOOKEEPER/ProjectDescription

These are your 
µ-services

Zookeeper is itself an 
interesting distributed 
system
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IS ZOOKEEPER USING PAXOS?

Early work on Zookeeper actually did use Paxos, but it was too slow

They settled on a model that uses atomic multicast with dynamic 
membership management and in-memory data (like virtual synchrony).

But they also checkpoint Zookeeper every 5s if you like (you can control 
the frequency), so if it crashes it won’t lose more than 5s of data.
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REST OF THE APACHE HADOOP ECOSYSTEM
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HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

HDFS is the storage layer for Hadoop BigData System

HDFS is based on the Google File System (GFS)

Fault-tolerant distributed file system 

Designed to turn a computing cluster (a large collection of loosely 
connected compute nodes) into a massively scalable pool of storage

Provides redundant storage for massive amounts of data -- scales up to 
100PB and beyond
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HDFS: SOME LIMITATIONS

Files can be created, deleted,  and you can write to the end, but not 
update them in the middle.

A big update might not be atomic (if your application happens to crash 
while writes are being done)

Not appropriate for real-time, low-latency processing -- have to close 
the file immediately after writing to make data visible, hence a real 
time task would be forced to create too many files 

Centralized metadata storage -- multiple single points of failures
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Name node is a scaling (and potential reliability) weak spot.
HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP



HADOOP DATABASE (HBASE)

A NoSQL database built on HDFS

A table can have thousands of columns

Supports very large amounts of data and high throughput

HBase has a weak consistency model, but there are ways to use it safely

Random access, low latency
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HBASE

Hbase design actually is based on Google’s Bigtable

A NoSQL distributed database/map built on top of HDFS

Designed for Distribution, Scale, and Speed 

Relational Database (RDBMS) vs NoSQL Database:

RDBMS → vertical scaling (expensive) → not appropriate for BigData

NoSQL → horizontal scaling / sharding (cheap)  appropriate for 
BigData
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REMINDER: RDBMS VS NOSQL (1)

20

•BASE not ACID:
 RDBMS (ACID): Atomicity, Consistency, Isolation, Durability

 NoSQL (BASE): Basically Available Soft state Eventually consistency

•The idea is that by giving up ACID constraints, one can achieve 
much higher availability, performance, and scalability
 e.g. most of the systems call themselves “eventually consistent”, 

meaning that updates are eventually propagated to all nodes
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RDBMS VS NOSQL (2)
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•NoSQL (e.g., CouchDB, HBase) is a good choice for 100 
Millions/Billions of rows

•RDBMS (e.g., mysql) is a good choice for  a few 
thousand/millions of rows

•NoSQL  eventual consistency (e.g., CouchDB) or weak
consistency (HBase).  HBase actually is “consistent” but only
if used in specific ways.
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HBASE: DATA MODEL (1) 
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HBASE: DATA MODEL (2) 
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•Sorted rows: support billions of rows

•Columns: Supports millions of columns

•Cell: intersection of row and column
 Can have multiple values (which are time-stamped)

 Can be empty. No storage/processing overheads
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HBASE: TABLE
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HBASE: HORIZONTAL SPLITS (REGIONS) 
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HBASE ARCHITECTURE (REGION SERVER) 
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HBASE ARCHITECTURE
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HBASE ARCHITECTURE: COLUMN FAMILY (1)
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HBASE ARCHITECTURE: COLUMN FAMILY 
(2)
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HBASE ARCHITECTURE: COLUMN FAMILY (3)
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•Data (column families) stored in separate files (Hfiles)

•Tune Performance
 In-memory

 Compression

•Needs to be specified by the user
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HBASE ARCHITECTURE (1)
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Region Server:

 Clients communicate with RegionServers
(slaves) directly for accessing data

 Serves data for reads and writes.

 These region servers  are assigned to the 
HDFS data nodes to preserve data 
locality.

HBase is composed of three types of servers in a master slave 
type of architecture: Region Server, Hbase Master, ZooKeeper.
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HBASE ARCHITECTURE (2) 
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HBase Master: coordinates region servers, handles DDL (create, 
delete tables) operations.

Zookeeper: HBase uses ZooKeeper as a distributed coordination 
service to maintain server state in the cluster.
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HDFS USES ZOOKEEPER AS ITS COORDINATOR
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Maintains region server state in the cluster

Provides server failure notification

Uses consensus to guarantee common shared state
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HOW DO THESE COMPONENTS WORK TOGETHER? 
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Region servers and the active HBase Master connect with a session to ZooKeeper

A special HBase Catalog table “META table”  Holds the location of the regions in 
the cluster.

ZooKeeper stores the location of the META table.
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HBASE: META TABLE
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The META table is an HBase table that keeps a list of all regions in the system.

This META table is like a B Tree
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HBASE: READS/WRITES
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The client gets the Region server that hosts the META table from ZooKeeper

The client will query (get/put) the META server to get the region server 
corresponding to the rowkey it wants to access

It will get the Row from the corresponding Region Server.
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HBASE: SOME LIMITATIONS
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Not ideal for large objects (>50MB per cell), e.g., videos --
the problem is “write amplification” -- when HDFS 
reorganizes data to compact large unchanging data, 
extensive copying occurs

Not ideal for storing data chronologically (time as primary 
index), e.g., machine logs organized by time-stamps cause 
write hot-spots.
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HBASE VS HDFS
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Hbase is a NoSQL distributed store layer (on top of HDFS). It is for faster     
random, realtime read/write access to the big data stored in HDFS.

HDFS
• Stores data as flat files
• Optimized for streaming access of large 

files -- doesn’t support random read/write
• Follows write-once read-many model

HBase
• Stores data as key-value stores in columnar 

fashion. Records in HBase are stored according 
to the rowkey and that sequential search is 
common

• Provides low latency access to small amounts of 
data from within a large data set

• Provides flexible data model
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HADOOP RESOURCE 
MANAGEMENT
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Yet Another Resource Negotiator (YARN)

➢ YARN is a core component of Hadoop, manages all the resources of a 
Hadoop cluster. 

➢ Using selectable criteria such as fairness, it effectively allocates resources of 
Hadoop cluster to multiple data processing jobs
○ Batch jobs (e.g., MapReduce, Spark)
○ Streaming Jobs (e.g., Spark streaming)
○ Analytics jobs (e.g., Impala, Spark)



HADOOP ECOSYSTEM (RESOURCE 
MANAGER)
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YARN CONCEPTS (1)
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Container:

➢ YARN uses an abstraction of resources called a container for managing 
resources -- an unit of computation of a slave node, i.e., a certain amount of 
CPU, Memory, Disk, etc., resources.  Tied to Mesos container model.

➢ A single job may run in one or more containers – a set of containers would 
be used to encapsulate highly parallel Hadoop jobs.

➢ The main goal of YARN is effectively allocating containers to multiple data 
processing jobs.



YARN CONCEPTS (2)
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Three Main components of YARN: 

Application Master, Node Manager, and Resource Manager (a.k.a. YARN 
Daemon Processes)

➢ Application Master:
○ Single instance per job.
○ Spawned within a container when a new job is submitted by a client
○ Requests additional containers for handling of any sub-tasks.

➢ Node Manager: Single instance per slave node. Responsible for monitoring 
and reporting on local container status (all containers on slave node).



YARN CONCEPTS (3)
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Three Main components of YARN: 

Application Master, Node Manager, and Resource Manager (aka The YARN 
Daemon Processes)

➢ Resource Manager: arbitrates system resources between competing jobs. It has 
two main components:
○ Scheduler (Global scheduler): Responsible for allocating resources to the 

jobs subject to familiar constraints of capacities, queues etc.
○ Application Manager:  Responsible for accepting job-submissions and 

provides the service for restarting the ApplicationMaster container on failure.



YARN CONCEPTS (4)
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How do the components 
of YARN work together?

Image source: http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/YARN.html



HADOOP ECOSYSTEM (PROCESSING LAYER)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 45

Yet Another Resource 
Negotiator (YARN)

Map 
Reduce Hive

Spark 
Stream

Other 
Applications

Data Ingest 
Systems

e.g., Apache 
Kafka, Flume, 

etcHadoop NoSQL 
Database (HBase)

Hadoop Distributed 
File System (HDFS)

Pig
Processing



HADOOP DATA PROCESSING FRAMEWORKS 

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 46

Hadoop data processing (software) framework:

➢ Abstracts the complexity of distributed programming
➢ For easily writing applications which process vast amounts of data in-

parallel on large clusters

Two popular frameworks:

➢MapReduce: used for individual batch (long running) jobs
➢ Spark: for streaming, interactive, and iterative batch jobs

Note: Spark is more than a framework. We will learn more about this in future lectures



MAP REDUCE (“JUST A TASTE”)

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 47

MapReduce allows a style of parallel programming designed for:

➢ Distributing (parallelizing) a task easily across multiple nodes of a cluster
○ Allows programmers to describe processing in terms of simple map

and reduce functions
➢ Invisible management of hardware and software failures
➢ Easy management of very large-scale data



MAPREDUCE: TERMINOLOGY
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➢ A MapReduce job starts with a collection of input elements of a single 
type -- technically, all types are key-value pairs

➢ A MapReduce job/application is a complete execution of Mappers and 
Reducers over a dataset
○ Mapper applies the map functions to a single input element
○ Application of the reduce function to one key and its list of values is a 

Reducer
➢Many mappers/reducers grouped in a Map/Reduce task (the unit of 

parallelism)



MAPREDUCE: PHASES
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Map
➢ Each Map task (typically) operates on a single HDFS block -- Map tasks (usually) run 

on the node where the block is stored
➢ The output of the Map function is a set of 0, 1, or more key-value pairs

Shuffle and Sort
➢ Sorts and consolidates intermediate data from all mappers -- sorts all the key-value 

pairs by key, forming key-(list of values) pairs.
➢ Happens as Map tasks complete and before Reduce tasks start

Reduce
➢ Operates on shuffled/sorted intermediate data (Map task output)  -- the Reduce 

function is applied to each key-(list of values). Produces final output.



EXAMPLE: WORD COUNT (1)

The Problem:

We have a large file of documents (the input elements) 

Documents are words separated by whitespace.

Count the number of times each distinct word appears in the file.
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EXAMPLE: WORD COUNT (2)
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Why Do We Care About Counting Words?

➢Word count is challenging over massive amounts of data
○ Using a single compute node would be too time-consuming
○ Using distributed nodes requires moving data
○ Number of unique words can easily exceed available memory -- would 

need to store to disk
➢Many common tasks are very similar to word count, e.g., log file 

analysis



WORD COUNT USING 
MAPREDUCE (1)
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map(key, value):
// key: document ID; value: text of 
document

FOR (each word w IN value)
emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers

result = 0;
FOR (each integer v on value-list)

result += v;
emit(key, result);



WORD COUNT USING 
MAPREDUCE (2)
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WORD COUNT: MAPPER

HTTP://WWW.CS.CORNELL.EDU/COURSES/CS5412/2020SP 54

the 1
cat 1
sat 1
on 1
the 1
mat 1

Input

the cat sat on the mat

the aardvark sat on the sofa

Map

Map

the 1
aardvark 1

sat 1
on 1
the 1
sofa 1



WORD COUNT: SHUFFLE & SORT
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WORD COUNT: REDUCER
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MAPREDUCE: COPING WITH 
FAILURES
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➢MapReduce is designed to deal with compute nodes failing to execute 
a Map task or Reduce task.

➢ Re-execute failed tasks, not whole jobs/applications.
➢ Key point: MapReduce tasks produce no visible output until the entire 

set of tasks is completed.  If a task or sub task somehow completes 
more than once, only the earliest output is retained.

➢ Thus, we can restart a Map task that failed without fear that a Reduce 
task has already used some output of the failed Map task.



SUMMARY
With really huge data sets, or changing data collected from huge 
numbers of clients, it often is not practical to use a classic database 
model where each incoming event triggers its own updates.

So we shift towards batch processing, highly parallel: many updates and 
many “answers” all computed as one task.

Then cache the results to enable fast tier-one/two reactions later.
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